διὰ τὸ προδειχθέν . ἔστω τοίνυν ἡ ΚΛ πλευρὰ τοῦ ὑπερβλήματος , καὶ διὰ τοῦ Λ παράλληλος ἤχθω τῇ ΗΓ
πλευρὰ τοῦ ὑπερβλήματος . ἀλλὰ δὴ πάλιν ἔστω πλευρὰ τοῦ ὑπερβλήματος ἡ ΓΒ . ἔσται ἄρα τὸ ὑπὸ τῶν ΑΒ
6515947 ΥΘ
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ
6191682 ΕΚΗ
κοινὴ τομὴ ἡ ΖΘ , τοῦ δὲ ΕΖΗΘ καὶ τοῦ ΕΚΗ κοινὴ τομὴ ἡ ΕΗ . καὶ ἐπεὶ ἐν σφαίρᾳ
' οὗ ΕΚΒΗ περιλήψεται κύκλος . : τὸ μὲν γὰρ ΕΚΗ τρίγωνον περιλήψεται κύκλος : ἔχομεν γὰρ ἐν τῷ πέμπτῳ
6179122 ΕΑΖ
τουτέστιν ἡ φαινομένη τοῦ ζῳδιακοῦ περιφέρεια , καὶ ἡ ὑπὸ ΕΑΖ , τουτέστιν ἡ ΕΖ τοῦ ἐπικύκλου περιφέρεια . πάλιν
ΕΔ ΔΓ ΓΒ ΒΖ , καὶ τὸ δὶς ὑπὸ τῶν ΕΑΖ ἄρα ἴσον ἐστὶν τῷ δὶς ὑπὸ τῶν ΕΔΓ μετὰ
6173528 ΝΥ
Ν , Ο , Π τῇ ΑΒ παράλληλοι ἤχθωσαν αἱ ΝΥ , ΟΣ , ΤΠ : ἴσον ἄρα ἐστὶ τὸ
τῆς ΖΝ βάσεως , ὑπερέχει καὶ τὸ ΛΥ στερεὸν τοῦ ΝΥ [ στερεοῦ ] , καὶ εἰ ἴση , ἴσον
6142198 ΠΗ
ἡ ΤΠ τῇ ΠΕ ; ἀλλ ' ἡ ΠΕ τῇ ΠΗ ἴση : ἔχει δὴ σύγκρισιν : ἔστιν γὰρ μείζων
ΛΚ ἄξων τῷ ΚΜ ἄξονι , ἴσος ἐστὶ καὶ ὁ ΠΗ κύλινδρος τῷ ΗΧ κυλίνδρῳ , εἰ δὲ μείζων ἐστὶν
5993588 ΟΥΔΕ
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία
5977647 ΕΧ
τῇ ὑπὸ ΘΗΧ ἐστιν ἴση . παράλληλος ἄρα ἐστὶν ἡ ΕΧ τῇ ΗΘ . πεποιήσθω δή , ὡς ἡ ΠΗ
ἐστὶν ἡ ΔΧ τῇ ΧΖ , ἴση ἄρα καὶ ἡ ΕΧ τῇ ΖΗ : ὥστε καὶ ἡ ΓΗ ἴση τῇ
5955025 ΖΓ
ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ
ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ
5942477 ΚΔ
, οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ :
ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ
5939668 ΚΕ
, Δ γωνίαι , καὶ ἴση ἐστὶν ἡ ΓΚ τῇ ΚΕ , δοθέν ἐστιν ἑκάτερον τῶν ΓΔΚ , ΕΖΚ τριπλεύρων
, ὡς ἡ ΖΚ πρὸς τὴν ΓΔ , οὕτως ἡ ΚΕ πρὸς τὴν ΔΒ . ῥητὴ δὲ ἡ ΚΕ καὶ
5924536 ΔΕΓ
ἐλάττονές εἰσιν , ἴση δὲ ἡ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ , αἱ ἄρα ὑπὸ ΑΒΓ , ΔΕΓ δύο ὀρθῶν
ὑπὸ ΑΕΒ πρὸς τὸ ἀπὸ ΕΒ , οὕτως τὸ ὑπὸ ΔΕΓ πρὸς τὸ ἀπὸ ΕΓ . ἀλλὰ καὶ ὡς τὸ
5898371 ἑτερομηκους
, ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ
ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως
5894262 ΗΔ
ἐστιν ἴση , λοιπὴ ἄρα ἡ ΓΗ περιφέρεια λοιπῇ τῇ ΗΔ ἐστιν ἴση . πενταγώνου δὲ ἡ ΓΔ : δεκαγώνου
ἐστὶν ἴση . ἐπεὶ οὖν ὑπόκειται ὡς ἡ ΑΗ πρὸς ΗΔ , ἡ ΔΘ πρὸς ΘΖ , ἴση δὲ ἡ
5890848 ΛΝ
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ
5884232 ΦΧ
ἴση δὲ ἡ μὲν ΩΦ τῇ ΨΧ , ἡ δὲ ΦΧ τῇ ΧΠ , ἔστιν ἄρα ὡς ἡ ΨΧ πρὸς
, ἡ δὲ ΧΒ ὅλη διὰ τὸ ἴσην εἶναι τὴν ΦΧ τῇ ΦΘ τοιούτων ξδ κζ , οἵων καὶ ἡ
5859242 ΜΝΞ
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ
5844433 ΗΧ
ΚΜ ἄξονος , ἐλάσσων ἐστὶ καὶ ὁ ΠΗ κύλινδρος τοῦ ΗΧ κυλίνδρου , ἔστιν ἄρα ὡς ὁ ΕΚ ἄξων πρὸς
ΚΜ ἄξονος , μείζων ἐστὶ καὶ ὁ ΠΗ κύλινδρος τοῦ ΗΧ κυλίνδρου , εἰ δὲ ἐλάσσων ἐστὶν ὁ ΛΚ ἄξων
5828167 ΒΖΓ
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο
5823331 ΒΜ
, καὶ παράλληλος τῇ ΖΔ ἡ ΑΜ , καὶ τῶν ΒΜ , ΜΓ μέση ἀνάλογον ἔστω ἡ ΜΗ , καὶ
: διάμετρος ἄρα ἐστὶν ἡ ΒΘ , ὀρθία δὲ ἡ ΒΜ . λέγω , ὅτι τὸ ὑπὸ ΔΑΖ ἴσον ἐστὶ
5820727 ΙΑ
ἀλλὰ πρὸς θεῶν ἐπίσχετε [ ] μηδὲ συρίξητε . [ ΙΑ ] Ὅτι μέν , ὦ Ἀθηναῖοι , Φίλιππος οὐκ
Φθία βαρύνονται , καὶ τὸ δεία . Τὰ διὰ τοῦ ΙΑ ἐπὶ χωρῶν κείμενα παροξύνεται : Λυκία Ἀσία Κιλικία .
5818493 ΑΔΕ
τῷ ΑΔΕ τριγώνῳ , τὸ ἄρα ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΑ πρὸς ΑΔ
τὸ ἀπὸ ΑΔ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον . Ἐπεὶ γὰρ ὅμοιόν ἐστιν τὸ ΑΒΓ τρίγωνον
5818474 ΔΜ
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ
5803056 ΗΚΘ
Η , καὶ δι ' αὐτοῦ παρὰ τὴν ΓΕ ἡ ΗΚΘ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΓΕΖ τῇ
οἵων ἡ μία ὀρθὴ Ϙ , καὶ λοιπὴν τὴν ὑπὸ ΗΚΘ τῶν αὐτῶν # γ . Ἐὰν οὖν ποιήσωμεν ὡς
5797596 πενταπλασιον
καταγραφῆς Εὐθεῖα γάρ τις ἡ ΓΔ τμήματος ἑαυτῆς τοῦ ΔΑ πενταπλάσιον δυνάσθω , τῆς δὲ ΔΑ διπλῆ κείσθω ἡ ΑΒ
, δῆλον : ἐπεὶ γὰρ τὸ μὲν ἀπὸ τῆς ΑΒ πενταπλάσιον τοῦ ἀπὸ τῆς ΜΝ ἐκ κέντρου οὔσης τοῦ κύκλου
5793798 ΝΚ
τῇ ΖΗ : καὶ τῇ ΕΔ ἄρα παράλληλός ἐστιν ἡ ΝΚ , ἡ δὲ ΜΘ τῇ ΒΛ . ἐπεὶ οὖν
ἐπὶ τῆς ἐλλείψεως σημεῖα ἐπιζευγνύουσαι παράλληλοι , καὶ ἐπιζευχθεῖσαι αἱ ΝΚ ΜΘ τεμνέτωσαν ἀλλήλας κατὰ τὸ Τ , καὶ διὰ
5793564 ΝΕ
τὸ θεώρημα τῆς δὲ ΑΒ ἐξ ἑτέρας παραλλήλους διὰ τὸ ΝΕ , ΖΔ σημεῖον . Ἡ ΑΒ Ϛ , ἡ
τομέως . διὰ τὰ αὐτὰ δὴ καὶ ὁσαπλασίων ἐστὶν ἡ ΝΕ περιφέρεια τῆς ΕΖ περιφερείας , τοσαυταπλασίων ἐστὶ καὶ ὁ
5785050 ΝΟ
ἡ ΛΜ μείζων ἐστίν : πολλῷ ἄρα ἡ ΜΛ τῆς ΝΟ μείζων ἐστίν . ἀλλὰ καὶ ἴση : ὅπερ ἐστὶν
ἐστὶν ὡς ἡ ΒΚ πρὸς ΝΞ , ἡ ΚΜ πρὸς ΝΟ . καὶ τὰ τετράγωνα . καὶ ὡς ἓν πρὸς
5783390 ΕΑ
περιφέρειαι αἱ ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ ἴσαι ἀλλήλαις εἰσίν . ὑπὸ δὲ τὰς ἴσας περιφερείας
ΓΒ , τουτέστιν ὡς τὸ ὑπὸ ΕΑΓ πρὸς τὸ ὑπὸ ΕΑ ΓΒ , οὕτως τὸ ὑπὸ ΓΑΕ πρὸς τὸ ὑπὸ
5777948 ΒΟ
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν
5762049 ΒΞ
τὴν ΟΛ : δι ' ἴσου ἄρα ἐστὶν ὡς ἡ ΒΞ πρὸς ΞΚ , οὕτως ἡ ΕΟ πρὸς ΟΛ .
ἡ ΒΝ ἴση τῇ ΒΚ καὶ τῇ ΠΒ καὶ αἱ ΒΞ , ΞΑ ἴσαι ταῖς ΒΛ , ΛΑ καὶ ταῖς
5728108 ΟΠΡ
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ
5726798 ΚΒ
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ
5722622 ΣΤ
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ '
5711498 ΜΚ
τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ
οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ
5710068 ΞΖ
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς
5701114 ΒΗ
, ΖΗ καὶ ἐν ταῖς αὐταῖς παραλλήλοις ταῖς ΑΘ , ΒΗ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ παραλληλόγραμμον
ἴσῳ τριγώνῳ τῇ ΒΖ , γίνεται ὡς συναμφότερος ἡ ΖΒ ΒΗ πρὸς τὴν ΖΗ , οὕτως τὸ ἀπὸ ΑΖ τετράγωνον
5700080 ΚΜ
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς
5691163 ΗΘ
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς
5688367 ΡΒ
ὡς ἄρα ἡ ΑΠ πρὸς ΠΔ , ἡ ΑΡ πρὸς ΡΒ : καὶ διελόντι ἄρα ἐστὶν ὡς ἡ ΑΔ πρὸς
καὶ τῇ ΒΔ ἴση ἡ ΒΕ . καὶ ἐπιζευχθεῖσα ἡ ΡΒ , ἐκβεβλήσθω ἐπὶ τὸ Θ , καὶ ἀπὸ τοῦ
5684536 ΛΑ
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου
5677983 ἐρχεσθω
τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό :
ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ
5669989 ΑΚ
ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ .
ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί
5656477 ΕΚΛ
καὶ ἐὰν ἀγάγωμεν ἐφαπτομένην τὴν ΚΓΛ , ἔσται καὶ τὸ ΕΚΛ τρίγωνον ἰσόπλευρον . καὶ ἐὰν θέλωμεν ἁρμόσαι ἴσον τῷ
εἶναι Θυηλάς , † ἃς πρώτας θύσαι θεοῖς † . ΕΚΛ . ΔΙΑΦ . ΛΕΞ . . . , :
5650406 ΞΒ
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον
5647315 ΑΚΜΓ
τῶν ΑΒΓΔ , ΒΚΔ ἡ ΒΞΔ ὀρθή ἐστι πρὸς τὸν ΑΚΜΓ κύκλον : ὥστε καὶ πρὸς πάσας τὰς ἁπτομένας αὐτῆς
τὴν ΑΓ , διὰ τὸ ὀρθὰ εἶναι πρὸς ἄλληλα τὰ ΑΚΜΓ , ΑΒΓΔ ἐπίπεδα , ἡ δὲ ἀπὸ τοῦ Ν
5635218 ΑΖ
ὀρθὰς ἤχθωσαν αἱ ΓΕ , ΔΖ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΖΒ , ΕΒ . καὶ ἐπεὶ διπλῆ ἐστιν
ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ , οὕτως ἡ ΑΖ πρὸς τὴν ΖΕ , δι ' ἴσου ἄρα ἐστὶν
5632759 ΖΔ
πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ ,
ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ
5629118 ΗΛΜ
, καὶ τέτμηται δίχα ἡ γωνία ἡ ὑπὸ ΚΗΑ τῇ ΗΛΜ εὐθείᾳ , βάσις ἄρα ἡ ΚΛ τῇ ΛΑ ἴση
αἱ ΝΞΗΟΠΡ , ΚΣΤ , παρὰ δὲ τὴν ΑΓ αἱ ΗΛΜ , ΚΟΦΙΧΨΩ . λέγω , ὅτι ἐστίν , ὡς
5626683 ΡΛ
τὰ κέντρα τὰ Ρ , Σ , καὶ ἐπεζεύχθωσαν αἱ ΡΛ , ΡΜ , ΡΚ , ΡΝ , ΣΚ ,
καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , καὶ ἡ ΟΚ πρὸς ΛΞ , τῶν ΑΓ
5599677 ΖΝ
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου ,
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ
5589513 ΒΗΜΛ
, οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλὰ τὸ μὲν τοῦ ΕΘΠΟ στερεοῦ
ἐπιπέδων ἴσων τὸ πλῆθος περιέχεται . ὅμοιον ἄρα ἐστὶ τὸ ΒΗΜΛ στερεὸν τῷ ΕΘΠΟ στερεῷ . τὰ δὲ ὅμοια στερεὰ
5583643 ΞΝ
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ
5578086 ΡΖ
αἵ γε ἀπὸ τοῦ Ρ ὄμματος ἀκτῖνες προσπίπτουσαι κατὰ τὰς ΡΖ , ΡΣ πεσοῦνται . ὥστε ὁρᾶται ὑπὸ μὲν τῆς
ΡΖ , ΖΚ , ΡΣ , ΣΚ . οὐκοῦν αἱ ΡΖ , ΡΣ καθ ' ἓν ἐφάπτονται τῆς σφαίρας .
5576681 ΚΠ
γὰρ ἀπὸ τῶν Κ , Β παρὰ τὴν ΑΖ αἱ ΚΠ , ΒΡ . ἐπεὶ οὖν ἐστιν , ὡς τὸ
καὶ τῇ μὲν ΚΝ παράλληλος ἡ ΡΤ , τῇ δὲ ΚΠ ἡ ΩΜ , καὶ περὶ τὸ Β κέντρον περιφέρεια
5563114 τομεως
ΑΒΓ κύκλου : διπλάσιον ἄρα καὶ τὸ ΜΝ τοῦ ΒΖΕ τομέως . Καὶ ἄλλως δέ , ὑπομνήσεως ἕνεκεν , ὡς
καὶ ἐπεὶ μεῖζον μέν ἐστιν τὸ ΑΕΖ τρίγωνον τοῦ ΑΕΗ τομέως , ἔλασσον δὲ τὸ ΑΕΓ τρίγωνον τοῦ ΑΕΓ τομέως
5562428 δειχθησονται
ἀδυνάτου δείξεως πᾶσαι : πλὴν οἱ μὲν διὰ τοῦ ἀδυνάτου δειχθήσονται , οἱ δὲ καὶ διὰ τῆς ἀντιστροφῆς : καὶ
ζʹ : ὁ γὰρ τῶν ΒΓ καὶ ΓΔ μετὰ ταῦτα δειχθήσονται . εὑρεθήσονται τοίνυν μεῖζον τόνου ποιοῦντες μέγεθος ἑκάτεροι οἵ
5559629 δεδομενου
ἐστίν . μόνοι δὴ λοιπὸν δοκοῦσι καθικνεῖσθαι τῆς ἐννοίας τοῦ δεδομένου οἱ γνώριμον ἅμα καὶ πόριμον αὐτὸ εἶναι ἀποφηνάμενοι :
ἐστὶ καὶ ἡ ὑπὸ τῶν ΑΕΓ γωνία . Ἐὰν κύκλου δεδομένου τῇ θέσει ἐπὶ τῆς περιφερείας δοθὲν σημεῖον ληφθῇ ,
5553125 ΜΔ
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ
5549012 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
5548433 ΖΒ
τμημάτων ριζ λα , καὶ πάλιν ἡ μὲν διπλῆ τῆς ΖΒ μοιρῶν ξ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ξ
τῇ Ν . καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΚΖ τῇ ΖΒ , καὶ συνθέντι σύμμετρός ἐστιν ἡ ΚΒ τῇ ΖΒ
5542891 ΘΓ
τοῦ Θ ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐκβαλλομένη συμπεσεῖται τῇ ΘΓ . δυεῖν ἄρα εὐθειῶν τὰ αὐτὰ πέρατα ἔσται :
ἀπὸ ΘΓ τοῦ ἀπὸ ΕΗ : μείζων ἄρα καὶ ἡ ΘΓ τῆς ΕΗ . καί εἰσι παράλληλοι : ἡ ΕΖ
5541612 ΔΑ
αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι
, κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ
5536998 ΘΣ
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ .
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ
5534987 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
5528130 ΕΔ
τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ
ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ
5521989 ΓΧ
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς
5518557 ΕΖΗΘ
τῆς ΖΘ τετράγωνον , οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον , ἀλλὰ μὴν καὶ ὡς τὸ ἀπὸ τῆς
ΕΖΗΘ πυραμίς : καὶ ἡ ΑΒΓΔ ἄρα πυραμὶς πρὸς τὴν ΕΖΗΘ πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν
5502097 ΕΚ
ἀπὸ τῶν ΚΖ , ΖΕ , τουτέστι τοῦ ἀπὸ τῆς ΕΚ : ἡ ΓΕ ἄρα ἐλάσσων ἐστὶ τῆς ΕΚ .
τῶν ΕΚ ΚΒ : ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΕΚ πρὸς τὸ ἀπὸ τῆς ΚΛ , οὕτως ἡ ΕΚ
5496789 ΛΕ
σελήνη κατὰ τὸ Λ σημεῖον , καὶ ἐπεζεύχθωσαν μὲν αἱ ΛΕ καὶ ΛΒ , κάθετοι δ ' ἤχθωσαν ἐπὶ τὴν
καὶ ἀφῄρηται ἀπ ' αὐτῶν δεδομένα μεγέθη τὰ ΘΑ , ΛΕ . τὰ ΑΒ , ΕΖ ἄρα ἤτοι πρὸς ἄλληλα
5485180 παραλληλογραμμου
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν
5474260 ΕΒΖ
ἀλλήλων οἱ κύκλοι : ἐφάψεται ἄρα ὁ ΑΒ κύκλος τοῦ ΕΒΖ κύκλου . διὰ ἄρα τοῦ δοθέντος σημείου τοῦ Β
τὸ ΓΑΔ πρὸς τὸ ΕΚΖ . εἶχε δὲ καὶ τὸ ΕΒΖ πρὸς τὸ ΕΚΖ διπλασίονα λόγον ἤπερ τὸ ΓΑΔ πρὸς
5472975 ΚΣ
ἑκατέρᾳ τῶν ΚΣ , ΒΟ : καὶ ἑκατέρα ἄρα τῶν ΚΣ , ΒΟ τῆς ΣΟ μείζων ἐστίν . καὶ ἐπεὶ
μία ἄρα τῶν ΘΚ , ΚΛ ἑκατέρας τῶν ΨΚ , ΚΣ μείζων ἐστίν . καὶ ἐπεὶ παράλληλός ἐστιν ὁ ΒΖΓ
5471676 ΛΚΜ
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη
5470282 ΖΞ
ΕΘ εὐθεῖα ε ιη , τοιούτων ἐστὶ καὶ ἡ μὲν ΖΞ ἐκ τοῦ κέντρου τοῦ ἐκκέντρου ξ , ἡ δὲ
τὸ τοῦ διὰ μέσων ἐπίπεδον αἱ ΔΜ καὶ ΕΝ καὶ ΖΞ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΜ καὶ ΚΝ καὶ
5469235 ΔΒ
ἀπὸ ΖΝ ΝΒ ὑπεροχῇ . ἀλλὰ ἡ τῶν ἀπὸ ΖΔ ΔΒ ὑπεροχή ἐστιν τὸ ὑπὸ ΑΒΔ : καὶ ἡ τῶν
ΑΓ , ΓΒ ἔλαττον τοῦ δὶς ὑπὸ τῶν ΑΔ , ΔΒ , λείπεται τὰ ἀπὸ τῶν ΑΓ , ΓΒ τετράγωνα
5468749 ΘΑ
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ
5455918 ἑξαπλασιον
# β # ἔχοι , καὶ ἔτι μᾶλλον , εἰ ἑξαπλάσιον , ὡς εἶναι τῶν μεταλλικῶν # β , κηροῦ
γὰρ τοῦ ρ πρὸς τὸν κ λόγον πενταπλάσιον ἔχοντος , ἑξαπλάσιον ἔχειν τοὺς γινομένους προστιθεμένου τοῦ ἀριθμοῦ ἀπαιτήσομεν , τῆς
5454153 ΓΗ
τῶν ΑΗ , ΓΛ ἴσων οὐσῶν καὶ κοινῆς ἀφαιρεθείσης τῆς ΓΗ , λοιπὴ ἡ ΑΓ τῇ ΗΛ ἴση ἐστίν .
τὰ ια λ , ὁ δὲ τῆς ΓΔ πρὸς τὴν ΓΗ ὁ τῶν οα λ πρὸς τὰ μη λ ,
5449380 μηνισκος
εἴη ὁ μηνίσκος τῷ εὐθυγράμμῳ . ὅτι δὲ οὗτος ὁ μηνίσκος ἐλάττονα ἡμικυκλίου τὴν ἐκτὸς ἔχει περιφέρειαν , δείκνυσι διὰ
ΕΚ ΚΒ ΒΗ τμημάτων . τούτων οὕτως ἐχόντων ὁ γενόμενος μηνίσκος οὗ ἐκτὸς περιφέρεια ἡ ΕΚΒΗ ἴσος ἔσται τῷ εὐθυγράμμῳ
5448585 ὁρασθω
ὄψις δὲ ἡ ΒΔ ἀνακλωμένη ἐπὶ τὸ Α , καὶ ὁράσθω τὸ Α , κέντρον δὲ τῆς σφαίρας ἔστω τὸ
σχῆμα ὁτὲ μὲν κοῖλον , ὁτὲ δὲ κυρτὸν ποιεῖ . ὁράσθω γὰρ τὰ ΓΒΔ τοῦ ὄμματος ἐπὶ τοῦ Κ κειμένου
5446103 ΒΛ
, ὁ δὲ ΒΛ τοῦ ΔΖ ἥμισυ , τοῦ ἄρα ΒΛ ἥμισυ ἔσται ὁ ΔΚ . ἦν δὲ ὁ ΒΛ
ΒΛ περιφερείᾳ : καὶ ἡ ΔΚ ἄρα ὁμοία ἐστὶ τῇ ΒΛ . Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : ἴση ἄρα
5443790 ΑΓΔ
ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν
τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς
5443233 ΑΘΓ
πρὸς τὸ ἀπὸ ΓΒ , τὸ ΑΕΗ τρίγωνον πρὸς τὸ ΑΘΓ . ὡς δὲ τὸ ΑΗΕ πρὸς τὸ ΑΘΓ ,
' εἰ δυνατόν , ἔστω [ αὐτῶν ] διάμετρος ἡ ΑΘΓ , καὶ ἐκβληθεῖσα ἡ ΗΖ διήχθω ἐπὶ τὸ Θ
5436519 ΠΒ
παραλληλογράμμῳ τῷ ΠΒ ὁμοίῳ ὄντι τῷ Δ [ ἐπειδήπερ τὸ ΠΒ τῷ ΗΠ ὅμοιόν ἐστιν ] : ὅπερ ἔδει ποιῆσαι
λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ , ἡ
5435862 ΡΝ
ΘΚ , τῇ δὲ ΡΛ ἴση ἑκατέρα τῶν ΡΜ , ΡΝ : ἑκάστη ἄρα τῶν ΑΒ , ΒΓ , ΔΕ
: ἐπ ' εὐθείας ἄρα [ ἐστὶ ] καὶ ἡ ΡΝ τῇ ΝΟ . καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον :
5433449 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
5433252 ΕΘΠΟ
ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον , οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος .
τοῦ καθ ' ἑαυτὸ παραλληλογράμμου . ἀλλὰ τὸ μὲν τοῦ ΕΘΠΟ . , ] ἰσουψεῖς γάρ εἰσιν . ἀλλ '
5431334 ΑΝΘΡΩΠΟΙΣΙ
, ἤγουν ἡ Εἱμαρμένη . . ΤΟΥΝΕΚ ' ΑΡ ' ΑΝΘΡΩΠΟΙΣΙ . Τούτου δὴ ἕνεκα , ἤγουν τῆς παρὰ τοῦ
, ἢ ἀπὸ τοῦ γέρας . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙ ΝΟΜΟΝ . Καὶ τοῦτο ἄξιον ποιητοῦ νικήσαντος Ὅμηρον .
5431073 πολλαπλασιον
ἔτυχεν , πολλαπλάσιον τὸ Ζ . Ἐπεὶ οὖν ἰσάκις ἐστὶ πολλαπλάσιον τὸ Δ τοῦ Α καὶ τὸ Ε τοῦ Β
οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , καὶ γεγενήσθω , ὡς ὁ Γ
5430944 ΓΑΔ
ΓΒΑ , ΑΓΒ , ΒΑΓ , ΑΓΔ , ΓΔΑ , ΓΑΔ , ΑΔΒ , ΔΒΑ , ΒΑΔ ἓξ ὀρθαῖς ἴσαι
καὶ ἀπὸ τοῦ Α τῇ ΑΒ πρὸς ὀρθὰς ἤχθω ἡ ΓΑΔ : τεταρτημορίου ἄρα ἐστὶν ἡ ΒΔ περιφέρεια . λέγω
5428328 ΖΛ
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν
5418369 ΔΚ
τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν
ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή
5412156 ΗΖ
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ
5408662 δοξαζον
ἐπὶ τῶν ἄλλων ἁπάντων . ἄλλως τε δὴ εἰ τὸ δοξάζον καὶ τὸ δοξαζόμενον πρὸς ἄλληλα λέγεται , εἰ ἔστιν
τὸ εἶδος αὐτῶν , εἴη ἂν πρὸς ἀόριστα λεγόμενον τὸ δοξάζον : οὐκ ἄρ ' ἅπαντα πρός τι , οὔτε
5408018 ΞΑ
. τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν
ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί
5407937 ΜΖ
, ἡ δὲ ΜΓ ὁμοίως # ιϚ , ἡ δὲ ΜΖ ὅλη ξ ιϚ , διὰ τοῦτο δὲ καὶ ἡ
. ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ
5402596 ΞΗ
τριγώνων ἡ ΕΗ , ἴση ἐστὶν ἡ μὲν ΝΗ τῇ ΞΗ , ἡ δὲ ΕΝ κάθετος τῇ ΕΞ . αἱ
ἡ ΜΠ πρὸς ΒΓ . πεποιήσθω δή , ὡς ἡ ΞΗ πρὸς ΤΒ , ἡ ΤΒ πρὸς Ρ : ἔσται
5398797 Μειζων
ἐπ ' αὐτὴν κάθετος ἔσται [ . , ] . Μείζων ἄρα γωνία . , ] ἐπεὶ ὀρθογώνιά ἐστιν ,
ἀποστάσεις διὰ τὸ ἀπ ' ἀλλήλων ἀποσχισθῆναι οὐχ ἅψονται . Μείζων δὲ πλευρὰ ἡ ΒΖ . , ] μείζων εὐλόγως
5397907 ΑΙΨΑ
τὸ πολλὰ καρτερεῖν καὶ πάσχειν τοὺς συγκροτοῦντας πόλεμον . . ΑΙΨΑ ΚΕ ΠΗΔΑΛΙΟΝ . Ἤγουν ταχέως ἂν τὸ πηδάλιον μὲν
ΧΑΛΕΠΟΙΣ ΒΑΖΟΝΤ ' ΕΠΕΕΣΣΙ ΣΧΕΤΛΙΟΙ , ἤγουν ἄθλιοι . . ΑΙΨΑ ΔΕ ΓΗΡΑΣΚΟΝΤΑΣ ΑΤΙΜΗΣΟΥΣΙ ΤΟ - ΚΗΑΣ . Οἱ παῖδες
5396104 ΘΕ
ἐστιν ὡς ἡ ΑΗ πρὸς τὴν ΗΒ , οὕτως ἡ ΘΕ πρὸς τὴν ΕΒ , ὡς δὲ ἡ ΘΕ πρὸς
ΖΕ συνῆπται λόγος ἔκ τε τοῦ , ὃν ἔχει ἡ ΘΕ πρὸς τὴν ΕΖ , καὶ τοῦ , ὃν ἔχει

Back