| μικροῦ γράφονται καὶ βαρύνονται : οἷον χρόα , πόα , ψόα : εἰ τῇ ΟΙ διφθόγγῳ γράφονται , ὀξύνονται : | ||
| τὴν κατ ' ἰσχίον διάρθρωσιν κινοῦντες : ἡ μὲν οὖν ψόα , μῦς τις οὖσα οὐ μικρός , ἀρχομένη τε |
| ἐναντίων κακοποιῶν μάλιστα τὰ φῶτα θεωρούντων ἐν τοῖς σεληνιακοῖς ἢ ἡλιακοῖς τὰς ἀποδημίας ποιεῖ . ἐὰν τοῦ ζῳδίου ὅπου οἱ | ||
| Ϡξθʹ : ταῦτα δὲ συναριθμούμενα τοῖς πρὸ τῆς τούτων βασιλείας ἡλιακοῖς ͵ανηʹ ἔτεσι συνάγουσιν ὁμάδα ἐτῶν ͵βκζʹ . Ὁμοίως δὲ |
| καὶ Ταγών . τὰ γὰρ ὀνόματα πέπλακε καὶ οὐκ ἔστιν Αἰγυπτιακά . Αἰγυπτίας . ⎧ καὶ ἑλειοβάται : οἱ τὸ | ||
| καὶ Ταγών . τὰ γὰρ ὀνόματα πέπλακε καὶ οὐκ ἔστιν Αἰγυπτιακά . Αἰγυπτίους . καὶ ἑλειοβάται : οἱ τὸ Αἰγύπτιον |
| πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος | ||
| σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης |
| φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα | ||
| δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη |
| Πρασώδης κόλπος . . . . . . . . ρκα β Νούβαρθα πόλις . . . . . . | ||
| . . . . . . . . . . ρκα δʹ ιθ γοʹ Ἱππόκουρα , βασίλειον Βαλεοκούρου . . |
| οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ , τοιούτων ἐστὶν ρϘη νδ , οἵων δὲ αἱ δ ὀρθαὶ τξ , | ||
| τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ ρϘθ Κιβώριον σ Κιννάρα σα Κίκεωϲ ὁ καρπόϲ |
| ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα | ||
| ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ |
| δὲ Θάσῳ τὸν σκορπίον ὠνοῦ , ἐὰν ᾖ μὴ μείζων πυγόνος : μεγάλου δ ' ἀπὸ χεῖρας ἴαλλε . τὸν | ||
| προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον δὲ ἄρα τῶν ὀδόντων |
| ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
| λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
| αἷς ἐπιβάλλουσιν χρόνοις συμμεσουρανήσεως ρκϚ δ ἐλάσσονες τῶν τῆς ὁμαλῆς ρλα κ χρόνοις ε ἔγγιστα , οἳ ποιοῦσιν γʹ μέρος | ||
| καὶ Βιδάσπου ρκε λ συμβολὴ Ζαράδρου καὶ Βιβάσιος . . ρλα λδ συμβολὴ Βιδάσπου καὶ Ἄδριος . . . ρκϚ |
| τὰς ὠμοπλάτας , καὶ δυσελκέες γίνονται . Ἧσσον δ ' ἐπικίνδυνος τοῦ ἑτέρου οὗτος , καὶ ἐκφυγγάνουσι πλέονες . Τοῦτον | ||
| ριζʹ Κρόνου λθʹ , Σελήνης ἔνατος , Διὸς ιγʹ , ἐπικίνδυνος . ριθʹ Ἄρεως ιζʹ , ἐπισφαλής . ρκʹ Κρόνου |
| σ Κιννάρα σα Κίκεωϲ ὁ καρπόϲ σβ Κιϲθὸϲ ἢ κίϲθαροϲ σγ Ὑποκυϲτίϲ σδ Κιϲθὸϲ ἢ λήδων σε Κιϲϲόϲ σϚ Κνῆκοϲ | ||
| δεύτερον ἐπὶ τὸν γʹ πολλαπλασιάσαντες , καὶ τοῦ γενομένου ἀριθμοῦ σγ λβ , τὸ ρκʹ λαβόντες , ἕξομεν α μα |
| τουτέστιν ἡ ΡΥ ] παραλλάξεως οὖσα τῆς σελήνης Καρκίνου μοίραις κθ ιδ τῆς πρὸ γ ∠ ὡρῶν ἰσημερινῶν τῆς μεσημβρίας | ||
| νζ μ ν ιε . τὸ ἥμισυ τῆς ΑΒ α κθ κβ , τὸ ἀπὸ τῆς ἡμισείας τῆς ΑΒ β |
| λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων δὲ σξδ , λείπεται τξα . . Ὁ χκε τετράγωνος γίνεται | ||
| ὑπὸ τῶν Α , Β ἤτοι τὸ ἀπὸ τῆς Γ σξδ μοιρῶν μδ λεπτῶν πρώτων κε δευτέρων , ἡ Γ |
| καὶ ἡ ὑπὸ ΒΕΓ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων ρν κϚ , οἵων εἰσὶν αἱ δύο ὀρθαὶ τξ . | ||
| μεμφόμενος τῆς πόλεως κάθαρσιν [ . ] . οὗτος ἔζησεν ρν ἔτη , τὰ δὲ Ϙ ἐκαθεύδησεν . καὶ παροιμία |
| ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
| δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
| ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΕΛ ἔσται ιγ λγ , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων | ||
| . . . . . . . . ι γʹ λγ ∠ ʹδʹ Τοκολόσιδα . . . . . . |
| ἐϲτι τῶν ξηραινόντων , ἔχει δέ τι καὶ ῥυπτικόν . Δορύκνιον ὅμοιόν ἐϲτι τῇ κράϲει μήκωνι καὶ μανδραγόρᾳ καὶ τοῖϲ | ||
| καὶ σκωλήκια κατὰ μέσην τὴν ἐντεριώνην διαιρεθεῖσα ἡ κεφαλή . Δορύκνιον ὁ Κρατεύας ἁλικάκκαβον ἢ καλλέαν καλεῖ . θάμνος ὅμοιος |
| πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς | ||
| μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ |
| . τοῖς μὲν καλουμένοις ἐρωδίοις ὅμοιος τὸ μέγεθος ὅδε ὁ ὠρίων ἐστίν , ἔστι δὲ καὶ τὰ σκέλη ὡς ἐκεῖνοι | ||
| ἄρατος : λοξὸς μὲν ταύροιο τομῇ ὑποκέκλιται [ αὐτὸς ] ὠρίων . αἱ δὲ πλειάδες εἰσὶν ἐπὶ τῇ οὐρᾷ τοῦ |
| τοῖς ὁμοίοις Ϡξδ , ἅ ἐστιν Αἰγυπτιακὰ Ϡξδ καὶ νυχθήμερα σμζ λγ β με κγ μ κη ἔγγιστα , ἀνωμαλίας | ||
| τοῦ ἐπικύκλου , ὃν ἔχει τὰ ͵γρκβ ∠ ʹ πρὸς σμζ ∠ ʹ , ᾧ λόγῳ ὁ αὐτός ἐστιν ὁ |
| α κθ ο Ϙθ ζ ια ο λε ια θ ιθ κ ζ α κ δ ζ ιγ κ μγ | ||
| ἀκρόποδι λαμπρὸς κοινὸς Ὕδατος . . . . . Ταύρου ιθ ∠ ʹ γʹ νο λα ∠ ʹ αʹ ὁ |
| , τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
| τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
| Ἀγαθοποιῶν ἐν κακίστοις ἀστέρων Ὕπαυγος ἀστὴρ τυγχάνων ἐν Ἡλίῳ , Ἐντός τε μοιρῶν πεντεκαίδεκα φθάσας , Τῶν ἡλιακῶν ἀδρανὲς φέρει | ||
| . . ὧν : Ἀφ ' ὧν . ἔνδον : Ἐντός . . . οὐκ ἔκφορα : Οὐκ ἔξω φερόμενα |
| . . , ὁ γὰρ ἕξ ἀριθμὸς γεννητικώτατός ἐστιν ὡς ἀρτιοπέριττος , μετέχων καὶ τῆς δραστικῆς οὐσίας κατὰ τὸν περιττὸν | ||
| εἶναι πέφυκεν , . . § : ἑξὰς μὲν γὰρ ἀρτιοπέριττος ἀριθμός , ἐκ τοῦ δὶς τρία παγείς , ἔχων |
| α αἱ πηγαὶ τοῦ ποταμοῦ . . . . . ρκϚ βορ . α Ὄδωκα πόλις . . . . | ||
| . . . . . . . . . . ρκϚ ∠ ʹ ιγ . Ἡ ἐκτὸς Γάγγου Ἰνδικὴ περιορίζεται |
| διαφορᾶϲ ρλδ Περὶ ὠῶν ρλε Ὅϲα ὡϲ φάρμακον ἐνεργεῖται ὠά ρλϚ Περὶ τῆϲ ἀπὸ τῶν ἐνύδρων ζῴων τροφῆϲ ρλζ Περὶ | ||
| ρξϚ κθ : καὶ λοιπὴ ἄρα ἡ ΘΒ τοιούτων ἐστὶν ρλϚ κζ , οἵων ἡ ΘΑ ἦν κε νη . |
| δυνάμεωϲ : τῷ λεπτομερεῖ δὲ τῆϲ οὐϲίαϲ ἀνωδύνωϲ καίει . Κόνυζα διττή . Κόνυζα καὶ ἡ μείζων καὶ ἡ μικροτέρα | ||
| τῶν τιθυμάλλων καὶ σχεδὸν ἤδη τῆς καλουμένης σηπτικῆς δυνάμεως . Κόνυζα καὶ ἡ μείζων καὶ ἡ μικροτέρα δριμείας καὶ πικρᾶς |
| δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα # | ||
| . . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ |
| πολὺ * γὰρ * πλῆθος Ἑλλήνων τὸ μὲν ναυαγῆσαν βρωθήσεται κή - τεσι θαλασσίοις , οἱ δὲ τοῖς ἀνέμοις εἰς | ||
| διὰ τοῦτο προσειληφότες τὸ Τ ἄνακτος κλίνομεν . Καν . κή . Ὁ μύρμηξ . Ἔστι μὲν καὶ αὐτὸς τῶν |
| [ ] # # [ πω ] ? ? [ ηκ ] # [ ] [ τος ] δε ? | ||
| ἀντὶ τῆς ΑΔ : τὸ ἄρα ὑπὸ τῶν θη , ηκ ἐστι τὸ κθ , καί ἐστι δι ' αὐτοῦ |
| κʹ καὶ συστολῇ τῆς παραληγούσης βέβαα , ἡ μετοχὴ ὁ βεβαώς . Ὁ φόβος διαιρεῖται εἰς ἓξ , εἰς ὄκνον | ||
| οἷον ζωός ζώς , Νηρηΐς Νηρῄς , ἑσταώς ἑστώς , βεβαώς βεβώς : οὕτως οὖν καὶ ποός πούς ἐν ὀξείᾳ |
| , ὥστε γενέσθαι πάντα τὸν ἐκ τῶν β ὀρθογωνίων ἀριθμὸν σνβ . τοσοῦτον δὲ φεν . . . . . | ||
| , ἃς ἐὰν ἀφέλωμεν ἀπὸ τῶν κατὰ τὴν τήρησιν μοιρῶν σνβ ζ , ἕξομεν ἐποχὴν εἰς τὸ αʹ ἔτος Ναβονασσάρου |
| ἀμφήριστον ἔθη - κεν . ἢ ἀμφήριστον , οὐδ ' ἀμφήριστον . τοῖο δ ' ἀπ ' ὀφθαλμῶν χύτο δάκρυα | ||
| νήσων καὶ θαλάσσης τοσῆσδε . ἄρξασα καὶ ὑμῖν αὐτοῖς ἐς ἀμφήριστον ἐπὶ πλεῖστον ἐλθοῦσα , νῦν οὐκ ἐν τῇ θαλάσσῃ |
| . . . . . . . . . . ρλη ιζ Βαρδαμάνα . . . . . . . | ||
| ἐν πυρετοῖϲ ἐκ τῶν Φιλαγρίου ρλζ Ἡ διὰ κωδυῶν ἀντίδοτοϲ ρλη Ὀμφακομέλιτοϲ ϲκευαϲία ρλθ Ῥοδομέλιτοϲ ϲκευαϲία ρμ Ὑδροροϲάτου ϲκευαϲία ρμα |
| . . ἐν δὲ τῇ δ Εὐδόξῳ τροπαὶ χειμεριναί : χειμαίνει . . Οὐρ . διδ . Εὐδόξῳ , Δημοκρίτῳ | ||
| χειμαίνει . Ἐν δὲ τῇ βᾳ Εὐκτήμονι Δελφὶς ἐπιτέλλει : χειμαίνει . Ἐν δὲ τῇ δῃ Εὐδόξῳ τροπαὶ χειμεριναί : |
| ὁμοίως β ιγ , ἡ δὲ ΝΖ τῶν λοιπῶν νε μθ . διὰ τοῦτο δὲ καὶ ἡ ΔΖ ὑποτείνουσα τοιούτων | ||
| ἔγγιστα # λϚ ν κδ , λοιπαὶ γίνονται ριζ ιβ μθ νδ . Ἐπὶ δὲ τοῦ δευτέρου τὰς ἐπιλαμβανούσας ἐν |
| θαλαττία σκδ Κρῆθμον σκε Κριθαί σκϚ Ἄλφιτα σκζ Ἀλφίτων μάζα σκη Περὶ κρίμνου καὶ πόλτου σκθ Κρίνον σλ Κροκοδείλιον σλα | ||
| ʹ # ʹ ὑπάται μέσαι συνημμένων διεζευγμένων ὑπερβολαίων ρϘβ σιϚ σκη σνϚ σπη τδ τμβ τπδ υλε υνϚ φιβ # |
| καὶ τῆς ἀναγκαῖον μὴ εἶναι καταφάσεως οὔσης ἀπόφασίς ἐστιν ἡ διαγώνιος ἡ οὐκ ἀναγκαῖον μὴ εἶναι . διὰ τοῦτο οὖν | ||
| ῥητοῖς καὶ τοῖς μὴ ῥητοῖς , οἷον ἡ τοῦ τετραγώνου διαγώνιος ὡς μὲν ἐν ῥητοῖς λόγοις πρὸς τὴν πλευρὰν ἄλογος |
| κύων δισύλλαβον : τὸ δισύλλαβον τετρασύλλαβον : ὁ κύων ἄρα τετρασύλλαβος : οὐ γὰρ εἰ τὸ κύων δισύλλαβον , τὸ | ||
| ἰωνικὸς καὶ παίων ⌈ , ὥσπερ δὴ καὶ ἀνάπαιστος , τετρασύλλαβος , ἐπὶ τῷ τέλει τῆς μὲν στροφῆς παράγραφος , |
| ρκ , καὶ πάλιν ἡ μὲν τῆς ΖΘ διπλῆ μοιρῶν ρπβ ν καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριθ | ||
| τῆς γʹ ἀκρωνύκτου ἀπέχων ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ρπβ μζ : ἐπέλαβεν ἄρα ἐν τῷ μεταξὺ τῶν β |
| Σουάστου ποταμοῦ πηγαί . . . . . . . ρκβ ∠ ʹ λϚ τοῦ Ἰνδοῦ ποταμοῦ πηγαί . . | ||
| . . . . . . . . . . ρκβ ∠ ʹ κβ γʹ . Μεταξὺ δὲ τοῦ Βηττιγὼ |
| μϚ ιζ , ἕξομεν τὸ ἀπὸ ΔΚ τετράγωνον τῶν αὐτῶν Μμζ ͵δϠδ μϚ ιζ : καὶ μήκει ἄρα ἔσται ἡ | ||
| ἐὰν τὰ ͵γχ τοῦ ἀπ ' αὐτῆς τετραγώνου προσθῶμεν ταῖς Μμζ ͵βψ ε λβ , ἕξομεν τὸ ἀπὸ ΔΚ τετράγωνον |
| Ϛʹ πρὸς τὰ γʹ ιʹʹ , οὕτως αὐτὰ τὰ γʹ ιʹʹ πρὸς μείζονά τινα τῶν δύο . καὶ ἔστιν ἡ | ||
| ἡ ἐλαχίστη ἐπ ' ἀκριβὲς συντεθεῖσαι γίνονται μοῖραι κϚ καʹ ιʹʹ . Ἀλλὰ αἱ κατὰ τὸ ὁλοσχερὲς ἐκ τηρήσεως εἰλημμέναι |
| ' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . . | ||
| ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ |
| ] εξοναρκ ! [ [ ] ! [ [ ] νοτ ! [ [ ] ! ικαι ! ! [ | ||
| κα ! ! ! [ ] [ ] ων ? νοτ ? ! [ ] ! ! ! τωδ ! |
| . δρακοντία ἤτοι ἀρκολάχανον . δορύκνιον ἤτοι στρύχνον ὀνομαζόμενον . Ἐρυθρόδανον ἤτοι ῥιζάριν τῶν βαφέων . ἐρινεὸς ὁ τῆς ἀγρίας | ||
| Ἕρπυλλοϲ θερμαίνει , ὥϲτε καὶ οὖρα καὶ καταμήνια κινεῖν . Ἐρυθρόδανον καταμήνιά τε κινεῖ καὶ τὰ περὶ τὸ δέρμα ἀπορρύπτει |
| ὑποτείνουσαν ιζ . ἔστιν οὖν τὸ ἀπὸ τῆς ὑποτεινούσης τετράγωνον σπθ . ἀλλὰ καὶ τὸ ἀπὸ τῆς καθέτου μετὰ τοῦ | ||
| σπϚ Μυρίκη σπζ Μυρρίνη ἢ μυρϲίνη σπη Μῶλυ ἢ βήϲαϲα σπθ Νάρδου ϲτάχυϲ σϘ Νάρδοϲ κελτική σϘα Νάρθηξ σϘβ Νᾶπυ |
| : ἐν δὲ τῇ ια ἡμέρᾳ Εὐδόξῳ Ὠρίων ἑῷος ὅλος ἐπιτέλλει . [ . . . . . . Φεβρουάριος | ||
| δύνει . ὡρῶν ιε ∠ ʹ : ὁ καλούμενος Ἀντάρης ἐπιτέλλει . λʹ . ὡρῶν ιγ ∠ ʹ : ὁ |
| . Προστιθέμενοι οἱ δ ἀριθμοὶ μὲν ταῖς υ μονάσι ταῖς λειπούσαις ἀριθμοὺς δ , γίνονται υ μονάδες τέλειαι , εἰ | ||
| μέρη τοῦ Ὑδροχόου γινομένη πρότερον ἔσται ταῖς εἰς ὅλας ἡμέρας λειπούσαις ὥραις Ϛ . ζητητέον ἄρα , ποῦ καὶ πότε |
| ʹ Σάγηδα μητρόπολις . . . . . . . ρλγ κγ ∠ ʹ Βαλαντίπυργον . . . . . | ||
| . . . . . . . . . . ρλγ κθ Κουραπόρεινα . . . . . . . |
| καὶ σξδ , παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς | ||
| τὰς ιζ ἐπὶ τὰς ἓξ ὥρας , καὶ γίνονται χρόνοι ρβ . πάλιν οὖν δεῖ λαμβάνειν αὐτῆς τῆς ἑπομένης τὴν |
| ρξθ ιϚ γʹ Σήρου ποταμοῦ ἐκβολαί . . . . ροα ∠ ʹ ιζ γʹ τὸ πρὸς τοὺς Σίνας τοῦ | ||
| ? ! δήσατο δεσμοῖς , αἴκιζέν τ ' ἀλόχους ! ροα ? ? ? κερδαλεόφρον ' ἐόντα . ἡμέας ἔτρεψεν |
| λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
| ' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
| . καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
| μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
| κζ ιε τὸ πλεῖστον ἑῷος ἀφέξει τοῦ ἀκριβοῦς ἡλίου μοίρας κβ κγ . πάλιν ὑποκείσθω τὸ μέσον μῆκος ἀπέχων ἐπὶ | ||
| γίνονται ξϚ : καὶ μέριζε καθολικῶς : ὧν τρίτον , κβ . ἔστω ἡ διάμετρος τοσοῦτον . Ἔστω δωδεκάγωνον καὶ |
| ιγ , ιε , ιζ , ιθ , κα , κγ , κε , κζ : β , δ , | ||
| . . . . . . . . ϘϚ γʹ κγ Κόμμανα . . . . . . . . |
| ἐν βορβόρῳ καὶ φυκιοφόροις ἀκταῖς , εὑρίσκεται δ ' ἐν βρύοις καὶ πράσοις καὶ φυκίοις : ἔοικε φυτῷ , θαλαττίῳ | ||
| καλήν . Ἰκμαλέοις : διύγροις , ἀνθηροῖς . φύκεσσι : βρύοις . μάλιστα : κατὰ πολύ . Τέρπονται : χαίρουσιν |
| . . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . . | ||
| καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ |
| . ξγ κη καὶ ἡ τοῦ Πορφυρίτου ὄρους . ξγ κϚ γοʹ καὶ ἡ τοῦ Μέλανος λίθου ὄρους ξγ κδ | ||
| Β πλευρᾶς ἤτοι τῆς γ θ μδ καὶ τῆς β κϚ νδ . εἰ οὖν βούλει εὑρεῖν μέσην ἀνάλογον τῶν |
| . οὗτος δὲ καλεῖται καὶ ὀξύρυγχος . σάλπη κρείττων ἡ φθινοπωρινή , ὑγρόν τι καὶ λευκὸν καὶ ἄβρομον ἀνίησιν . | ||
| δὲ χειμερινή , ἐν καρκίνῳ δὲ θερινὴ καὶ ἐν ζυγῷ φθινοπωρινή . στερεὰ δὲ ὑπειλήφασι ταῦρόν τε καὶ τὸ διαμετροῦν |
| . καὶ λοιπὴ ἄρα ἡ μὲν ΓΕ περιφέρεια μοιρῶν ἐστιν ρξα ζ , ἡ δ ' ὑπ ' αὐτὴν εὐθεῖα | ||
| . . . . . . . . . . ρξα νότ . α γʹ . Νῆσοι δὲ φέρονται κατὰ |
| ὁ μύρμηξ , ὁ σφήξ , ὁ βάτραχος , ἡ μυῖα διελάνθανεν . Οὐ γὰρ ἄνευ σώματος οὔτ ' Ὀδυσσεὺς | ||
| ὅπερ καλεῖται ἀγρώστης , ὅμοιον δὲ λύκῳ . ἔστι δὲ μυῖα ὁ λύκος μέλαινα , μεγάλη , μακροσκελής , δίπους |
| Μήδου υἱοῦ Μηδείας . . Ὑώπη : πόλις Ματιηνῶν , προσεχὴς τοῖς Γορδίοις . Ἑκαταῖος Ἀσίαι : ἐν δὲ πόλις | ||
| τε Συρακουσῶν μεμνῆσθαι καὶ τῆς Ὀρτυγίας : αὕτη δέ ἐστι προσεχὴς ταῖς Συρακούσαις νῆσος καὶ ἀχώματος . ὁ δὲ Δίδυμος |
| ] ! φυγάδα τοτ ? ! [ [ ] ! τιγ ? ? ? [ ! ] ! [ . | ||
| ιβ κϚ ιθ ιδ κε μη ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις τιγ . ἐπὶ μὲν δὴ τῆς ἡλιακῆς σφαίρας νοείσθω ἐν |
| ρμϚ Ἕρπυλλοϲ ρμζ Ἐρύϲιμον ρμη Ἐρυθρόδανον ρμθ Εὔζωμον ρν Εὐπατόριον ρνα Εὐφόρβιον ρνβ Ζειά ρνγ Ζιγγίβερι ρνδ Ζύθοϲ ρνε Ζύμη | ||
| λείπουσα εἰς ρπ μοίρας περιφέρεια οε λβ : ἡ διπλῆ ρνα δ : ἡ δ ' ὑπ ' αὐτὴν εὐθεῖα |
| δύο εὐθεῖαι τέμνωσιν ἀλλήλας , τὰς πρὸς τῇ τομῇ γωνίας τέτρασιν ὀρθαῖς ἴσας ποιήσουσιν . ] Παντὸς τριγώνου μιᾶς τῶν | ||
| ἄρα αἱ ὑπὸ ΑΖΗ , ΒΖΗ , ΓΗΖ , ΔΗΖ τέτρασιν ὀρθαῖς ἴσαι εἰσίν : ὧν αἱ δύο αἱ ὑπὸ |
| ἀγωγόν ξϚ Κονδίτον ξανθοχόλοιϲ ξζ Κονδίτον φλεγμαγωγόν ξη Κονδίτον μελαγχολικοῖϲ ξθ Ἀψινθάτου ϲκευαϲία ἐκκοπρωτικοῦ ο Ἀψινθάτον ξανθῆϲ χολῆϲ ἀγωγόν οα | ||
| ἑκατέρας τῶν ΑΖ καὶ ΑΓ ὑποτεινουσῶν ἡ μὲν ΘΖ γίνεται ξθ ιγ λα , ἡ δὲ ΘΓ ὁμοίως ριγ ιϚ |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| διαυθαιρέτων τὰ μὲν εἶναι τελικά , τὰ δὲ ποιητικά . Τελικὰ μὲν τὰς κατ ' ἀρετὴν προηγουμένας πράξεις : ποιητικὰ | ||
| μέλλει πράττειν . καὶ τούτων τοῖς συμβαλλομένοις ἡμῖν χρηστέον . Τελικὰ δὲ κεφάλαια κυρίως μέν ἐστι τρία ὡς καὶ ἐν |
| ὑποθέμενοι τὴν σελήνην κατὰ τὸ Λ ἀπέχειν τοῦ ἀπογείου μοίρας ροη μϚ , γίνεται ἡ ὑπὸ ΕΘΖ γωνία , τουτέστιν | ||
| : καὶ ὅλη ἄρα ἡ ὑπὸ ΒΕΓ τῶν αὐτῶν ἔσται ροη ιϚ . πάλιν , ἐπειδὴ τὸ μὲν Γ περίγειον |
| ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
| μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
| δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
| ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
| υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
| τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
| ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα | ||
| λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ |
| Μ , Λ , ΘΚ καὶ Ε . τὰ γὰρ σμη καὶ ρκδ καὶ ξβ καὶ λα ποιοῦσι πάλιν συντεθέντα | ||
| σμϚ Λειμώνιον ἢ κυνόγλωϲϲον σμζ Λειχὴν ὁ ἐπὶ τῶν πετρῶν σμη Λεοντοπόδιον ἢ λεοντοπέταλον σμθ Λεπίδιον σν Λευκόϊον σνα Λεύκη |
| λάθος ἔσται μου τῷ δρασμῷ Ϙ εἰ ἀπαλλαγήσομαι τῆς γυναικός Ϙα εἰ πεφαρμάκευμαι Ϙβ εἰ λήψομαι λεγάτον Ϙγ εἰ ὃ | ||
| κ κη γ ια ιε μ μζ θ κζ μ Ϙα β θ μ λγ δ ιβ ιη ο νδ |
| Δωι ἐπισημαίνει , ἄνεμος ψυχρός . . , . α Δωι ἐπισημαίνει . . , . κθ Δωι ἐπισημαίνει . | ||
| , . θ Δωι χειμών . . , . ιδ Δωι βρονταί , ἀστραπαί , ὕδωρ , ἄνεμοι . . |
| Καὶ ἄξιόν ἐστι ζητῆσαι , διὰ ποίαν αἰτίαν οὐδέποτε ἡ υι δίφθογγος ἐν τέλει λέξεως εὑρίσκεται : καὶ ἔστιν εἰπεῖν | ||
| δίφθογγον λήγειν , ὅπερ ἐστὶν ἀδύνατον : οὐδέποτε γὰρ ἡ υι δίφθογγος ἐν τέλει λέξεως εὑρίσκεται , οἷον μυῖα ἅρπυια |
| ρβ ιϚ ργ β ρδ να ρε κη ρϚ λϚ ρζ ξγ ρη πβ ρθ πη ρι Ϙα ρια Ϙβ | ||
| γ τοῖϲ πάνυ ἀϲθενοῦϲιν . ἐϲτὶν ἡ γραφὴ Ὀριβαϲίου κεφάλαιον ρζ : λείπει δὲ τούτῳ τρία εἴδη . Καθαρτικὸν τοῦ |
| δὲ ἄλλα παραδιδοὺς πάντα τῷ ποιηθέντι ἄμεμπτος ἵλεων ὑὸν αὐτὸν ποιείσθω σὺν νόμῳ . ᾧ δ ' ἂν ἐπιτρόπων οἱ | ||
| τοῦ τε ἀνατολικοῦ ἡμικυκλίου καὶ τοῦ μεσημβρινοῦ . Ἀνατέλλων δὴ ποιείσθω τὰς τροπάς . Λέγω δή , ὅτι εἰς τὸν |
| ἔσται μοιρῶν η λα , ἡ δὲ ΕΜ ὅλη ιδ μγ . ὥστε καὶ ἡ ἀπὸ τοῦ βορείου πέρατος τοῦ | ||
| . . . . . . . . . ξγ μγ Γήλακα ἢ Σήλκα . . . . . . |
| ὅστις ἐπεγερεῖ τὸν ἔμβολον . ἰχθῦς ἐώνηταί τις ; ἦ σηπίδιον ἢ τῶν πλατειῶν καρίδων ; ἦ πουλύπους ἢ νῆστις | ||
| ἄλλον ὅστις ἐπεγερεῖ τὸν ἔμβολον . Ἰχθὺς ἐώνηταί τις ἢ σηπίδιον ἢ τῶν πλατειῶν καρίδων ἢ πουλύπους , ἢ νῆστις |
| Κατὰ μὲν γὰρ Μερόην τῆς Αἰθιοπίας ἕνδεκα ὡρῶν εἶναι ἡ θερινὴ νὺξ ἱστορεῖται , κατὰ δὲ Ἀλεξάνδρειαν δέκα , κατὰ | ||
| τροπή , ἐν αἰγοκέρῳ δὲ χειμερινή , ἐν καρκίνῳ δὲ θερινὴ καὶ ἐν ζυγῷ φθινοπωρινή . στερεὰ δὲ ὑπειλήφασι ταῦρόν |
| Μερὶς οὐ πνίξ : ἢ καὶ οὕτως : Μερὶς οὐ πνιγή . Μετὰ Λέσβιον ᾠδόν : παρὰ Κρατίνῳ παροιμία λεγομένη | ||
| Μερὶς οὐ πνίξ : ἢ καὶ οὕτως : Μερὶς οὐ πνιγή . Μετὰ Λέσβιον ᾠδόν : παρὰ Κρατίνῳ παροιμία λεγομένη |
| δὲ τοῦ τίς ποῖος πόσος , ἐκλελοίπασιν , ἐπειδὴ τὰ πυσματικὰ περὶ ἀπόντων καὶ ἀγνοουμένων γίνονται προσώπων , αἱ δὲ | ||
| τοῦ τί ποῖος πόσος πηλίκος , ἐκλελοίπασιν , ἐπειδὴ τὰ πυσματικὰ περὶ ἀπόντων καὶ ἀγνοουμένων γίνονται προσώπων , αἱ δὲ |
| δυσίν [ ὑπερμετρούντων καὶ ἡμίσεια ] , εἴη ἂν ἡ ποδιαία τῆς κατασκευασθείσης σφαίρας διάμετρος κεγχριαίαις διαμέτροις τὸ μῆκος ἀναπληρουμένη | ||
| δὲ τῇ προτεθείσῃ ῥητῇ εὐθείᾳ , εἴτε πηχυαία ἐστὶν εἴτε ποδιαία εἴτε παλαιστιαία ἢ δακτυλιαία , ἄπειροι σύμμετροι μήκει καὶ |
| Ἔλαιον κίκινον ρβ Ἔλ . λινοϲπέρμινον ργ Ῥαφάνινον ἔλαιον ρδ Ἔλ . αἰγείρινον ρε Ἔλ . ἀμυγδάλινον ρϚ Ἔλ . | ||
| ϲικυώνιον ρκε Ἔλ . μετώπιον ρκϚ Ἔλ . μενδήϲιον ρκζ Ἔλ . μεγάλινον ρκη Ἔλ . ἀμαράκινον ρκθ Ἔλ . |
| αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη | ||
| γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ |
| . . . . . . . . . . ρμϚ λα Ϛʹ Ἔλδανα . . . . . . | ||
| . . . . . . . . . . ρμϚ ∠ ʹ κε ∠ ʹ Ἀγαναγόρα . . . |
| , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
| δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
| . . . . . . . . . . ρμβ ∠ ʹ κβ ∠ ʹ : Καὶ πρὸς τῷ | ||
| . . . . . . . . . . ρμβ κη αἱ πηγαὶ τῆς ἐκτροπῆς . . . . |
| ἔασον ἐπὶ ἡμέρας ιʹ μεθ ' ἃς αὐτὸ δελέαζε . Ἄλφιτα φυράσας , καὶ μάζας ποιήσας παράβαλε . Πιτύρων κριθίνων | ||
| Κράμβη ἀγρία σκγ Κράμβη θαλαττία σκδ Κρῆθμον σκε Κριθαί σκϚ Ἄλφιτα σκζ Ἀλφίτων μάζα σκη Περὶ κρίμνου καὶ πόλτου σκθ |
| . Ἀταία , πόλις Λακωνική . ὁ πολίτης Ἀταιάτης ὡς Κάρυα Καρυάτης , ἢ Ἀταΐτης ἢ Ἀταῖος . Ἀταλάντη , | ||
| πάθεσιν ἁρμόζοντες , κακοστόμαχοι δὲ καὶ κεφαλαλγεῖς τοῖς καταχρωμένοις . Κάρυα δὲ τὰ μὲν βασιλικά , ταῦτα καὶ κοινὰ καλούμενα |
| χρόνοι ἀναφορικοὶ σξϚ με , τῇ δὲ ιʹ τοῦ Ζυγοῦ ρϘα μ . ἀφαιρουμένων δὲ τῶν ρϘα μ ἀπὸ τῶν | ||
| ν κγ ἔγγιστα , πλάτους δὲ κύκλων ͵δχλ καὶ μοιρῶν ρϘα κβ νζ ἔγγιστα , μήκους δὲ κύκλων ͵δχια λειπόντων |
| χαίρει . γαίων γαυριῶν . γαμέσσεται εἰς γάμον ἄξει . γάλως ἀνδρὸς ἀδελφή : “ εἰδομένη γαλόῳ . ” Γάργαρον | ||
| δὲ ὁ αὐτὸς καὶ ὅτι ἡ μὲν Κασάνδρα τῇ Ἑλένῃ γάλως ἐστίν , ὁ δὲ Ἕκτωρ δαήρ , αὐτῆς δὲ |
| Ἔστι καὶ ἰχθὺς ῥόμβος λεγόμενος : ἔστι καί τις τροχὸς ῥόμβος λεγόμενος , ὃν στρέφοντες καὶ ἱμαντίῳ τύπτοντες ἐκτύπουν . | ||
| δεόμενος οὗτος οἰκείου φωτὸς ἀπορίᾳ αὐγῆς ἀλλοτρίας . Ἔστω δὲ ῥόμβος οὗτος , μᾶλλον δὲ σφαῖρα τοιαύτη , ἣ δὴ |
| . , ὁ τροχαῖος τροχαλὸν ποιεῖ τὸν λόγον , διὸ τροχαῖος καλεῖται ὁ τῶν τρεχόντων ῥυθμός , ὥς φησιν Λογγῖνος | ||
| ποὺς ἁπλοῦς . τὸ βʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : αʹ τροχαῖος τοῦ αʹ ποδὸς λελυμένου : εἶτα ἰωνικὸς ἀπὸ μείζονος |
| Περὶ γαλῆϲ ρξη Περὶ γῆϲ ἐντέρων ρξθ Περὶ δράκοντοϲ θαλαϲϲίου ρο Περὶ ἐχίδνηϲ ροα Ἐχῖνοϲ θαλάττιοϲ ροβ Ἐχῖνοϲ χερϲαῖοϲ ρογ | ||
| , ὧν ἡ μὲν δυτικωτέρα . . . . . ρο ∠ ʹ λβ ἡ δὲ ἀνατολικωτέρα . . . |
| , ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη | ||
| . νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . . |