ἐπὶ τῶν ἐξ ὑποκειμένου καὶ κατηγορουμένου καὶ ἐπὶ τῶν ἐκ τρίτου προσκατηγορουμένου , ἐθελήσοιμεν καὶ ἐπὶ τούτων ποιεῖν , εὑρεθησόμεθα
οὐκ ἐγκλίνονται φωνῆς ἕνεκεν . ] Μόνως ἐγκλίνονται αἱ τοῦ τρίτου δυϊκαί , καὶ ἡ μίν , αἵ τε μονοσύλλαβοι
9225789 δευτερου
οὕτως ἀνάγκη ἔχειν καὶ τὸ συμπέρασμα . ἀναγομένου γὰρ τοῦ δευτέρου σχήματος εἰς τὸ πρῶτον πάντως ἡ ἀποφατικὴ μείζων εὑρίσκεται
βίου ἐπαυρόμενον εὐδαίμονος . Ὁ Νουμήνιος ἐπάκουσον οἷα περὶ τοῦ δευτέρου αἰτίου θεολογεῖ : Ὥσπερ δὲ πάλιν λόγος ἐστὶ γεωργῷ
8876032 τεταρτου
καὶ τὸν τρίτον ἀριθμὸν συνάμφω ἐπιτρίτους χρὴ εἶναι δευτέρου καὶ τετάρτου , ἔστι δὲ πρόλογος ἐν ἐπιτρίτῳ πυθμέσιν ὁ δʹ
τέσσαρα : καὶ ταῦτα ἑψείσθω μέχρι τοῦ τρίτου μέρους ἢ τετάρτου , τὸν ἀφρὸν ἀφαιρούντων ἡμῶν . εἰ δ '
8254862 πρωτου
εἶναι δὲ τὸν Ὄλυμπον τοῦτόν φασιν ἕνα τῶν ἀπὸ τοῦ πρώτου Ὀλύμπου τοῦ Μαρσύου μαθητοῦ , πεποιηκότος εἰς τοὺς θεοὺς
συγκαταθέσεις . χαρίζομαί σοι ταῦτα πάντα . στῶμεν ἐπὶ τοῦ πρώτου καὶ σχεδὸν αἰσθητὴν παρέχοντος τὴν ἀπόδειξιν τοῦ μὴ ἐφαρμόζειν
7644648 διπλασιου
δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β
ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ
7520044 πεμπτου
τοῦ ἐννάτου , καὶ κύριον τῆς δευτέρας τὸν κύριον τοῦ πέμπτου ἀπ ' αὐτοῦ τοῦ ζῳδίου , καὶ κύριον τῆς
δὲ τὴν γένεσιν τοῦ κόσμου 〛 ἀπὸ πυρὸς καὶ τοῦ πέμπτου στοιχείου . Πλάτων τὸν ὁρατὸν κόσμον γεγονέναι παράδειγμα τοῦ
7516354 ἐπιτριτου
τρίτου καὶ σπονδείου . τὸ μβʹ ὅμοιον δίμετρον ὑπερκατάληκτον ἐξ ἐπιτρίτου πρώτου , διιάμβου καὶ συλλαβῆς . τὸ μγʹ ὅμοιον
: τὸ Ϙʹ δίμετρον [ καταληκτικὸν ] ἤτοι ἑφθημιμερὲς ἐξ ἐπιτρίτου γʹ ἢ δισπονδείου καὶ βακχείου . προυσχόμην ] περιεποιούμην
7423521 ἡμιολιου
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς
7356660 ἰαμβου
καταληκτικόν : τὸ Ϙʹ δίμετρον ἐξ ἀμφιμάκρου , βακχείου , ἰάμβου καὶ ἀμφιμάκρου : τὸ ζʹ ἀναπαιστικὸν δίμετρον ἀκατάληκτον :
, τῶν ἑξῆς χοριάμβου γινομένων . διὰ τοῦτο καὶ ἀπὸ ἰάμβου ἄρχονται ἐν τῷ ἀναπαιστικῷ , ὥσπερ Ἀρχίλοχος ἐν τῷ
7147737 ἐπιμοριου
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος ,
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς ,
7107096 πολλαπλασιου
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον
7081925 τελευταιου
τὰ δ ' ἄλλα ἀκατάληκτα , πλὴν τοῦ θʹ καὶ τελευταίου βραχυκαταλήκτων ἰθυφαλλικῶν . ἐπὶ τῷ τέλει κορωνίς . 〛
ὥραν , προαποθνῄσκω πολλοὺς θανάτους ὑπομένων ἀνθ ' ἑνὸς τοῦ τελευταίου . ” πολλάκις δὲ ἐδειματοῦτο καὶ διεπτόητο καὶ φρίκῃ
7018951 παιωνος
μὲν δοχμιακά , ὧν τὸ μὲν συντίθεται ἐξ ἰάμβου καὶ παίωνος διαγυίου , τὸ δὲ δεύτερον ἐξ ἰάμβου καὶ δακτύλου
γʹ ὅμοιον τῷ αʹ : τὸ δʹ ὅμοιον ἡμιόλιον ἐκ παίωνος : τὸ εʹ δίμετρον ἐκ παλιμβακχείων : τὸ Ϛʹ
6979938 τροχαιου
ἕξ : κρητικός , ὃς συνέστηκεν ἐκ τροχαίου θέσεως καὶ τροχαίου ἄρσεως : δάκτυλος κατ ' ἴαμβον , ὃς σύγκειται
προσοδιακὸν τρίμετρον ἀκατάληκτον : ἡ αʹ συζυγία τροχαϊκὴ τοῦ αʹ τροχαίου διαλελυμένου εἰς τρίβραχυν , εἶτα Ἰωνικὸς ἀπὸ μείζονος ,
6878238 τριπλασιου
τοιούτων οὐδέν . τὸ γὰρ αὐτὸ εἶδος τοῦ διπλασίου καὶ τριπλασίου ἔν τε τοῖς ἐλάττοσι καὶ ἐν τοῖς πλείοσιν ἀριθμοῖς
►βασιλικός αʹ τιμοκρατικός βʹ ὀλιγαρχικός γʹ δημοκρατικός θʹ τυραννος Ϛʹ◄ τριπλασίου ἄρα κτλ . εἰλήφθω κατὰ τὴν μονάδα αὐτὴν ὁ
6870932 ἑκτου
πλασματικὰ πολλὰ συλλέξας καὶ διάφορα ἕτερα εἰς τὸ τέλος τοῦ ἕκτου λόγου καταντήσεις . . Δημοσθένου ] | κατὰ [
οὐ πολλοῦ χρόνου ἐπὶ μέγα ἐχώρησαν δυνάμεως . Τέλος τοῦ ἕκτου λόγου Νικολάου Δαμασκηνοῦ . . . : Ὅτι Κύψελος
6777998 ἰαμβικου
ὅσα πρὸς τῷ τελείῳ προσέλαβε μέρος ποδός , οἷον ἐπὶ ἰαμβικοῦ εἶμ ' ὧτε πυσσάκω λυθεῖσα : τοῦτο μὲν οὖν
μιᾶς λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ ,
6723823 ἀοριστου
πολλαί . τῷ ἀπηρτισμένῳ ⌈ δὲ ἀριθμῷ ἐχρήσατο ⌈ ἀντὶ ἀορίστου . Γ ἢ καὶ ἀπὸ ἱστορίας τὸ τοιοῦτον ἔλαβεν
: ἴδον ἔσχον . Τὰ εἰς ΟΝ προστακτικὰ τοῦ πρώτου ἀορίστου ὑπερδισύλλαβα προπαροξύνονται : ἄκουσον νόησον φίλησον : δισύλλαβα δὲ
6651681 στιχου
τὸ μῆνιν μέρος ἐστὶ τοῦ στίχου , ἤτοι ὅλου τοῦ στίχου μέρος ἐστὶν ἢ τοῦ ἄειδε θεὰ Πηληιάδεω Ἀχιλῆος .
ἃς καὶ παραθήσομεν ἐν τῷ δεκάτῳ σελιδίῳ κατὰ τοῦ αὐτοῦ στίχου . ὁμοίως δ ' , ἐπειδὴ καί , ὅταν
6629451 ἐπιτριτος
ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι .
τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ ,
6593974 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
6580398 ἀναπαιστικου
ἐν τῇ συζυγίᾳ ποδῶν τρισύλλαβος ᾖ , οἷον ἐπ ' ἀναπαιστικοῦ ἅδ ' Ἄρτεμις , ὦ κόραι : τοῦτο γὰρ
καταληκτικοί . ὁ τρίτος ἀσυνάρτητος ἐξ ἀναπαιστικῶν πενθημιμερῶν : ἐξ ἀναπαιστικοῦ πενθημιμεροῦς αἰολικοῦ διὰ τὸ ἔχειν τὸν πρῶτον πόδα ἴαμβον
6556156 ἡμιολιων
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος :
6488866 δακτυλικου
τοῦ αʹ ἰάμβου λελυμένου . ἔστι γὰρ ἐξ ἰαμβικοῦ καὶ δακτυλικοῦ πενθημιμερῶν . Τὸ ιαʹ Ἰωνικὸν δίμετρον καταληκτικὸν ἀπὸ ἐλάσσονος
δὲ καὶ συλλαβὴν μίαν πλείονα . εἴρηται δὲ πλὴν τοῦ δακτυλικοῦ , ὅτι τοῦτο μόνον κατὰ μονοποδίαν μετρεῖται διὰ τὸ
6485082 ἐπιτριτων
τυχόντες , ἀλλ ' οἱ ἐπιδιμερεῖς , ἐκ δὲ τῶν ἐπιτρίτων οἱ ἐπιτριμερεῖς , ἐκ δὲ τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς
ἐξ ἀμφιμάκρου καὶ δισπονδείου : τὸ ζʹ δίμετρον ἐκ βʹ ἐπιτρίτων δευτέρων : τὸ ηʹ δίμετρον ἐξ ἀμφιμάκρου , παλιμβακχείου
6457872 ὁρου
καὶ τῆς ἀναπαύσεως τὸν ἀέρα τέμνει πολύ , καὶ ὀξύτατα ὁροῦ ἐκ πολλοῦ τοῦ αἰθέρος : τῶν δὲ νεοττῶν αὐτοῦ
καὶ τῆς ἀναπαύσεως τὸν ἀέρα τέμνει πολύ , καὶ ὀξύτατα ὁροῦ ἐκ πολλοῦ τοῦ αἰθέρος : τῶν δὲ νεοττῶν αὐτοῦ
6425412 πενθημιμερους
τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν
τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου
6422946 ἐσχατου
ἐπιδέχεται τὸ ἕβδομον : διὰ τοῦτο πολυπλασιάζω αὐτὸν τῇ τοῦ ἐσχάτου προσληφθέντος εἰς τὴν σωρείαν ποσότητι καὶ ἀποβαίνει μοι ὁ
μυθικῶν τῆς ἱστορίας , κάτεισι δὲ μέχρι τῆς τελευτῆς τοῦ ἐσχάτου Νικομήδους , ὃς τελευτῶν τὴν βασιλείαν Ῥωμαίοις κατὰ διαθήκας
6397761 τριμετρον
καὶ πρέπον ἥρωσιν , ἡ κωμῳδία δὲ συνέσταλται εἰς τὸ τρίμετρον ἡ νέα . Τὰ πολλὰ οὖν κώλοις † τριμέτροις
, ὅ ἐστι Φερεκράτειον παρὰ συλλαβήν . τὸ ζʹ ἐπιωνικὸν τρίμετρον καταληκτικόν . ἡ αʹ συζυγία ἰωνική : ἡ βʹ
6374372 ἡμισεος
δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ
προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον :
6349419 λαμβανομενου
ἁπλοῦν ἐστι παρόσον οὔτε ἐκ τοῦ αὐτοῦ ἔστιν ἀξιώματος δὶς λαμβανομένου οὔτε ἐκ διαφερόντων συνέστηκεν , ἐξ ἄλλων δὲ τινῶν
: καὶ πλύνεται δὲ χωριζομένου τοῦ ψαμμώδους ὡς ἀχρήστου , λαμβανομένου δὲ τοῦ λιπαρωτέρου καὶ λείου . Ἀλσίνη ἔχει παρόμοια
6325467 χοριαμβικον
κατὰ τὸ ἰαμβικόν . τὸ δὲ δʹ ὅμοιον τοῖς πρώτοις χοριαμβικὸν δίμετρον ἀκατάληκτον , τὸ εʹ χοριαμβικὸν καθαρόν , τὸ
βραχυκατάληκτον . τὸ δʹ ἰαμβικὸν δίμετρον καταληκτικόν . τὸ εʹ χοριαμβικὸν δίμετρον βραχυκατάληκτον . τὸ Ϛʹ ἀναπαιστικὸν δίμετρον ὑπερκατάληκτον .
6322819 τριτον
ἄλλο γένος : ἀλλ ' ἐξ ἀμφοῖν οἷον στοιχείων τὸ τρίτον ἀπετελέσθη γέννημα τοῦ πρώτου γνήσιον , καὶ ὃ φέρει
τὸν δὲ τρίτον . τὸν δὲ λε : τοῦτον γὰρ τρίτον μετὰ τὸν κε μετρεῖ κατὰ τὸν γ ἀριθμὸν τῇ
6320192 χοριαμβου
. τὸ δʹ ὅμοιον τρίμετρον βραχυκατάληκτον ἐξ ἐπιτρίτου πρώτου , χοριάμβου καὶ ἰάμβου : τὸ μέντοι κῶλον τῆς ἀντιστροφῆς ἀντὶ
βʹ καὶ Κρητικοῦ . Τὸ γʹ χοριαμβικὸν δίμετρον ἀκατάληκτον ἐκ χοριάμβου καὶ ἀντισπάστου . Τὸ δʹ πολυσχημάτιστον τρίμετρον ἀκατάληκτον ἐκ
6313630 ἰωνικου
ἀμφιβραχέος . τὸ ξαʹ ἰωνικὸν δίμετρον ἀκατάληκτον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάττονος . τὸ ξβʹ ἰαμβικὸν τρίμετρον βραχυκατάληκτον
ἐν ἀρχῇ , ἢ περίοδος . τὸ δʹ προσοδικὸν ἀπὸ ἰωνικοῦ καὶ χοριαμβικοῦ . τὸ εʹ τὸ αὐτὸ τῷ γʹ
6307887 προτερου
εἴρητο ὑπὸ Ῥωμαίων , τῆς τε ἐκ τοῦ χρόνου τοῦ προτέρου σφίσιν ἀπειθείας οὐδεμίαν παρὰ Ῥωμαίων ὑπισχνεῖτο ὀργὴν γενήσεσθαι .
ἀπέδρασεν . εἶτα τοῦτον τὸν τρόπον χλευάσας ἡμᾶς ἀγῶνος τοῦ προτέρου , καὶ διασύρας τὰ κοινὰ τῆς Ὀλυμπίας μυστήρια ,
6288261 ἀποφατικου
καὶ διὰ πλείστων συλλογισμῶν : ἀλλὰ καὶ διὰ τοῦ καθόλου ἀποφατικοῦ , ὃ καὶ αὐτὸ ἐν δύο τε σχήμασι καὶ
ἀλλὰ παρὰ τὴν συμπλοκὴν τοῦ καθόλου καὶ μερικοῦ καταφατικοῦ καὶ ἀποφατικοῦ . ἄνευ γὰρ τῆς τοίας συνθέσεως οὐδὲν ἐδείκνυτο :
6272586 μονομετρου
. τὰ δὲ λοιπὰ ἀκατάληκτα καὶ δίμετρα , πλὴν τοῦ μονομέτρου παρατελεύτου . ἐν ἐκθέσει δὲ στίχοι δύο ἀναπαιστικοὶ τετράμετροι
μὲν προηγητικαὶ αὐτῆς περίοδοί εἰσιν ἑπτά , κῶλα παιωνικὰ ἐκ μονομέτρου καὶ τετραμέτρου δὶς κἀκ τριῶν διμέτρων . Γ εἶδες
6266198 ἐπογδοου
καὶ περὶ τὰς τέτταρας περιεχομένας λόγοις τοῖς ἐφεξῆς ἀπὸ τοῦ ἐπογδόου μέχρι τοῦ ἐπὶ ιαʹ . ποιοῦσι μὲν οὖν τὸ
τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν , τῷ τοῦ ἐπογδόου διαστήματι τὰ ἐπίτριτα πάντα συνεπληροῦτο , λείπων αὐτῶν ἑκάστου
6265622 τριπλασιος
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ
6254238 ἐπιτεταρτου
δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον
, ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ
6233545 διεζευγμενου
ἡμέρα , οὐκ ἄρα νὺξ ἔστι . πέμπτος ὁ ἐκ διεζευγμένου καὶ τοῦ ἀντικειμένου ἑνὸς τῶν ἐν τῷ διεζευγμένῳ [
, οὐκ ἄρα νὺξ ἔστιν . τέταρτος δὲ ὁ ἐκ διεζευγμένου καὶ ἑνὸς τῶν ἐπεζευγμένων τὸ ἀντικείμενον τοῦ λοιποῦ ἐπιφέρων
6225607 ἰωνικον
τὸν δρόμον σου . ἐλάω , ἐλῶ κοινόν , ἐλαύω ἰωνικόν , ἐλαύνω ἀττικόν . ἴσθι δέ , ὅτι τὸ
ἐκ δισπονδείου καὶ ἰωνικοῦ ἀπ ' ἐλάττονος , καὶ ἔστιν ἰωνικόν : τὸ ιεʹ “ σιν καί μ ' ἀπολοῦσιν
6223465 ἡμιολιος
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος .
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ
6220180 συνδεσμου
καὶ ἐργῶδες ἐν τοῖς ἐπιλογισμοῖς , κινουμένων καὶ τοῦ ἀναβιβάζοντος συνδέσμου καὶ τοῦ καταβιβάζοντος εἰς τὰ προηγούμενα τῶν ζῳδίων .
. ἔοικα δὲ τὰ μεταξὺ παρατρέχειν : ὑπὸ γὰρ τοῦ συνδέσμου τὰς συμβολὰς ὄχναι καὶ ῥοιαὶ καὶ μηλέαι ἀγλαόκαρποι ,
6215700 ἐπιτεταρτος
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως .
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ '
6211424 κατηγορουμενου
προσκατηγορουμένου προτάσεων , ἀλλὰ καὶ ἐπὶ τῶν ἐξ ὑποκειμένου καὶ κατηγορουμένου συμβαίνειν ἐροῦμεν , οἷον τῆς τὶς ἄνθρωπος οὐ γεωμετρεῖ
σχέσεως οὐ δύναται . Τριῶν οὖν τούτων ὄντων , ὑποκειμένου κατηγορουμένου καὶ σχέσεως , διέλωμεν χωρὶς ἕκαστον αὐτῶν : οὔτω
6211131 καταληκτικου
εἰ δὲ βούλει προσοδιακὸν δίμετρον καταληκτικὸν ἐκ χοριάμβου καὶ Ἰωνικοῦ καταληκτικοῦ . Τὸ θʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : ὁ αʹ
τοῦ βʹ χοριάμβου , τοῦ γʹ Ἰωνικοῦ ἀπ ' ἐλάσσονος καταληκτικοῦ . τοῦτο καὶ ἀναπαιστικόν ἐστι δίμετρον ἀκατάληκτον , σπονδείου
6206393 τροχαϊκου
εἰκοσίκωλον , ὧν τὰ μὲν βʹ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ ἑφθημιμεροῦς : τὰ δὲ ἑξῆς δύο ἐν ἐκθέσει ἰαμβεῖα
. Ἄλλο ἀσυνάρτητον ὁμοίως κατὰ τὴν πρώτην ἀντιπάθειαν , ἐκ τροχαϊκοῦ διμέτρου ἀκαταλήκτου καὶ ἰαμβικοῦ ἑφθημιμεροῦς , ὅπερ ἐὰν παραλλάξῃ
6200200 ἐπιτριτον
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ
6199822 διμετρων
, ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ μὲν αʹ , βʹ ,
τοῦ μακροῦ καὶ τῆς ἐκθέσεως τούτου παράγραφος . κώλων δέκα διμέτρων πλὴν τοῦ τελευταίου καταληκτικῶν . ἐπὶ πᾶσι παράγραφος .
6192066 περισσου
πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος
. Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ
6189892 τονιαιου
ἄλλων πλειόνων : τὰ γὰρ ηʹ πρὸς τὰ θʹ ἐποίει τονιαίου ἀκούειν διαστήματος . διὰ τοῦτο δὲ πρῶτον διάστημα ὁ
δ ' ὅτι , καὶ εἴ τις ἐν τῇ τοῦ τονιαίου δυνάμει τιθείη τὸ τοῦ συντονωτέρου σπονδειασμοῦ ἴδιον , συμβαίνοι
6178545 βτερου
τὸ δʹ ἰωνικὸν ἡμιόλιον , ἐκ τροχαϊκῆς συζυγίας ἤτοι ἐπιτρίτου βτέρου καὶ ἰάμβου . τὸ εʹ ὅμοιον καθαρόν , ἐξ
ἀκατάληκτον ὅμοιον τῷ γʹ , ἐκ παίωνος γʹ καὶ ἐπιτρίτου βτέρου ἤτοι τροχαϊκῆς συζυγίας : εἰ δὲ βούλει , ἰαμβικὸν
6152120 διμετρου
τὴν βάσιν : οἷον εἰ ἐκκειμένου μὲν ἑνὸς δακτύλου , διμέτρου δὲ ἀναπαιστικοῦ κατὰ μέσον πέσοι σπονδεῖος , ἄδηλον πότερα
δέ ἐστι παρὰ Ἀρχιλόχῳ ἀσυνάρτητον ἐκ δακτυλικοῦ πενθημιμεροῦς καὶ ἰαμβικοῦ διμέτρου ἀκαταλήκτου ἀλλά μ ' ὁ λυσιμελής , ὠταῖρε ,
6136399 χορειου
εἰ δὲ βούλει , ἰαμβικὸν τρίμετρον βραχυκατάληκτον τοῦ δευτέρου ποδὸς χορείου , τοῦ δὲ τρίτου δακτύλου . τὸ ναʹ ἀντισπαστικὸν
ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον καταληκτικόν , ἐξ ἰωνικοῦ καὶ χορείου ἢ ἀναπαίστου διὰ τὴν ἀδιάφορον : τὸ εʹ ὅμοιον
6135576 ἰαμβικον
τὸ ἰαμβικὸν μέτρον καὶ ἄριστά γε εἰδέναι τί ἐστι τὸ ἰαμβικόν , οὕτως ἔχει καὶ ἐπὶ τῶν μελῳδουμένωνοὐ γὰρ ἀναγκαῖόν
. Καὶ ἀπορήσεις ἐντεῦθεν , πῶς ἐπεὶ καὶ τὸ Δημοσθένης ἰαμβικόν ἐστιν ὄνομα , ἅτε τὴν παραλήγουσαν βραχεῖαν ἔχων ,
6134336 συνταγματος
χρεία γένηται καὶ τοῦ πρὸς Σαλομῶντα τὸν ἀρχίητρον γεγραμμένου ἡμῖν συντάγματος , δηλώσας ἑτοίμως λήψῃ , θαυμάσεις δὲ πάνυ δεξάμενος
οὖν ἡμῖν δυνατὸν ἦν περὶ τὴν νόησιν τοῦ περὶ σφυγμῶν συντάγματος , ταῦτα συνεισηνέγκαμεν . τὸ δὲ ἐν πολλοῖς ἰδιοτροπώτερον
6122451 πενταπλασιου
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ
6113773 ἀκαταληκτου
τετράδα , ἧς αἱ μὲν ὅμοιαι περίοδοι ἐξ ἰαμβικοῦ τριμέτρου ἀκαταλήκτου ἐν ἐκθέσει καὶ ἰωνικοῦ ἡμιολίου ἐν εἰσθέσει : ἡ
ὡς ἐμοὶ δοκεῖ , ἀσυνάρτητόν ἐστιν ἐκ παιωνικοῦ Κρητικοῦ διμέτρου ἀκαταλήκτου καὶ ἀντισπαστικοῦ διμέτρου βραχυκαταλήκτου , ἢ κατὰ συνίζησιν τῆς
6060418 ἀκαταληκτον
στροφὴ καὶ ἀντίστροφος κώλων δέκα . τὸ αʹ ἰαμβικὸν δίμετρον ἀκατάληκτον , ὡς τὸ τίς σὰς παρήειρε φρένας . τὸ
] διὰ τὸ δριμύ . ἰοὺ ἰού ] ἰαμβικὸν μονόμετρον ἀκατάληκτον . ἰοὺ ἰού : ἔκθεσις κορωνίδος ἐκ στίχων ἰαμβικῶν
6047724 ἀρτιου
ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς
τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν ,
6023595 ἐννατα
θ καὶ θ ↑ ἐννάτων , καὶ γίνεται τὰ θ ἔννατα τῆς λείψεως τοῦ Ϟοῦ Ϟὸς εἷς , ↑ τῶν
τὸ ἔτος , εἰς ἐκεῖνον τὸν τόπον ἔνθα ἐπερατώθη τὰ ἔννατα . περὶ δὲ τῶν κατὰ μῆνα καὶ τῶν καθ
6019011 ἀναπαιστικον
, ἐκ δύο χοριάμβων καὶ συλλαβῆς , εἰ δὲ βούλει ἀναπαιστικὸν ἑφθημιμερές : τὸ βʹ ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον
ἀπ ' ἐλάττονος δίμετρα ἀκατάληκτα καθαρά : τὸ δὲ γʹ ἀναπαιστικὸν ἑφθημιμερές . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ .
6016819 κρητικου
τὸ αʹ ἀντισπαστικὸν τρίμετρον καταληκτικὸν ἐκ διιάμβου , διτροχαίου καὶ κρητικοῦ . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν ἐκ παίωνος δʹ
καὶ δίδου ἐν ἀνέσει # λειότατον πλῆρες , μετὰ γλυκέως κρητικοῦ . Ἐπικαλεῖται δὲ τὸ φάρμακον θεοῦ χείρ . Τοῦτο
6011904 διτροχαιου
τρίτον τοῦ πρώτου ποδὸς πεντασυλλάβου καταληκτικόν . τὸ τέταρτον ἐκ διτροχαίου καὶ ἐπιτρίτου τρίτου ἀκατάληκτον . τὸ εʹ ὅμοιον τῷ
Τὸ αʹ προσοδιακὸν τρίμετρον ἀκατάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου καὶ διτροχαίου ἢ ἐπιτρίτου . Τὸ βʹ δακτυλικὸν τρίμετρον ἀκατάληκτον .
6008680 διπλασιεπιτριτος
ὁ ε τοῦ β διπλασιεφημιόλιος , ὁ ζ τοῦ γ διπλασιεπίτριτος , ὁ θ τοῦ δ διπλασιεπιτέταρτος , ὁ ια
τοῦ μείζονος ἐπιμερὴς ἤτοι τρισεπιτέταρτος , ἀπὸ δὲ τοῦ ἐλάσσονος διπλασιεπίτριτος , ὡς ἐκ τοῦ ιϚ , ιβ , θ
5981910 πεντασυλλαβου
' ἐπὶ τῶν προτέρων “ δίμετρον ἀκατάληκτον ἐξ ἐπιτρίτου τρίτου πεντασυλλάβου καὶ χοριάμβου : τὸ εʹ ” πρὸς οὖν τάδ
ὅμοιον τῷ δʹ τῆς πρώτης στροφῆς ἐκ χοριάμβου καὶ διιάμβου πεντασυλλάβου . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ ἐν ἀρχῇ
5980149 καταληκτικος
ἓν τὸ παρατέλευτον , καὶ ἐν ἐκθέσει στίχος τροχαϊκὸς τετράμετρος καταληκτικός . Γ ἀλλ ' ἀναμνησθέντες : ἡ ἔκθεσις αὕτη
ἐστὶ τὸ ἔθιμον , 〚 διπλῆ 〛 δίστιχος ἀνάπαιστος τετράμετρος καταληκτικός : ὑφ ' ὃ διπλῆ καὶ ἑξῆς στίχοι ὁμοίως
5978956 συνημμενου
καθηγούμενον , ἐκκαλυπτικὸν τοῦ λήγοντος . κρίσεις δὲ τοῦ ὑγιοῦς συνημμένου πολλὰς μὲν καὶ ἄλλας εἶναί φασιν , μίαν δ
δεύτερον . “ δεύτερος δ ' ἐστὶν ἀναπόδεικτος ὁ διὰ συνημμένου καὶ τοῦ ἀντικειμένου τοῦ λήγοντος τὸ ἀντικείμενον τοῦ ἡγουμένου
5971566 καταληκτικον
ἢ δακτυλικὸν ὃ καλεῖται Φαλαίκειον . τὸ βʹ τροχαϊκὸν δίμετρον καταληκτικόν , ἤτοι ἑφθημιμερὲς Εὐριπίδειον . τὸ γʹ ἰαμβικὸν ἑφθημιμερές
ἀκατάληκτον μετρούμενον ὡς οἱ ἡρωϊκοί , τὸ δεύτερον δὲ ἑξάμετρον καταληκτικόν , τὸ τρίτον πεντάμετρον ἀκατάληκτον , τὸ τέταρτον πεντάμετρον
5970319 παρακειμενου
μετοχὴ τοῦ μέσου παρακειμένου καὶ ὑπερσυντελίκου γίνεται ἀπὸ τοῦ μέσου παρακειμένου τοῦ τέτυπα τροπῇ τοῦ α εἰς ως , τὸ
καὶ τῆς Χαλκίτιδος νήσου . ἐκλήθη δὲ ἀπὸ Χάλκιδος τοῦ παρακειμένου ποταμοῦ , ὡς οἱ ἱστορικοὶ ἅπαντές φασι . Χαλκητόριον
5960811 τροχαϊκης
ἀκατάληκτος . τὸ δʹ περίοδος καταληκτικὴ ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς : εἰ δὲ βούλει , χοριαμβικὸν δίμετρον καταληκτικὸν
Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ τροχαϊκῆς συζυγίας , χοριάμβου καὶ Ἰωνικῆς καταληκτικῆς , ἤτοι ἀναπαίστου
5950362 τονου
ἐν τόνῳ δέ , καθὸ οὐδεμία λέξις εἰς ο λήγουσα τόνου ἔχεται τοῦ ὀξέος , καὶ ἕνεκά γε τούτου τὸ
λοιπὸν ἐκ τοῦ τεθὲν ἐπὶ γῆς εὐθέως αὐτὸ κλαυθμυρίσαι μετὰ τόνου τοῦ προσήκοντος : τὸ γὰρ ἕως πλείονος ἀκλαυστὶ διάγον
5929590 διιαμβου
ἐλάττονος δίμετρον ἀκατάληκτον ἐκ παίωνος τετάρτου ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ
καὶ πάλιν χοριάμβου : τὸ εʹ δίμετρον ἐκ χοριάμβου καὶ διιάμβου : τὸ Ϙʹ δίμετρον ἐκ χοριάμβου καὶ βακχείου :
5900458 ἀποφατικον
ἄνωθεν πάντως διὰ τὴν ἐλάττονα . εἰ δὲ τὸ συμπέρασμα ἀποφατικόν , δεῖ πάντως τὴν προστιθεμένην καταφατικὴν εἶναι καὶ κάτωθεν
, τὸν μὲν τὶς καταφατικόν , τὸν δὲ οὐ πᾶς ἀποφατικόν . μεμαθήκαμεν τοίνυν τί ἐστιν προσδιορισμὸς καὶ πόσοι εἰσὶν
5900134 συμπερασματος
οὐκ ἐνδέχεται ἀεὶ ὄντος οὕτως ἢ οὕτως ἀεὶ γινομένου τινὸς συμπεράσματος , τὸν τούτου μέσον ὡς ἐπὶ τὸ πολὺ οὕτως
εἰ καὶ τοῦ πράγματός ἐστιν αἴτιος , οὐ μόνον τοῦ συμπεράσματος , καὶ ἀναγκαίως ἔχων καὶ τὰ κατηγορούμενα κατηγορούμενα καὶ
5877048 ἀντικειμενου
τὸ ὕψωμα τῆς ῥινός : εἶθ ' ὑπὸ λοβὸν ὠτὸς ἀντικειμένου καὶ ἐπὶ ἰνίον . ταύτῃ τῇ ἐπιδέσει ἔνιοι καὶ
οὐκ ἐκ τοῦ αὐτοῦ μέρους , ἀλλ ' ἐκ τοῦ ἀντικειμένου καὶ ἀντεστραμμένου , ἀμφοτέροις τε περιλαμβάνοντες ἀναβαλοῦμεν . ἰστέον
5876678 ἑκτον
, ἕκτος φιλοσοφία ἐστὶ φιλία σοφίας καὶ ταῦτα μὲν τὸ ἕκτον κεφάλαιον . Ἕβδομον δέ ἐστι κεφάλαιον , διὰ τί
εὖρον σταδίων ἑξακισχιλίων τριακοσίων ἔγγιστα : καὶ τούτων δὲ τὸ ἕκτον ἀφελόντες ὑπὲρ τοῦ τὴν παράλληλον τῷ ἰσημερινῷ ποιήσασθαι διάστασιν
5874776 ὀγδοον
. ὁ ἕκτος καὶ ἕβδομος τροχαϊκοὶ τρίμετροι ἀκατάληκτοι . τὸ ὄγδοον ὅμοιον τῷ τετάρτῳ . εἰσὶ δὲ καὶ ταῦτα τὰ
δίς , οὕτως ἡμισάκις ἥμισυ ἡμισάκις , ὀκτώ τε καὶ ὄγδοον : καὶ ὡς δὶς τρία ἕξ , οὕτως ἡμισάκις
5872688 πυρριχιου
ιγʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον ἐξ ἐπιτρίτου πρώτου , διιάμβου καὶ πυρριχίου ἢ ἰάμβου διὰ τὴν ἀδιάφορον : τὸ μέντοι τῆς
. τὸ Ϛʹ καὶ Ϛʹ χοριαμβικὰ ἡμιόλια ἐκ χοριάμβου καὶ πυρριχίου , ἢ ἰάμβου διὰ τὴν ἀδιάφορον : εἰ δὲ
5868267 ἑβδομου
παραδιδόναι . . καὶ μὴν περὶ τοῦ γε ἔτους τοῦ ἑβδόμου ῥᾴδιον ὡσαύτως λέγειν , οὐ μὴν ταὐτὸν ἴσως .
. ἀπέθανε δὲ βασιλεύσας ἔτη τε ἓξ καὶ ἐκ τοῦ ἑβδόμου μῆνας ἐπιλαβὼν οὐ πολλούς . τοῖς δὲ Μεσσηνίοις ἀπεγνωκέναι
5860588 τεταρτον
στίχων , καὶ τρίτον τὸ ὑπὸ τῶν τρίτων , καὶ τέταρτον τὸ ὑπὸ τῶν τετάρτων : ἀλλὰ τὸ μὲν α
. . . . . . ρμζ γʹ ιη τὸ τέταρτον , ὃ καλεῖται Ψευδόστομον ρμζ γοʹ ιη ∠ ʹ
5854610 ἀφαιρεισθω
δὲ πρῶτα δι ' εὐαφοῦς σπόγγου ἀποθλιβομένου εἰς χλιαρὸν ὕδωρ ἀφαιρείσθω . Τροχίσκος κάλλιστος ὁ τοιοῦτος . Λιθαργύρου , ψιμυθίου
, ὁ δὲ ἀφαιρούμενος ἐγγυητὰς τρεῖς ἀξιόχρεως καταστήσας , οὕτως ἀφαιρείσθω κατὰ ταῦτα , ἄλλως δὲ μή : ἐὰν δὲ
5853648 ἁπλου
Καὶ πῶς , τῆς μὲν ἀρχῆς τῆς ὄντως ἑνὸς καὶ ἁπλοῦ πάντη οὔσης , πλήθους δὲ ἐν τοῖς οὖσιν ὄντος
εἶναι ὑπόστασιν οὐχ ἕξει , τό τε συγκείμενον ἐκ πολλῶν ἁπλοῦ οὐκ ὄντος οὐδ ' αὐτὸ ἔσται . Ἑκάστου γὰρ
5848269 ἰαμβικης
δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει , ἥτις οἰκειότητα πρὸς τροχαϊκόν
τὸν δεύτερον ἔχων πόδα πεντασύλλαβον . τὸ τρίτον περίοδος ἐξ ἰαμβικῆς καὶ τροχαϊκῆς βάσεως . τὸ δʹ ἀσυνάρτητον ἐξ ἀναπαιστικῆς
5847993 ἀμφιβραχεος
βʹ . τὸ ηʹ καταληκτικὸν ἐκ διτροχαίου καὶ βακχείου ἢ ἀμφιβράχεος . τὸ θʹ ὅμοιον τῷ βʹ . τὸ ιʹ
. τὸ Ϛʹ ὅμοιον τρίμετρον καταληκτικὸν ἐξ ὁμοίων ποδῶν καὶ ἀμφιβράχεος . ἐπὶ τῷ τέλει παράγραφος . δυσδαίμων σφιν ἡ
5836742 προσληφθεντος
. ἴση ἄρα ἡ ΔΞ τῇ ΔΖ . Κοινοῦ ἄρα προσληφθέντος λόγου τοῦ τῆς ΒΔ πρὸς τὴν ΔΖ , ἔσται
, σύστημα δύο τόνων καὶ τοῦ λεγομένου ἡμιτονίου . εἶτα προσληφθέντος ἄλλου τόνου , τουτέστι τοῦ μεσεμβοληθέντος , ἡ διὰ
5836632 ἐπιμερους
ἡ δὲ λοιπὴ μικτὴ σχέσις ἡ πολλαπλασιεπιμερὴς γεννᾶται ἐκ τῆς ἐπιμεροῦς , καὶ ἐκ μὲν τῆς ἐπιδιμεροῦς ἢ δὶς ἐπιτρίτου
τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , ὧν ἕκαστον
5831424 ἐπιτεταρτοι
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ
5829591 χορειος
ἀνάπαιστος ὡς καὶ ἐνταῦθα τὸ πρύμνῃ πόλεως , ἀλλὰ καὶ χορεῖος . οἴακα νωμῶν : κυβερνήτης ὢν τῶν τῆς πόλεως
ἕκτῃ ἢ τροχαῖος ἢ σπονδεῖος ἢ δάκτυλος ἢ ἀνάπαιστος ἢ χορεῖος , ἐν δὲ τῇ πρώτῃ καὶ τρίτῃ καὶ πέμπτῃ
5829254 συστηματος
, ὅπως ἀπὸ τῶν διεζευγμένων ποιήσωσιν ἐφεξῆς τρία τετράχορδα , συστήματος ὀνόματι περιέλαβον τὸ συνημμένον , ἵν ' ἔχωσι πρόχειρον
ἐπὶ τῷ τέλει τῆς μὲν στροφῆς κορωνίς . τοῦ δὲ συστήματος παράγραφος . 〛 τῶν μέχρι νῦν ὄντων ποιητῶν .
5821410 δισπονδειου
: τὸ ζʹ ” ἀμφήκει γλώττῃ “ χοριαμβικὸν πενθημιμερὲς ἐκ δισπονδείου καὶ συλλαβῆς : τὸ ηʹ ” λάμπων πρόβολος ἐμός
δίμετρον [ καταληκτικὸν ] ἤτοι ἑφθημιμερὲς ἐξ ἐπιτρίτου γʹ ἢ δισπονδείου καὶ βακχείου . προυσχόμην ] περιεποιούμην , ἐκράτουν .
5820072 ἑφθημιμερους
χοριαμβικοῦ ἐπιμίκτου , τοῦ τὴν δευτέραν ἰαμβικὴν ἔχοντος καὶ τροχαϊκοῦ ἑφθημιμεροῦς : Εὔιε κισσοχαῖτ ' ἄναξ , χαῖρ ' ,
ἐστι κώλων ἐννέα . τὸ αʹ σύνθετον ἐκ πενθημιμεροῦς καὶ ἑφθημιμεροῦς ἰαμβικόν . τὸ βʹ τρίμετρον ἐπιωνικὸν ἀκατάληκτον . ἄδηλον
5810489 προσκατηγορουμενου
χρὴ ζητεῖν πῶς ἂν ἐφαρμόσειε τοῦτο ἢ ταῖς ἐκ τρίτου προσκατηγορουμένου καταφάσεσιν ἢ ταῖς μετὰ τρόπου . ἀλλὰ πῶς ἑξῆς
τμήματος αἱ γενόμεναι ἐκ τοῦ ὑποκειμένου καὶ κατηγορουμένου καὶ τρίτου προσκατηγορουμένου ρμδ . ταύτας οὖν τὰς τοῦ β καὶ γ
5809669 διπλασιος
γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ
τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ
5807962 βραχυκαταληκτον
τὸ ηʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον : ἰδίως δὲ
τὸ βʹ τροχαϊκὸν μονόμετρον ὑπερκατάληκτον . τὸ γʹ Ἰωνικὸν δίμετρον βραχυκατάληκτον . τὸ δʹ χοριαμβικὸν δίμετρον ὑπερκατάληκτον . τὸ εʹ
5784513 ψξη
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ
5775369 τετραπλασιου
ὁ δύο καὶ ἕνα διπλάσιος . ὁ ἐξ ἐπιτρίτου καὶ τετραπλασίου λαμβανόμενος ἐπίτριτος ὁ ιϚ τοῦ ιβ , καὶ ὁ
δὲ δωδεκαπλάσιος λόγος σύγκειται ἐκ β λόγων τριπλασίου τε καὶ τετραπλασίου ἢ διπλασίου καὶ ἑξαπλασίου , καὶ ἐπὶ πάντων τὸ
5771539 ἐνεστωτος
λείπω τὸν αὐτὸν ἔχειν μέλλοντα : ἐὰν δὲ ἀπὸ τοῦ ἐνεστῶτος ἀρχώμεθα , οὐδὲν ἀμφίβολον γίνεται : καὶ γὰρ τοῦ
τῶν ἀπαρεμφάτων . πάλιν γὰρ τὸ γράφειν , μεταληφθὲν ἐξ ἐνεστῶτος καὶ παρατατικοῦ κατὰ τὴν αὐτὴν φωνήν , ἐν τῇ
5749977 ἡμισυς
διπλασία τῆς ὑπάτης ἐπιτέταται καὶ ὅλως ὁ δ τοῦ ὀκτὼ ἥμισυς καὶ τοῦ τρία ἐπίτριτος , ὡς ἂν ἀδιαφόρων οὐσῶν
μὲν οὖν ἀρτιάκις περισσός ἐστιν , φανερόν : ὁ γὰρ ἥμισυς αὐτοῦ περισσὸς ὢν μετρεῖ αὐτὸν ἀρτιάκις . λέγω δή

Back