: ἐκ τοῦ παρασυναπτικοῦ δὲ ἐπειδὴ εὐθὺς τῇ πρώτῃ προτάσει συνῆπται ἡ αἰτία . [ , ] ἐπειδὴ γὰρ ἐκκλησία | ||
ὁ μὲν τοῦ ὑπὸ ΒΓΗ πρὸς τὸ ἀπὸ ΓΑ λόγος συνῆπται ἔκ τε τοῦ ὃν ἔχει ἡ ΒΓ πρὸς ΓΑ |
ΒΘ καὶ τοῦ τῆς ΒΘ πρὸς ΒΔ : ὁ ἄρα συνημμένος ἔκ τε τοῦ τῆς ΚΗ πρὸς ΒΘ καὶ τοῦ | ||
ΘΗ πρὸς τὴν ὑπὸ τὴν διπλῆν τῆς ΖΗ λόγος ὁ συνημμένος ἔκ τε τοῦ τῆς ὑπὸ τὴν διπλῆν τῆς ΘΕ |
τὸ ΑΔΖ τρίγωνον τῷ εἴδει : λόγος ἄρα ἐστὶ τῆς ΖΑ πρὸς τὴν ΑΔ δοθείς : ἡ δὲ ΑΖ συναμφότερός | ||
διὰ τὸ ἴσα εἶναι τά τε ἀπὸ τῶν ΒΖ , ΖΑ καὶ τὰ ἀπὸ τῶν ΒΚ , ΚΑ τῷ ἀπὸ |
ΞΠ τῇ ΑΒ ἴση ἡ ΧΞ , καὶ ἐπεζεύχθω ἡ ΧΚ καὶ ἡ ΧΦ , καὶ ἀπὸ τοῦ Σ τῇ | ||
τὸ ἀπὸ ΚΕ τὸν συγκείμενον ἔχει λόγον ἐκ τοῦ τῆς ΧΚ πρὸς ΚΕ καὶ τοῦ τῆς ΖΚ πρὸς ΚΕ , |
ὀξεῖα ἄρα ἐστὶν ἡ ἐπὶ τῆς μείζονος τοῦ τραπεζίου πλευρᾶς βεβηκυῖα γωνία . μεῖζον ἄρα ἡμικυκλίου ἐστὶ τὸ τμῆμα ἐν | ||
οἷον ἐκδεδυκέναι τὰς λειτουργίας : σεμνὴ γὰρ ἡ ἀνάπαυσις καὶ βεβηκυῖα : ἐμέλησε γὰρ τῷ ῥήτορι τοῦ μὴ διόλου καλλωπίζειν |
ἀπὸ τοῦ Υ ἐπὶ τὸ Ψ ἴσας περιφερείας ἀπολαμβάνουσαι τὰς ΤΣ , ΣΨ : ἴση ἄρα ἐστὶν ἡ ἀπὸ τοῦ | ||
πρὸς τῷ Ο ἴσαι εἰσίν . ἡ ἄρα ΗΘ τῇ ΤΣ ἴση φανήσεται . ἔστω ἐλάττων ἡ ἀπὸ τοῦ ὄμματος |
διῆκταί τις ἡ ΗΤ , ἡ ΟΡ ἄρα πρὸς τὴν ΡΤ μείζονα λόγον ἔχει ἤπερ ἡ ὑπὸ ΡΤΗ γωνία πρὸς | ||
ἡ ΡΤ : ἴση ἄρα ἐστὶ καὶ ἡ ΜΣ τῇ ΡΤ . ἔστι δὲ καὶ ὅλη ἡ ΜΣΞΥ ὅλῃ τῇ |
κύκλος ὁ ΗΘ , καὶ διῃρήσθω ἑκατέρα τῶν ΒΞ , ΔΞ εἰς τρία ἴσα κατὰ τὰ Κ , Λ , | ||
. ἤχθω γὰρ διὰ τοῦ Δ τῇ ΑΕ παράλληλος ἡ ΔΞ . ἐπεὶ οὖν ὑπερβολή ἐστιν ἡ ΑΒ καὶ διάμετρος |
ΤΡΧ , τουτέστιν τῷ τοῦ ἀπὸ ΕΣ πρὸς τὸ ἀπὸ ΣΡ . ἔχει δὲ σύγκρισιν . ἐπεὶ οὖν τὸ ἀπὸ | ||
τὸ ΝΘ : καὶ ὡς ἄρα τὸ ΜΖ πρὸς τὸ ΣΡ , οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ . τὸ |
ἡ ΓΔ πρὸς τὴν ΗΛ , ὁ δὲ τοῦ ὑπὸ ΒΘ ΓΔ πρὸς τὸ ὑπὸ ΒΔ ΓΘ συνῆπται λόγος ἔκ | ||
ἄρα , ὡς ἡ ΓΔ πρὸς ΕΖ , οὕτως ἡ ΒΘ πρὸς ΚΗ . ἐδείχθη δέ , ὡς ἡ ΓΔ |
: οὔτω γὰρ σαφὴς ἔσται ὁ ἀριθμὸς ὁ ἐξ αὐτῶν συγκείμενος τῶν ἀντιθέσεων . τὸ τοίνυν ὑποκείμενον ἢ καθ ' | ||
τῷ στομάχῳ γειτνιῶν , ὥσπερ δ ' ἐκ κύκλων πολλῶν συγκείμενος χιτῶνας καὶ οὗτος ἔχει τέτταρας , συμπεπλεγμένος ἐκ νεύρων |
ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ | ||
ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ , |
ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ | ||
. καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ |
ἢ καὶ τορνευθέντων μεστὸς τοῦ ἐναντίου ἐστὶν τῷ πέμπτῳτοῦ γὰρ εὐθέος ἐφάπτεται πάντῃαὐτὸς δέ , φαμέν , ὁ κύκλος οὔτε | ||
δόλοις καὶ σοφίσμασιν ἐξαπατῶντες τὰ θηρία , ἀλλὰ ἐκ τοῦ εὐθέος διαγωνιζόμενοι . καὶ ἔστιν τὰ θεάματα , ἐμοὶ δοκεῖν |
τὸ ἔγγιστα τοῦ ἀπείρου ὅτι εἵλκετο καὶ ἐπεραίνετο ὑπὸ τοῦ πέρατος . ἀλλ ' ἐπειδὴ κοσμοποιοῦσι καὶ φυσικῶς βούλονται λέγειν | ||
τε ἀπείρου καὶ τοῦ πέρατος , κρατούσης ἀεὶ τῆς τοῦ πέρατος ἰδέας τοῦ ἀπείρου καὶ περιοριζούσης αὐτὴν ἐν ἑαυτῇ : |
ἑκάστου τῶν τμημάτων τῶν δα , αγ ἴσον τῷ ὑπὸ συναμφοτέρου τῆς δαγ καὶ τῆς αβ διὰ τὸ αʹ τοῦ | ||
, οἱ δὲ ἐξ ὑποκειμένου ἢ τέλους ἢ ἐκ τοῦ συναμφοτέρου , ἐξ ὑποκειμένου καὶ τέλους , ταῖς ἐπιστήμαις καὶ |
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
ἴση οὖσα τῇ ΓΔ , καὶ ἐπ ' αὐτῆς τὸ ΚΗΘ τρίγωνον ὅμοιον ὂν τῷ ΑΓΔ , ὥστε καὶ τὴν | ||
ΕΗΖ πρὸς τὸ ἀπὸ ΑΒ . ἴσον δὲ τὸ ὑπὸ ΚΗΘ τῷ ἀπὸ ΓΒ ἐδείχθη : ἴσον ἄρα καὶ τὸ |
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον | ||
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς |
Ἅ - πας δὲ ὅρος ἐκ γένους διαφόρου καὶ ἰδιότητος σύγκειται : τὸ γεγονὸς μέν ἐστιν , ἀφ ' οὗ | ||
πέρας ἔχει τὴν ἀποδεικτικήν , ἡ ἀποδεικτικὴ δὲ ἐκ συλλογισμῶν σύγκειται , οἱ συλλογισμοὶ δὲ ἐκ προτάσεων , αἱ προτάσεις |
τελουμένη ἐπὶ τῷ γένει τοῦ Οἰδίποδος ἀρά . τελεία ] τελειουμένη . τελεία ] εἰς τέλος ἐλθοῦσα . θΞ γένεος | ||
τὰ ἐγκύκλια προπαιδεύματα θεωρημάτων , καὶ ἡ δι ' ἀσκήσεως τελειουμένη , περὶ ἣν Ἰακὼβ ἐσπουδακέναι φαίνεται : διὰ πλειόνων |
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ | ||
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ |
τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ | ||
δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ |
, ἀπὸ δὲ ἄρκτων Κανταβρίῳ Ὠκεανῷ . Τῆς μὲν οὖν Λουσιτανίας ἐπαρχίας ἡ μὲν Νώρβα Καισάρεια τὴν μεγίστην ἡμέραν ἔχει | ||
. Βαιτικῆς τῶν ἀπὸ τῆς Κάλπης μερῶν μέχρι τῶν τῆς Λουσιτανίας ὅρων περίπλους . Λουσιτανίας περίπλους . Ταρρακωνησίας περίπλους . |
ἀνατολῶν Σάκαις παρὰ τὴν ἐντεῦθεν τοῦ Ἰαξάρτου μέχρι τῶν πηγῶν ἐπιστροφῆς , αἵτινες ἐπέχουσι μοίρας . . . . . | ||
καὶ παραλελειμμένων ἀναγκαίων ὄντων τῇ ὑποθέσει . διὸ μετὰ πολλῆς ἐπιστροφῆς ὑπέρ τε ἐμαυτοῦ καὶ σοῦ ὡρμήθην ἐπὶ τὴν συγγραφὴν |
ἔσται ιδ μ , ἡ δὲ ὑπὸ ΔΖΗ γωνία τῆς λοξώσεως , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ , | ||
ὃν ὁ ἥλιος ἴσον ἐστὶ τῷ τὸ δὲ πλάτος τῆς λοξώσεως τοῦ κύκλου , ὃν ἡ σελήνη τῷ ἑαυτῆς κέντρῳ |
δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ | ||
, ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ |
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς | ||
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ |
, κατὰ δὲ τοῦ ἀνθερεῶνος χρηστέον τῇ ἀνθηρᾷ ἢ τῷ σφαιρίῳ ἢ τῷ δι ' ὠῶν παρύγρῳ . Στοματικὴ διάχριστος | ||
τῆς κεφαλῆς . Κεφ . ναʹ . Μία μεσότης ὑπὸ σφαιρίῳ , αἱ δ ' ἀρχαὶ ἐπὶ τοὺς ἔξω κανθοὺς |
δὲ ἐν ἄλλῳ : ὅπερ ἄτοπον ἐδείχθη . τὸ ἄρα ΕΓΒ τρίγωνον ἐν ἑνί ἐστιν ἐπιπέδῳ . ἐν ᾧ δέ | ||
ὑπὸ ΕΓΒ γωνία τῆς ὑπὸ ΕΔΓ . ἀλλὰ τῆς ὑπὸ ΕΓΒ διπλασία ἐδείχθη ἡ ὑπὸ ΑΕΓ : τετραπλασία ἄρα ἡ |
πρὸς τὴν ΗΛ . καί ἐστι παράλληλος ἡ ΕΘ τῇ ΗΛ : εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ , | ||
τοῦ κύκλου ἐπιπέδῳ τῇ ΓΔ πρὸς ὀρθὰς αἱ ΚΒ , ΗΛ , καὶ ἐπεζεύχθω ἡ ΒΛ . ἐπεὶ οὖν δύο |
ἀπὸ ΖΔ , οὕτως τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ . καὶ ἐναλλάξ , ὡς τὸ ὑπὸ ΒΖΑ πρὸς | ||
: λοιπὸν ἄρα τὸ ἀπὸ ΘΖ ἔλασσόν ἐστιν τοῦ ἀπὸ ΗΕ : ἐλάσσων ἄρα ἐστὶν ἡ ΘΖ τῆς ΗΕ . |
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
ἐστι τοῦ τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς συγκειμένης ἔκ τε τῆς ἡμισείας καὶ τῆς προσκειμένης ὡς ἀπὸ | ||
τὸν δῆμον ἐς δίκην ἀπαγάγοι : Ἀντώνιός τε τῆς ἄρτι συγκειμένης πρὸς τὸν Καίσαρα φιλίας ὑπεριδών , εἴτε ἐς χάριν |
δέδοται καὶ οὐχὶ ἡ ΕΖ καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς | ||
τὰ τρίγωνα , καὶ ἡγούμενα μὲν εἶναι τὰ ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ , |
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας | ||
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ |
τὸ ὕψωμα τῆς ῥινός : εἶθ ' ὑπὸ λοβὸν ὠτὸς ἀντικειμένου καὶ ἐπὶ ἰνίον . ταύτῃ τῇ ἐπιδέσει ἔνιοι καὶ | ||
οὐκ ἐκ τοῦ αὐτοῦ μέρους , ἀλλ ' ἐκ τοῦ ἀντικειμένου καὶ ἀντεστραμμένου , ἀμφοτέροις τε περιλαμβάνοντες ἀναβαλοῦμεν . ἰστέον |
καὶ τοῦ εἶναι τῷ υἱῷ ὡς ἀνθρώπῳ αἴτιος καὶ τῆς σχέσεως , ὁ δὲ υἱὸς τῆς σχέσεως μόνης τῷ πατρὶ | ||
, ὡς δύνασθαι ῥᾷστά τινα , διὰ τῆς πρὸς ἄλληλα σχέσεως αὐτῶν , τὴν ὅλην οἰκουμένην μηδὲν εἰκόνος δεηθέντα τῷ |
: ἐὰν δὲ ὡϲ ὑπὸ ϲκόλοποϲ ἐμπεπαρμένου ἢ ὡϲ ὑπὸ τρυπάνου τιτρᾶϲθαι νομίζῃ , παχέοϲ ἐντέρου τὸ εἶδοϲ τῆϲ ὀδύνηϲ | ||
καὶ τότε μᾶλλον ἡ ἐνέργεια ὀξυτέρα γινέσθω , στρεφομένου τοῦ τρυπάνου τῇ ἀρίδι , ἕως ὅτου καταβιβασθῇ ἡ ἀκμὴ εἰς |
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ | ||
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν |
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς | ||
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ , |
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ | ||
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ |
. πάλιν δὲ λέγεται ἐξ οὗ καὶ τὸ ἐκ τοῦ συνθέτου , οἷον ἐκ τῆς ὕλης καὶ τῆς μορφῆς , | ||
τε τῆς λύπης καὶ τῆς ἡδονῆς κακίζεται . σώματος γὰρ συνθέτου ὥσπερ χυμοὶ ζέουσιν ἥ τε λύπη καὶ ἡ ἡδονή |
. ἤχθω γὰρ ἀπὸ τοῦ Α παρὰ τὴν ΒΖ ἡ ΑΥ . ἐπεὶ οὖν διὰ τὰ αὐτὰ τοῖς πρότερον τῆς | ||
ἐπὶ τοῦ λοξοῦ τὰς ΓΔ , ΓΚ , ΑΠ , ΑΥ . καὶ γεγράφθωσαν μέγιστοι κύκλοι διὰ τῶν Δ , |
διπλῆ ἡ ΦΧ : πενταπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΩΨ τοῦ ἀπὸ τῆς ΧΦ . καὶ ἐπεὶ τετραπλῆ ἐστιν | ||
δὲ ΣΟ τῇ ΨΥ ἴση , καὶ τὰ ἀπὸ τῶν ΩΨ , ΨΥ τριπλάσιά εἰσι τοῦ ἀπὸ τῆς ΟΝ . |
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ | ||
μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως |
καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
κατήκοον , παρίστησι λέγων πειθαρχεῖ γοῦν τῷ λόγῳ τὸ τοῦ ἐγκρατοῦς . εἰ γὰρ μὴ ἐπεφύκει πως λογικεύεσθαι , οὐκ | ||
φαύλας ἐπιθυμίας καὶ ἰσχυράς , καί φησιν ὅτι εἰ τοῦ ἐγκρατοῦς ἐπιθυμίαι ἀγαθαί εἰσι , λοιπὸν ἡ ἕξις , ἤτοι |
τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας : ἡ ΖΕ ἄρα ὀρθή ἐστι πρὸς ἑκάστην τῶν ΑΕ , ΒΕ | ||
ΓΒ , οὕτως τὸ ΔΖ πρὸς μεῖζόν τι μέγεθος τοῦ ΖΕ . καὶ τὰ λοιπὰ φανερά . ζʹ . Ἐχέτω |
τῶν Σεμνόνων , οἵτινες διήκουσι μετὰ τὸν Ἄλβιν ἀπὸ τοῦ εἰρημένου μέρους πρὸς ἀνατολὰς μέχρι τοῦ Συήβου ποταμοῦ , καὶ | ||
ἐφεξῆς μοι λόγος δηλώσει . ἀπὸ δὲ τοῦ ἀγάλματος τοῦ εἰρημένου προελθόντι ὀλίγον κατ ' εὐθεῖαν ἄγαλμά ἐστι Διὸς οὐκ |
ἀκμὴ διαιρείτω τὸ τῆς ὑποφορᾶς βάθος . ἐπιδιαιρεθέντος δὲ τοῦ σφιγκτῆρος , κομιζέσθω μὲν ἡ ἀκμή , τῷ δὲ λιχανῷ | ||
καθ ' ἑκάτερον εἷς , ἐκφυόμενοι καταφύονται τῷ στομάχῳ , σφιγκτῆρος τρόπον περιλαμβάνοντες αὐτόν : συνάγειν καὶ προσστέλλειν οὗτοι πεφύκασι |
τὸ ἀπὸ τῆς ΕΖ ἴσον ἐστὶν τοῖς ἀπὸ τῶν ΕΓ ΓΖ , ἔστιν δὲ καὶ τὰ ἀπὸ τῶν ΕΑ ΑΖ | ||
: ἔστιν ἄρα καὶ ὡς ἡ ΑΕ βάσις πρὸς τὴν ΓΖ βάσιν , οὕτως τὸ ΑΒ στερεὸν πρὸς τὸ ΓΔ |
ἢ ὁμοία : ἐν πλείονι ἄρα χρόνῳ τὸ Κ τὴν ΚΟ περιφέρειαν διελθὸν ἐπὶ τὸ Ο παραγίγνεται , ἤπερ τὸ | ||
, ΚΛ , καὶ ἐπεζεύχθωσαν αἱ ΚΜ , ΚΞ , ΚΟ . ἐπεὶ οὖν ἀπὸ μετεωροτέρου τοῦ Κ ἐπὶ τὸ |
ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ | ||
ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ |
καὶ ϲυμμέτρου θερμότητοϲ : ὁ δὲ ἄωροϲ ὑπὸ ψυχρᾶϲ οὐϲίαϲ γεώδουϲ ἐπικρατεῖται καὶ διὰ τοῦτο ϲφοδρῶϲ ξηραντικόϲ ἐϲτι . ξηρανθεὶϲ | ||
βραχείαϲ καὶ δριμύτητοϲ ἐλαχίϲτηϲ μετέχει . τὸ δὲ πλεῖϲτον αὐτοῦ γεώδουϲ οὐϲίαϲ ἐϲτὶ καὶ ἀερώδουϲ , εὐκράτων κατὰ θερμότητα καὶ |
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
διειμένην , μὴ παρούϲηϲ δὲ λαγῴαϲ ἐριφείᾳ χρηϲτέον . Ἄλλο Ἀρχιγένουϲ ἐπιληπτικοῖϲ καὶ τοῖϲ περιοδικῶϲ ϲπωμένοιϲ ἢ εἰλεωδῶϲ ὀχλουμένοιϲ ἢ | ||
Περὶ ἀποπληξίαϲ ἐκ τῶν Ἀρχιγένουϲ κη Περὶ παραλύϲεωϲ ἐκ τῶν Ἀρχιγένουϲ κθ Περὶ ὀφρύοϲ ἢ βλεφάρων παραλυθέντων λ Περὶ κυνικοῦ |
, καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ | ||
ἡ μὲν ΖΡ τῇ ΡΣ , ἡ δὲ ΡΝ τῇ ΡΥ , δύο αἱ ΖΡΝ δυσὶ ταῖς ΣΡΥ ἴσαι εἰσίν |
, ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ | ||
ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα |
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι | ||
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ |
λ , ἡ δὲ ΔΕ ρκ , τοιούτων ἐστὶν ἡ ΓΕ εὐθεῖα α κ κγ . τῶν δὲ αὐτῶν ἐδείχθη | ||
τῆς παρούσης καταγραφῆς τὸ ἕτερον εἶδός ἐστιν : ἡ γὰρ ΓΕ ἴση ἐστὶ τῇ ΔΒ . τέμνουσαν ἔλαβεν ὁ στοιχειωτὴς |
' ἀποπατεῖντοῦτο γὰρ τὸ ἀποψύχεινἴσως δὲ καὶ ταῦτα παρακελεύεται τῆς ἰδιωτείας τῶν πολλῶν στοχαζόμενος : οὐ γὰρ πάντες ἔχουσι νοῦν | ||
τῶν πεπραγμένων καὶ ἀξιομνημόνευτα παραλείπουσιν ἢ παραθέουσιν , ὑπὸ δὲ ἰδιωτείας καὶ ἀπειροκαλίας καὶ ἀγνοίας τῶν λεκτέων ἢ σιωπητέων τὰ |
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
γραμμάτων φύσις καὶ ἡ τῶν συλλαβῶν δύναμις , ἐξ ὧν πλέκεται τὰ ὀνόματα : ὑπὲρ ὧν καιρὸς ἂν εἴη λέγειν | ||
δὲ τῷ Χρυσίππῳ πέντε , δι ' ὧν πᾶς λόγος πλέκεται : οἵτινες λαμβάνονται ἐπὶ τῶν περαντικῶν καὶ ἐπὶ τῶν |
δι ' ἐπαγωγῆς τοῦ ἰατροῦ , τοῦ μάντεως , τοῦ γεωμέτρου . Εἰ οὖν οὐ πλείους ἀλλ ' εἷς . | ||
γειτνιῶσι , ταύτας δ ' οὐ ῥᾴδιον ἀκριβῶς ἐξελέγξαι μὴ γεωμέτρου τὴν ἀλήθειαν ἐκ τῆς ἐμπειρίας μεθοδεύσαντος . ἡ δ |
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς | ||
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ |
ἀερώδουϲ τε καὶ ὑδατώδουϲ οὐϲίαϲ θερμῆϲ , ἐλαχίϲτηϲ δὲ γεώδουϲ ϲύγκειται : τὸ οὖν δριμὺ πλέον ἐϲτὶν ἐν αὐτῷ : | ||
ἀλγήματα καὶ φρικώδη . Ϲύμφυτον τὸ μὲν πετραῖον ἐξ ἐναντίων ϲύγκειται δυνάμεων : ἔχει μὲν γάρ τι καὶ τμητικόν , |
ζῴων τὸν ἄνθρωπον λόγῳ τε καὶ μεταβατικῇ φαντασίᾳ καὶ ἐννοίᾳ ἀκολουθίας , ἀλλ ' οὔ τοί γε καὶ ἐν τοῖς | ||
συνπλοκῆς ἢ διαζεύξεος ἢ αἰτίας ἢ συλλογισμοῦ ἢ ἀπορίας ἢ ἀκολουθίας ἢ τοῦ μὴ κε - χηνέναι τὴν σύνθεσις . |
ἡ ΧΦ τῇ ΣΟ , μείζων ἄρα ἡ ΚΒ τῆς ΣΟ . ἴση δὲ ἡ ΚΒ ἑκατέρᾳ τῶν ΚΣ , | ||
ἐστι διάμετρος ἡ ΞΗ τῇ ΒΤ , καὶ ὅτι ἡ ΣΟ παράλληλος οὖσα τῇ ΒΤ κατῆκται τεταγμένως ἐπὶ τὴν ΘΗΟ |
διὰ μέσων τῶν Λευκανῶν καὶ Βρεττίων διεξιόντα τελευτᾷ πρὸς τὴν Λευκόπετραν τῆς Ῥηγίνης καλουμένην . τυπωδῶς μὲν οὖν εἴρηται περὶ | ||
ἀπὸ Ἰάπυγος Κρητὸς ἀποικισθέντες αὐτόθι , ἵνα καὶ παρὰ τὴν Λευκόπετραν τὸ Σικελικὸν διήκει πρὸς τὰς τοῦ Ἀδρίου ἀρχάς . |
ἵππου χαλεποῦ καὶ βιαίου κατέχων τὸ ἄγριον καὶ ἀπειθὲς , ἐκφερόμενος μὲν ὑπ ' αὐτοῦ , πολλάκις δὲ κατέχων καὶ | ||
τῷ πρώτῳ Περὶ ὅρων , λόγος κατ ' ἀνάλυσιν ἀπαρτιζόντως ἐκφερόμενος , ἤ , ὡς Χρύσιππος ἐν τῷ Περὶ ὅρων |
ἀντωνυμιῶν παραλαμβανομένων , συνήθους τε ὄντος τοῦ κατὰ τὸ ε πλεονασμοῦ . Οὐκ ἔστι παρὰ Δωριεῦσιν ἐν τρίτῳ ἡ διὰ | ||
τὸ νοσοῦν . ἔσται δὲ ἀπὸ ἐμέτων πυκνοτέρων καὶ χολῆς πλεονασμοῦ . δυσπνοοῦσιν οὖν καὶ τὰ πλευρὰ ἐπαισθάνονται ῥυπτιζόμενοι πάνυ |
προσοδιακῶν . σύγκειται γὰρ ἐκ χοριάμβου , παίωνος βʹ ἀντὶ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου αὖθις καὶ Ἰωνικοῦ ἀπ ' | ||
. ἔστι δὲ τὸ προσοδιακὸν δίμετρον ἀκα - τάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου . Τὸ ζʹ Πινδαρικὸν ἐκ Σαπφικοῦ ἑνδεκασύλλαβον |
δὲ κατὰ τὴν δευτέραν ϲυμπληρουμένην . ϲύγκειται δὲ ἔκ τε ϲτυφούϲηϲ αὐτάρκωϲ οὐϲίαϲ καὶ δριμείαϲ θερμῆϲ οὐ πολλῆϲ καί τινοϲ | ||
Ῥῆον , ἔνιοι δὲ ῥᾶ προϲαγορεύουϲι , μικτῆϲ ἐϲτι κράϲεωϲ ϲτυφούϲηϲ καὶ θερμαινούϲηϲ καὶ λεπτομεροῦϲ , ὅθεν ϲπάϲματα καὶ ῥήγματα |
, οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ : | ||
ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ |
κ , οἵων ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριγ μγ : ὥστε καί , οἵων | ||
ὡς μὲν ἡ ΖΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΖΗ πρὸς τὴν ΗΕ , ὡς δὲ ἡ ΜΔ πρὸς |
τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου . καί ἐστιν ἡ ΝΛΩ ἴση τῇ , ὑφ ' ἣν ὑποτείνει ἡ τοῦ | ||
Π , Ν , Τ σημείων μέγιστοι κύκλοι γεγράφθωσαν οἱ ΝΛΩ , ΠΛΧ , ΤΛΨ . καὶ ἐπεὶ ἴση ἐστὶν |
. τὸ ὑδροκέφαλον πάθοϲ προϲαγορεύεται ἀπὸ τοῦ ἐν τῇ κεφαλῇ ὑδατώδουϲ ὑγροῦ ϲυλλεγομένου : κατὰ τὸ πλεῖϲτον μὲν οὖν τὸ | ||
ἔχει καὶ τὴν ἐν τῇ γεύϲει πικρότητα , καί τινοϲ ὑδατώδουϲ εὐκράτου , ὅθεν καὶ τὸ ἐξ αὐτοῦ ἔλαιον ἀδήκτου |
συνάγων καὶ κτώμενος ἀπέστελλεν . Ἤνθει γὰρ ἔτι δόξα τῆς Σικυωνίας μούσης καὶ χρηστογραφίας , ὡς μόνης ἀδιάφθορον ἐχούσης τὸ | ||
! ? . . . . Βουφία : κώμη τῆς Σικυωνίας . Ἔφορος κγ . τὸ ἐθνικὸν Βουφιεύς . . |
? [ ] [ ] ΧΕ [ ] [ ] ΕΡ ? ? ! [ ] [ ] ΓΟ [ | ||
. τίς ἄρα ὁ τῆς ΕΠ πρὸς ΠΤ τῷ τῆς ΕΡ πρὸς ΡΤ ; ἀλλ ' ὁ τῆς ΕΡ πρὸς |
ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ , προσαρμόζουσα δὲ ταύτῃ ἡ ΖΚ . ἤτοι δὴ | ||
ΞΔ πρὸς ΔΜ . ἀλλ ' ὡς ἡ ΛΚ πρὸς ΚΘ , οὕτως ἡ ΕΚ πρὸς ΚΒ : καὶ ὡς |
ΔΟ τοῦ ὑπὸ τῶν ΘΟΚ , ἀνάλογον ἡ Λ πρὸς ΟΚ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΘΟ πρὸς ΟΔ . | ||
περιφέρεια πρὸς τὴν ΞΟΠ . Καταληφθήσεται δὲ καὶ ἡ μὲν ΟΚ τοῦ μεσημβρινοῦ διάστασις , τουτέστιν ἡ ἀπὸ τοῦ διὰ |
φλεγμονῆϲ ἐν ὀφθαλμοῖϲ Γαληνοῦ . φλεγμονῆϲ δὲ ἐπιπολαίου γενομένηϲ τοῦ ἐπιπεφυκότοϲ ὑμένοϲ , ὀδύνηϲ ϲφοδρᾶϲ μὴ παρούϲηϲ , ἀποκρουϲτικὰ παραληπτέον | ||
ὁτὲ δὲ ἐξ ἐπιφορᾶϲ ὑγρῶν ἢ ἀναβρώϲεωϲ , εἴτε τοῦ ἐπιπεφυκότοϲ ὑμένοϲ εἴτε τοῦ κερατοειδοῦϲ ἢ τῶν βλεφάρων ἢ τῶν |
ΔΗΒ , ἡ δὲ ὑπὸ ΒΑΖ , ἐὰν ἐπιζευχθῇ ἡ ΕΒ , τῇ ὑπὸ ΒΕΖ , τουτέστιν τῇ ὑπὸ ΒΓΗ | ||
ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ , κάθετοι δ ' ἤχθωσαν ἀπὸ μὲν |
α εἰς η , ἠκεστός . καὶ μετὰ τῆς α στερήσεως , ἥτις πολλάκις λαμβάνει τὸ ν , ἀνήκεστος , | ||
ὁ τρόπος τῆς μεταχειρίσεως : παραθεὶς γὰρ ἐξ ὑπάρξεως καὶ στερήσεως καὶ κόψας τὰ νοήματα λέγει , πότερον ὅτι ὑμεῖς |
ἐπεὶ δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΚΘ , ΘΛ ἴσαι εἰσίν , καὶ γωνία ἡ πρὸς τῷ Β | ||
καὶ ὡς ἡ ΕΘ πρὸς τὴν ΓΗ , οὕτως ἡ ΘΛ πρὸς τὴν ΗΚ : ἴσων μὲν ἄρα οὐσῶν τῶν |
δὲ ἐπὶ τῆς ἑτέρας αὐτὴν λαβόντες τοῦ παραλληλογράμμου πλευρᾶς τῆς παραλλήλου τῇ κοινῇ αὐτῶν βάσει τὸ αὐτὸ ἀποδείξομεν . δύο | ||
ἔρριψα . τὸ δὲ “ ἀνείλετο λαβοῦσα ” ἢ ἐκ παραλλήλου , ὡς τὸ “ ἁγνεύσας ἐκάθηρε ” καὶ “ |
ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ . | ||
ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί |
πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ , | ||
ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ |
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ | ||
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ |
καὶ ἐλαίου σκευαζομένῳ , τοῦ σπληνίου ἐκτιτραμένου κατὰ τὸν τῆς ἀνατρήσεως τόπον , καὶ τὰ ἔξωθεν πάντα ἐρίῳ κούφῳ σκεπέσθω | ||
κεφαλῇ ἐπικειμένου κύκλος ἐξ ἐρίου περιτίθεται , περιορίζων τὸν τῆς ἀνατρήσεως τόπον . ὁ δὲ τροχὸς οὗτος κουφιστὴρ καλεῖται ἀπὸ |
τοῦ Θ ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐκβαλλομένη συμπεσεῖται τῇ ΘΓ . δυεῖν ἄρα εὐθειῶν τὰ αὐτὰ πέρατα ἔσται : | ||
ἀπὸ ΘΓ τοῦ ἀπὸ ΕΗ : μείζων ἄρα καὶ ἡ ΘΓ τῆς ΕΗ . καί εἰσι παράλληλοι : ἡ ΕΖ |
συνημμένον ἔχει λόγον ἐξ οὗ ὃν ἔχει ἡ ΤΣ πρὸς ΣΥ καὶ ἡ ΤΣ πρὸς ΣΡ καὶ ἐξ οὗ ὃν | ||
στερεόν . τὸ ΕΜ ἄρα πρὸς ἑκάτερον τῶν ΗΝ , ΣΥ τὸν αὐτὸν ἔχει λόγον . ἴσον ἄρα ἐστὶ τὸ |
περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις | ||
οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων |
διὰ τὸν τρόπον τῆς συγγραφῆς ἐκθησόμεθα μετὰ τῆς φαινομένης ἡμῖν ἐπικρίσεως . φασὶν οὖν τινες , ὅτι δύναταί τι ἐν | ||
οὖν τοῦτό ἐστιν ; ἐκεῖναι δὲ ἐκ τῆς αὐτοῦ τινος ἐπικρίσεως , ὅταν λέγῃ , καὶ γὰρ οὕτως ἔχει , |
δὲ ἡ ΣΡ τῆς ΟΡ : διπλῆ ἄρα καὶ ἡ ΦΥ τῆς ΟΡ . ἴση δὲ ὑπόκειται ἡ ΟΡ τῇ | ||
δύο τῶν διπλασίων τοῦ ἑνός . ἔστι δὲ καὶ ἡ ΦΥ . , ] παραλληλόγραμμον γάρ ἐστι τὸ ΡΣΦΥ χωρίον |
ἐστιν ἴση , λοιπὴ ἄρα ἡ ΓΗ περιφέρεια λοιπῇ τῇ ΗΔ ἐστιν ἴση . πενταγώνου δὲ ἡ ΓΔ : δεκαγώνου | ||
ἐστὶν ἴση . ἐπεὶ οὖν ὑπόκειται ὡς ἡ ΑΗ πρὸς ΗΔ , ἡ ΔΘ πρὸς ΘΖ , ἴση δὲ ἡ |
τὸ ἀπὸ τῆς ΕΗ διαμέτρου , οὕτως τὸ ὑπὸ τῶν ΦΝ , ΝΖ πρὸς τὸ ἀπὸ τῆς ΜΝ : ὃ | ||
τῇ ἀνατολῇ τμήματα ὅμοια εἶναι : ὁμοία ἄρα ἔσται ἡ ΦΝ τῇ ͵ΑΟ . Ἀλλ ' ἡ ΦΝ τῇ ΨΡ |
ἂν ἐκ ϲηπεδόνοϲ γεννώμενοϲ , ἐϲτὶ δὲ καὶ φυϲώδηϲ . Ζύμη λεπτομερήϲ ἐϲτι καὶ μετρίωϲ θερμή : διὰ τοῦτο τοίνυν | ||
τῆϲ ὀξώδουϲ ποιότητοϲ : δι ' ὃ καὶ κακόχυμοϲ . Ζύμη καὶ αὐτὴ ἐξ ἐναντίων οὐϲιῶν ϲύγκειται : καὶ γὰρ |