| δεύτερα . Πάλιν δὴ ἔστω : τοῦ ΑΣ διαιρεθέντος πρώτου ξου εἰς δεύτερα ξξα , ὧν δύο τὰ ΑΡ , | ||
| δὴ καὶ ὁρᾶται : ἔστι γὰρ τοῦ ΑΧ ὄντος δευτέρου ξου [ ͵γχου ] δύο ἑξηκοστά . ἀλλὰ δὴ κἂν |
| ; ἀλλ ' ἀμήχανον : δίδωμι σῶμα τοὐμὸν Ἑλλάδι . θύετ ' , ἐκπορθεῖτε Τροίαν : ταῦτα γὰρ μνημεῖά μου | ||
| γὰρ θεῶν ἁπάντων ὠφελούσαις τὴν πόλιν δαιμόνων ἡμῖν μόναις οὐ θύετ ' οὐδὲ σπένδετε , αἵτινες τηροῦμεν ὑμᾶς . ἢν |
| ΛΜΝ γνώμων ἐστὶ καὶ τὸ ΓΚ τετράγωνον : ὁ ἄρα ΛΜΝ γνώμων καὶ τὸ ΓΚ τετράγωνον διπλάσιά ἐστι τοῦ ΑΚ | ||
| ΑΒ πρὸς ΑΛ , καὶ τῇ ΑΓ παράλληλος ἤχθω ἡ ΛΜΝ , καὶ ἐπὶ τῆς ΛΜΝ σημεῖον εἰλήφθω τὸ Μ |
| . ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
| τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
| ΟΔ , ὡς δὲ τὸ ἀπὸ ΛΑ πρὸς τὸ ἀπὸ ΑΞ , τὸ ἀπὸ ΖΕ πρὸς τὸ ἀπὸ ΕΔ : | ||
| ὡς ἄρα ἡ ΚΑ πρὸς ΑΔ , ἡ ΗΑ πρὸς ΑΞ . ἔστι δὲ καί , ὡς ἡ ΓΑ πρὸς |
| . Ἐὰν ἐν κυλίνδρου τομῇ συζυγεῖς διάμετροι ὦσι , καὶ ποιηθῇ , ὡς ἡ δευτέρα διάμετρος πρὸς τὴν διάμετρον , | ||
| τὸν ποιητὸν ἐᾷ τὰ ἐν τῷ οἴκῳ , οἷ ἂν ποιηθῇ . εἰκότως , οἶμαι : τῷ γὰρ κατὰ νόμον |
| πρὸς τὴν ΓΔ . διὰ τὰ αὐτὰ δὴ καὶ τὸ ΜΕ πρὸς τὸ ΝΗ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ | ||
| τὴν ΖΕ , συνθέντι καὶ ἐναλλάξ ἐστιν , ὡς ἡ ΜΕ πρὸς τὴν ΕΗ , οὕτως ἡ ΘΕ πρὸς τὴν |
| ἡ ΔΕΖ βάσις πρὸς τὴν ΑΒΓ βάσιν , οὕτως ἡ ΔΕΖΘ πυραμὶς πρὸς ἔλαττόν τι τῆς ΑΒΓΗ πυραμίδος στερεόν . | ||
| ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν , οὕτως τὸ τῆς ΔΕΖΘ πυραμίδος ὕψος πρὸς τὸ τῆς ΑΒΓΗ πυραμίδος ὕψος . |
| αἰνίττεται [ ] [ ] τ [ ] [ ] προτερ ? ? [ ] χε [ ] [ ] | ||
| [ | ] ! [ [ ] ! πω ? προτερ [ [ ] νυμφαηκλ ? [ ! ] ? |
| εἰ γὰρ θέλομεν δύο ἐπογδόους εὑρεῖν , λαμβάνομεν τὸν δεύτερον ὀκταπλάσιον : τίς δὲ ὁ δεύτερος ; ὁ ξδ . | ||
| τὴν πόλιν . πατούμενοι ] ὑβριζόμενοι , θλιβόμενοι . Γ ὀκταπλάσιον χέζομεν : πολλῷ πλείονα , ἵν ' ᾖ τὸ |
| . . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς | ||
| ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα |
| ] ? θάνατος τούτοις ἀρχηγὸς μεγάλων ? ἀγαθῶν γέγο - νε , πῶς τούτους οὐκ εὐτυχεῖς κρίνειν δίκαιον ? , | ||
| ἔγγιστα , καὶ λοιπὴ ἡ ΔΖ τῶν αὐτῶν λζ δ νε . ἡ ἄρα τοῦ δεκαγώνου πλευρά , ὑποτείνουσα δὲ |
| ? [ * * θ ? ! [ | ] υτον [ | ] εν ? αὐτ [ | ] | ||
| ] παν ? ? ϲ ' ὁρᾶν ? ? ] υτον ] ποτε ] ! εται ] αρειϲ νόμοϲ ] |
| τῇ ὑπὸ ΘΗΧ ἐστιν ἴση . παράλληλος ἄρα ἐστὶν ἡ ΕΧ τῇ ΗΘ . πεποιήσθω δή , ὡς ἡ ΠΗ | ||
| ἐστὶν ἡ ΔΧ τῇ ΧΖ , ἴση ἄρα καὶ ἡ ΕΧ τῇ ΖΗ : ὥστε καὶ ἡ ΓΗ ἴση τῇ |
| τῶν ΑΔ , ΔΒ τετράγωνα , τουτέστι ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά | ||
| τῆς ΖΒ τὰ λοιπὰ τῶν υ τῶν ἀπὸ τῆς ΑΒ σκε , ἡ δὲ ΒΖ ιε , ἥτις ἐστὶ σύμμετρος |
| τὸν Πυθικὸν ἀγῶνα ἀγωνιούμενον . ἄν ποτε Καλλίσταν ἀπῴκησαν χρόνῳ νᾶ - σον : Χαῖρις βούλεται γράφειν ἔν ποτε ἀντὶ | ||
| τὸν Πυθικὸν ἀγῶνα ἀγωνιούμενον . ἄν ποτε Καλλίσταν ἀπῴκησαν χρόνῳ νᾶ - σον : Χαῖρις βούλεται γράφειν ἔν ποτε ἀντὶ |
| τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ | ||
| τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ |
| πρὸς τὸ ἀπὸ ΓΒ , τὸ ΑΕΗ τρίγωνον πρὸς τὸ ΑΘΓ . ὡς δὲ τὸ ΑΗΕ πρὸς τὸ ΑΘΓ , | ||
| ' εἰ δυνατόν , ἔστω [ αὐτῶν ] διάμετρος ἡ ΑΘΓ , καὶ ἐκβληθεῖσα ἡ ΗΖ διήχθω ἐπὶ τὸ Θ |
| , Ζ ἴσα εἰσίν . ὡσαύτως καὶ τὰ ΗΒ , ΘΔ ἴσα τοῖς Ε , Ζ . ὅσα ἄρα ἐστὶν | ||
| πλῆθος τῶν ΑΗ , ΗΒ τῷ πλήθει τῶν ΓΘ , ΘΔ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ μὲν ΑΗ τῷ |
| τῶν ἀρωμάτων μάλιϲτα ϲυντίθεται . ϲτομάχῳ μὲν οὖν ἀπεπτοῦντι ἢ ἀτονοῦντι ἢ ἐμπνευματουμένῳ τά τε διὰ τῶν ϲπερμάτων καὶ μελιλώτου | ||
| ἅπαντα τὰ χολώδη καὶ δριμέα περιττώματα καὶ διὰ τοῦτο κατάλληλον ἀτονοῦντι καὶ θερμῷ καὶ εἰς χολὴν μεταβάλλοντι . τούτοις καὶ |
| ιε , ἑκάτερον δὲ τῶν ἑκατέρωθεν τοῦ μετοπωρινοῦ σημείου χρόνοις ρη με . καὶ λοιπὸν μὲν ἄρα τό τε τῶν | ||
| ! ! ! ] ! ! ω ? [ ] ρη πωϲ τοῦτο . τη [ ] ϲί . ποῖοϲ |
| με ιβ πρὸς τὰ ρκ . μέσου δὲ τασσομένου τούτων ρθ μζ ια , γίνεται ὁ συγκείμενος λόγος μδ ιθ | ||
| τῶν μη κϚ ιδ πρὸς τὰ ρκ . τὰ γὰρ ρθ με ιβ ἐπὶ τὰ μη κζ κϚ γίνεται ͵ετιη |
| ἡ ΛΜ μείζων ἐστίν : πολλῷ ἄρα ἡ ΜΛ τῆς ΝΟ μείζων ἐστίν . ἀλλὰ καὶ ἴση : ὅπερ ἐστὶν | ||
| ἐστὶν ὡς ἡ ΒΚ πρὸς ΝΞ , ἡ ΚΜ πρὸς ΝΟ . καὶ τὰ τετράγωνα . καὶ ὡς ἓν πρὸς |
| . [ ] υ ? ! [ [ ] ! θν [ . . . [ τοῦ ] Πολυδεύκεος ? | ||
| ἑκατέρα τῶν υν με : ἔστι δὲ ἴση καὶ ἡ θν τῇ θμ : ἴση ἄρα καὶ ἡ υσ τῇ |
| κθʹ ξγʹ τὰ δὲ ἀνατολικώτατα λαʹ γοʹʹ ξγʹ τὰ δὲ ἀρκτικώτατα λʹ γʹʹ ξγʹ δʹʹ τὰ δὲ νοτιώτατα λʹ γʹʹ | ||
| . . . . ρξ λζ . Τὰ μὲν οὖν ἀρκτικώτατα τῆς Σηρικῆς κατανέμονται ἔθνη ἀνθρωποφάγων , ὑφ ' οὓς |
| καὶ ἐπεζεύχθω ἡ ΒΛ . ἐπεὶ οὖν δύο ὀρθογώνια τὰ ΘΗΒ , ΛΒΗ ἴσας ἔχει γωνίας τὰς ὀρθάς , περὶ | ||
| , ὡς δὲ ἡ ΘΒ πρὸς ΒΜ , τὸ ὑπὸ ΘΗΒ πρὸς τὸ ἀπὸ ΗΑ , ὡς ἄρα τὸ ἀπὸ |
| κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ : | ||
| αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται |
| . πάντα . . . τοίνυν ] συνεπέρανεν ὅλα τὰ παραγραφικά , καὶ λοιπὸν ἐπὶ τὸ δίκαιον κεφάλαιον χωρεῖ . | ||
| ὑμῖν εὐθύνεται , δεδωκότων σαφῶς ἀναιρεῖν : καὶ ὅσα τοιαῦτα παραγραφικά . ΜΕτὰ τὸ παραγραφικὸν θήσεις τὴν μετάληψιν , ἥτις |
| , μείζων ἡ ΘΗ τῆς ΘΒ . ἴση δὲ ἡ ΘΒ τῇ ΘΔ : ὑπόκειται γάρ : μείζων ἄρα ἐστὶν | ||
| . ἔθηκα τῷ ΗΒ ἴσον τὸν ΗΘ , ὥστε ὁ ΘΒ πρὸς τὸν ΗΒ συμφωνήσει διὰ πασῶν , ὡς εἶναι |
| ] λέ [ ] ο : ] ος [ ] ρχ ? [ . . . . . . [ | ||
| ] ] λέ [ ] ο ] ος [ ] ρχ [ . . . . . . ] χλαγ |
| ! ! ! ! να ? ηους ! ! ! παλ ! ! ! ! μ μεγάλην ? [ ] | ||
| ! ! ! ! ! δε τοττι ? ! ! παλ ! ! ! ! ! ! ! ! ! |
| ἁπλῶϲ εἰπεῖν ἐπὶ παντὸϲ θηριοδήκτου τῶν κατωνομαϲμένων εἰδῶν τὰ πρὸϲ ἐχεοδήκτουϲ ἁρμόζει βοηθήματα , ὡϲ ἂν καθ ' ὅλου ὄντα | ||
| ὁμοίωϲ δὲ καὶ ὁ ὀφίτηϲ καλούμενοϲ , ὅϲτιϲ καὶ τοὺϲ ἐχεοδήκτουϲ ὠφελεῖ περιαπτόμενοϲ . τὸν δὲ ὀϲτρακίτην καὶ τὸν γεώδη |
| τὸ α ἐπιτατικόν . ἢ μότα λέγονται τὰ ῥάκη τὰ πληρωτικὰ τῶν πληγῶν , καὶ ἄμοτον κατὰ ἀπόφασιν τὸ μὴ | ||
| τοὺϲ παχεῖϲ οἴνουϲ , καὶ τὰ δριμέα τῶν ὀϲφραντῶν καὶ πληρωτικὰ τῆϲ κεφαλῆϲ καὶ τὸ ἀτενίζειν ἐξ ὕψουϲ καὶ τὸ |
| ' ευ [ ] υνγ ' α ? [ ] ρία [ ] χ : ορ [ ] ρ ? | ||
| τυχόντος τιτρωσκομένης : ἐπεὶ πολλάκις ἀνάγκη κεντεῖσθαι καὶ μυ - ρία τραύματα λαμβάνειν . καὶ γὰρ οἱ τοὺς πόδας ἔχοντες |
| ἐπεδείξατο , καὶ κηρύττει τὴν τέχνην , οὐκ αὐτὸς ἐκ ταύ - της κεκήρυκται . ὅσα μὲν τοίνυν ἢ βασιλεῦσι | ||
| ἀλλαχόθι , καὶ μέντοι καὶ περὶ τῆς θήρας αὐτῶν καὶ ταύ - της εἶπον ὀλίγα ἐκ πολλῶν ὧν ἔφασαν ἄλλοι |
| κέντρου δύναται τὸ ὑπὸ ΟΓ ΚΑ ἢ τὸ ὑπὸ Θ ΚΑ ἐλάσσων ἐστὶν τῆς σφαιρικῆς τοῦ τμήματος ἐπιφανείας . ἀλλὰ | ||
| , οἵων ἐστὶν ἡ ΑΖ διάμετρος ρκ , ἡ δὲ ΚΑ τῶν αὐτῶν ργ νε : ὥστε καί , οἵων |
| ἄρα ΣΤ ἐπὶ τὸ Τ παρῆκται διὰ τὸ καὶ τὴν ΜΣ παρῆχθαι ὡς ἐπὶ τὸ Τ μᾶλλον τῶν ἄλλων ἀκτίνων | ||
| τῇ ΜΣ . καὶ δοθεῖσά ἐστιν ἑκάστη τῶν ΜΛ ΛΒ ΜΣ ΣΑ [ οὕτως καὶ ἡ ΖΗ ΔΕ καὶ ΒΛ |
| πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ . | ||
| ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ : |
| ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ | ||
| , τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα |
| ποῖον τῶν τεττάρων εἰδῶν τῆς ποιότητος τῶν ὑπὸ Ἀριστοτέλους εἰρημένων ἀνάγομεν ; ἵνα οὖν τελεία ᾖ ἡ διαίρεσις , εἴπωμεν | ||
| δ ' ἔμπροσθεν τὰ ὕστατα τῶν ὄπισθεν ὑπὲρ τὰ ἄλλα ἀνάγομεν ἐπὶ τὸ μέτωπον , καὶ τὸ μὲν ἐπὶ πέρας |
| ] [ ] ΗΤ ? ? [ ] [ ] ΡΩ [ ] [ ] ΑΡΚ [ ] [ ] | ||
| [ ] ! ϹΑ ! [ ] [ ] ! ΡΩ ! [ ] [ ] ΜΕΝ ? ? ! |
| ? , ἐμαί , σαί , αἵ , ἐμά , σά , ἅ . ἐντὸς δυϊκαὶ ἐκτὸς ἑνικαί , νωΐτερος | ||
| ἀκριβείας ἐν τούτοις εἰρηκέναι τά τε τοῦ πατρὸς τά τε σά ; καίτοι τοῦ γε παραφρονοῦντος ἦν ἕτερα ἀνθ ' |
| τούτους κέλευθον ] ὁδόν ἐγκόνει ] † ἤγουν σπουδαίως τρέχε πεύσῃ ] μαθήσῃ ἄν : ἐνταῦθα γὰρ τὸ ἂν σύναπτε | ||
| σοι δεῖ καὶ ἀνθρώπων φωνῆς , τὰ μὲν πολλὰ Γυμνασίου πεύσῃ λέγοντος , παρ ' ἡμῶν δὲ τοσοῦτον εἰρήσεται , |
| ͵Ϛψν πρὸς τὰ τλζ : ἀνάπαλιν ἄρα καὶ συνθέντι ἡ ΡΑ πρὸς τὴν ΑΒ μείζονα λόγον ἔχει ἢ ὃν τὰ | ||
| ἐπιπέδῳ τῷ ΖΗ τετμήσθω παραλλήλῳ ὄντι τοῖς ἀπεναντίον ἐπιπέδοις τοῖς ΡΑ , ΔΘ : λέγω , ὅτι ἐστὶν ὡς ἡ |
| βάσιν , οὕτως ἡ ΔΕΖΘ πυραμὶς πρὸς ἔλαττόν τι τῆς ΑΒΓΗ πυραμίδος στερεόν . Λέγω δή , ὅτι οὐκ ἔστιν | ||
| ΑΒΓΗ πυραμίδα . ὡς δὲ τὸ Χ στερεὸν πρὸς τὴν ΑΒΓΗ πυραμίδα , οὕτως ἡ ΔΕΖΘ πυραμὶς πρὸς ἔλασσόν τι |
| , οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων λθ ιθ , οἵων δ ' αἱ β ὀρθαὶ τξ | ||
| . . . . Αἰγόκερω ε ∠ ʹ γʹ βο λθ ∠ ʹ εʹ ὁ προηγούμενος τῶν τριῶν . . |
| , καὶ τέτμηται δίχα ἡ γωνία ἡ ὑπὸ ΚΗΑ τῇ ΗΛΜ εὐθείᾳ , βάσις ἄρα ἡ ΚΛ τῇ ΛΑ ἴση | ||
| αἱ ΝΞΗΟΠΡ , ΚΣΤ , παρὰ δὲ τὴν ΑΓ αἱ ΗΛΜ , ΚΟΦΙΧΨΩ . λέγω , ὅτι ἐστίν , ὡς |
| κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς | ||
| δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ |
| τουτέστιν ἡ φαινομένη τοῦ ζῳδιακοῦ περιφέρεια , καὶ ἡ ὑπὸ ΕΑΖ , τουτέστιν ἡ ΕΖ τοῦ ἐπικύκλου περιφέρεια . πάλιν | ||
| ΕΔ ΔΓ ΓΒ ΒΖ , καὶ τὸ δὶς ὑπὸ τῶν ΕΑΖ ἄρα ἴσον ἐστὶν τῷ δὶς ὑπὸ τῶν ΕΔΓ μετὰ |
| , κορυφὴν δὲ τὸ Β σημεῖον . διῄρηται ἄρα τὸ ΑΒΓΔΕΖ πρίσμα εἰς τρεῖς πυραμίδας ἴσας ἀλλήλαις , ὧν βάσεις | ||
| πυραμίδας ἴσας ἀλλήλαις τριγώνους βάσεις ἐχούσας . ἔστω πρίσμα τὸ ΑΒΓΔΕΖ τρίγωνον ἔχον βάσιν τὴν ΓΖΔ . λέγω , ὅτι |
| ] τὴν ΑΔ οὖσαν μοῖραν α , ἐπὶ τὸ ἓν ξον , λέγω δὴ τὴν ΑΞ , ἔσται τὸ πρῶτον | ||
| , ΣΥ ξξα πρῶτα : ἐὰν δὴ πολλαπλασιάσω τὸ πρῶτον ξον τὸ ΑΞ ἐπὶ τὸ πρῶτον τὸ ΑΣ , ἔσται |
| ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
| μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
| βραχέα χολώδεα : πουλὺϲ πλάδοϲ . διαρρέει δὲ καὶ τὰ ὀϲτέα λυόμενα , καὶ ἀπὸ πάντων ὡϲ ἐν ποταμῷ ἐϲ | ||
| μὲν δι ' ὅλου ϲαρκώδειϲ εἰϲίν , οἱ δὲ καὶ ὀϲτέα ἔχουϲιν ἐν ἑαυτοῖϲ , ἐνίοτε δὲ καὶ ὄνυχαϲ : |
| ] [ ] επαρεστην [ ] [ ] νυεν ? αλλο ? [ ] [ ] ! υσε Δηριαδη [ | ||
| ] ράνω [ [ ] τυλ ! [ [ ] αλλο ? ! [ [ ] πόλ ! [ . |
| [ Ιεσθα ] ? ? [ ] [ Ι ] ουντα [ ] ἄγειν ? τινά ? [ ] [ | ||
| [ ] [ ] λυσαν [ ] [ ] ! ουντα [ ] [ ] ατα τὴν [ ] [ |
| πρὸς τὴν ΜΚ : ὡς ἄρα ἡ ΓΚ πρὸς τὴν ΝΜ , οὕτως ἐστὶν ἡ ΝΜ πρὸς τὴν ΚΜ : | ||
| ᾧ τότε Ρ τὴν ΝΜ διέρχεται καὶ τὸ Η τὴν ΝΜ . Ἐκ περισσοῦ . τῶν αὐτῶν ὑποκειμένων ἀπειλήφθω ἡ |
| τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν | ||
| ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν |
| ٤٢ τὸ ΒΔ ٣ ٢٧ ٥٠ ٧ ١٨ τὸ ΛΘ ٣٢ ٣٢ ٩ ٥٢ ٤٢ ἡ ΖΘ ٩ ἡ ΚΘ | ||
| ἤτοι τῆς ἡμισείας τῆς ΑΗ ٢٧ ٢٦ ٣ ٣٨ ٥٨ ٣٢ ١٥ ἡ ΑΖ ٥ ١٧ ٢٨ ٢١ ١٧ ἡ |
| καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια . μετροῦνται μέντοι καὶ κατὰ δύο | ||
| τοῖς καταγεγραμμένοις γνώμοσι λεπτὰ τέταρτα ιε πέμπτα β ἕκτα μϚ ἕβδομα Ϛ ὄγδοα θ , ἅτινα παρεῶνται ὡς λεπτότατον λίαν |
| καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν ΖΝ . δι ' ἴσου ἄρα ὡς | ||
| τὸ ὑπὸ ΓΞΑ μετὰ τοῦ ἀπὸ ΑΕ καὶ τοῦ ἀπὸ ΟΖ , τουτέστι τοῦ ἀπὸ ΕΘ , πρὸς τὸ ὑπὸ |
| . . . . . . . . . . ρε λγ Ζιμύρα . . . . . . . | ||
| ἄμετρον κένωϲιν λειποθυμίαϲ ρδ Περὶ τῆϲ ἐπὶ πλήθει χυμῶν λειποθυμίαϲ ρε Περὶ τῆϲ ἐξ ὑϲτέραϲ λειποθυμίαϲ ρϚ Περὶ τῶν δι |
| ἐξαλλάσσουσι τὸ φανερὸν ἡμισφαίριον . ἐν πλείονι δὲ χρόνῳ ἡ ΛΘ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΘΝ : ἐδείχθη | ||
| ἐστίν , ὡς δὲ ἡ ΛΝ πρὸς ΝΞ , ἡ ΛΘ πρὸς ΘΜ : ἴση ἄρα ἡ ὑπὸ ΛΖΘ γωνία |
| . . . . . . . . . . ρι ∠ ʹ λζ ∠ ʹ Φοραύα . . . | ||
| τῇ καρδίᾳ τοῦ Λέοντος Κρόνου ἀπὸ τοῦ ἀπογείου . . ρι λ καὶ ἀναβιβάζοντος . . τνγ λ Διὸς ἀπογείου |
| τὸ Ζ : δι ' ἴσου ἄρα ἐστὶν ὡς τὸ ΑΗ πρὸς τὸ Γ , οὕτως τὸ ΔΘ πρὸς τὸ | ||
| ἐστὶ τῷ ΓΕ , λοιπὸν ἄρα τὸ δὶς ὑπὸ τῶν ΑΗ , ΗΒ ἴσον ἐστὶ τῷ ΖΛ . ῥητὸν δὲ |
| μείζων ἐστὶν ἢ ὁμοία , ἔστω τῇ ΗΖ ὁμοία ἡ ΛΨ . ἐν ᾧ ἄρα χρόνῳ τὸ Η τὴν ΗΖ | ||
| ἐστιν ἡ ὑπὸ ΛΦΨ γωνία , πενταγώνου ἄρα ἐστὶν ἡ ΛΨ . διὰ τὰ αὐτὰ δὴ ἐὰν ἐπιζεύξωμεν τὴν ΜΦ |
| Ὀστέα δὲ κνήμης κρατύνεται ἐν τεσσαράκοντα ἡμέρῃσιν , ἢν ὀρθῶς ἰητρεύηται . Ἢν δὲ ὑποπτεύῃς τῶν ὀστέων τι δεῖσθαί τινος | ||
| ταῦτα τοίνυν τὰ μέρεα καὶ διαστρέφεται , ἐπὴν μὴ καλῶς ἰητρεύηται : καὶ δὴ καὶ κατὰ ταῦτα ἀσαρκότερος αὐτὸς ἑωυτοῦ |
| πολλοι ? [ ] τηϲ ? παροι ? [ ] υκα ? ? γὰρ τ ? [ ] νδη ? | ||
| ' αὐτῆς πα . Τὸ ἀπὸ τῆς ΑΒ καὶ ΒΓ υκα : τὸ ἅπαξ ὑπὸ τῶν ΓΒ , ΒΔ ρκϚ |
| τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή | ||
| ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ |
| , καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι | ||
| μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ , |
| δὲ δεύτερα ἐπὶ δεύτερα , τέταρτα : ἐὰν γὰρ τὰ ΑΡ , ΡΨ δεύτερα δύο ἐπὶ τὰ ΑΠ , ΠΗ | ||
| ἐπεὶ ὀρθογώνιά ἐστι τὰ τρίγωνα , ἡ δὲ ΠΑ τῆς ΑΡ μείζων : τριγώνου γὰρ τοῦ ΠΑΡ μείζων γωνία ἡ |
| τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ | ||
| . ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς |
| κύων ὄνομα πολλὰ σημαίνει , ἔσται καὶ ὁ λόγος ᾧ συντεθήσεται τοῦτο διττός . οἱ δὲ παρὰ τὴν ἀμφιβολίαν τὸ | ||
| ἐφάπτεται ἡ ΓΔ : θέσει ἄρα ἐστὶν ἡ ΓΔ . συντεθήσεται δὴ τὸ πρόβλημα οὕτως : ἔστω ἡ δοθεῖσα κώνου |
| διὰ καταγραφῆς . Λοξοῦ γὰρ ὑποκειμένου κύκλου τῆς σελήνης τοῦ ΓΜΔ , ζῳδιακοῦ δὲ τοῦ ΑΒ , ἀναβιβάζοντος δὲ συνδέσμου | ||
| ΖΔ ἐστιν ἴση , λοιπὴ ἄρα ἡ ΑΛΒ λοιπῇ τῇ ΓΜΔ ἐστιν ἴση . καί εἰσι τοῦ αὐτοῦ κύκλου : |
| ἔχει δὲ οὕτω . Χυλοῦ ῥόδων . . . . ξε . βʹ μέλιτος . . . . . . | ||
| . . . . . . . . . . ξε μ ∠ ʹδ Ἄνδρακα . . . . . |
| ] ! νοια ? [ ! ] [ [ ] νμ ? [ . . . . . . ] | ||
| ! ριζο ? [ [ ] κυψαν [ [ ] νμ [ ! ] ! ? ! [ [ ] |
| υθ ' ημ ! [ ! ! ! ] ] ειν ? ? ἀπέρχεται ! ! ! ! ] ! | ||
| ? ? . αρα ? ΙΙ ! ποεΙΙΙΙΙ ! ? ειν . # θας ? πολλ ? ? ποι . |
| Ε ἡ ΕΛ , ἐφ ' ἧς δηλονότι διὰ τὰ προαποδεδειγμένα ἡ μέση τοῦ ἡλίου πάροδος θεωρηθήσεται . καὶ ἐπιζευχθείσης | ||
| πρὸς τὸ ἀπὸ τῆς Δ . ἔσονται δὴ διὰ τὰ προαποδεδειγμένα αἱ Α , Δ ῥηταὶ δυνάμει μόνον σύμμετροι . |
| ΛΟ , ἴση ἄρα ἔσται καὶ ἡ ΕΗ περιφέρεια τῇ ΚΦ , ὥστε καὶ γωνία ἡ ὑπὸ ΕΣΤ τῇ ὑπὸ | ||
| αἱ ΘΜ , ΜΝ , καὶ συμπεπληρώσθω τὰ ΛΟ , ΚΦ , ΘΧ , ΜΣ παραλληλόγραμμα καὶ τὰ ΛΠ , |
| περίμετρον , οὕτως ὁ ΘΑΖΓ τομεὺς πρὸς τὸ ἐμβαδὸν τοῦ ΑΖΓΗ κύκλου : δηλονότι καὶ τὸ μὲν τοῦ ΑΕΓΔ τομέως | ||
| δὲ τοῦ ΑΘΓΖ τομέως κϚ να οἵων ἦν τὸ τοῦ ΑΖΓΗ κύκλου ριθ λβ : ἔστιν γὰρ ὡς μὲν τξ |
| τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό : | ||
| ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ |
| πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς | ||
| ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον |
| ἐξ αὐτοῦ ϲυναγομένην αἰθάλην ἢ λιγνὺν χρηϲιμωτάτην πρὸϲ διαβεβρωμένουϲ καὶ ψωρώδειϲ κανθοὺϲ καὶ τετυλωμένα βλέφαρα καὶ τριχορροοῦντα . καίεται δὲ | ||
| τῆϲ χαλκίτεωϲ καὶ καδμίαϲ ξηρὸν ψωρικόν , τὸ πρὸϲ τοὺϲ ψωρώδειϲ κανθοὺϲ ἀναγεγραμμένον , καὶ τὰ παραπλήϲια καὶ τὸ Θεοδότιον |
| ἔλεγχον ἐλεύσεται , ἵνα σὺ μὲν γνῷς ὡς καλῶς με κέκρικας φίλον , ἐγὼ δὲ σοῦ πεῖραν ἔργῳ λάβω . | ||
| τῷ τῆς ἁφῆς ἁπτικῷ μέλλοντα καταχρᾶσθαι . τοῦτον ἀμέριμνον καταλεῖψαι κέκρικας , ὦ γενεσιουργέ , τὸν ὁρᾶν μέλλοντα τολμηρῶς τῆς |
| καὶ συμπίπτει αὐτῇ ἡ ΕΤ , τὸ ἄρα ὑπὸ τῆς ΤΧ καὶ τῆς ΕΚ ἴσον ἐστὶ τῷ ἀπὸ ΓΧ : | ||
| ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ πρὸς ΕΚ , τὸ ἀπὸ ΤΧ πρὸς τὸ ἀπὸ |
| χρήσιμον , μὴ πρότερον ἀφίστασθαι , πρὶν ἢ ἐπισφραγίσηται . πε - ποίηκε τοῦτο ἐν τοῖς τέτρασι λόγοις , ἐν | ||
| ! ! ! [ οξ ! [ πε ! [ πε ! [ φι ? ! ? [ πολ ? |
| ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν | ||
| ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι |
| ٢٢ ٥٦ τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ ٤٧ ٤٢ ٣٥ ٤٤ Ἐκ τῆς εἰς ἄτοπον ἀπαγωγῆς . Ἡ | ||
| ٢١ ἡ ΒΕ ١ ٤٠ ١٦ ἡ ΔΖ ٥ οὐδέν ٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ |
| . ἐκ φυγᾶς ] ἐκ τῆς τοῦ Πολυνείκους ἐκβολῆς . ἰαμβικὰ ζʹ . οὐδ ' ἵκεθ ' ὡς κατέκτανεν : | ||
| εἰσῆλθεν . ἐν ἀνδρῶν γὰρ σχήματι εἰσήχθησαν . ἐντεῦθέν εἰσιν ἰαμβικὰ τετράμετρα καταληκτικὰ μέχρι τοῦ ” εὐρύπρωκτος εἶναι “ . |
| τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ | ||
| ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ , |
| . . . . . . . . . . ρα ∠ ʹ κε Ταρσίανα . . . . ϘϚ | ||
| ὑπ ' αὐτὰς ἄρα εὐθειῶν ἡ μὲν ΔΗ τοιούτων ἐστὶν ρα κζ , οἵων ἐστὶν ἡ ΔΖ ὑποτείνουσα ρκ , |
| αὐτῆς ἡμίσεια ٧ ٢ ٥٨ ٥٠ τὸ ἀπὸ τῆς ἡμισείας ٤٩ ٤١ ٥٣ ٢٣ ١ ٢١ ٤٠ τὸ ΑΒ ١٤ | ||
| τεσσάρων μονάδων τὸ ἀπὸ τῆς ΑΒ ١١٠ ١١٠ ٢٧ ١٠ ٤٩ τὸ ἀπὸ τῆς ΓΒ ٢ ٤٧ ٣٣ ٢٤ ١٦ |
| ῥαφῶν τὰ εἴδεα , λοξήν , εὐθείην , ἐπικάρϲιον , ὀπίϲω τε καὶ πρόϲω : ἰϲχνὴν δὲ τὴν ὀδύνην καὶ | ||
| ἔξω : ὧν δὲ κατὰ ϲτόμα τι ἂν εἴη , ὀπίϲω χάζεται ἠδὲ ἄνωθεν : ἴῃ δ ' ἄν κοτε |
| Υ ! [ ! . . . . . . ΜΕΝ ΟΥΝ ΕΙΣΙΝ ΟΙ ΡΥΘΜΟΙ ΟΥΤΟΙ ΤΗΣ ΤΟΙΑΥΤΗΣ ΛΕΞΕΩΣ ΧΡΗΣΑΙΤΟ | ||
| ! [ ] ! Α ! ! [ ] ! ΜΕΝ [ ] [ ! ] ! ! Π [ |
| ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν | ||
| , ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ |
| οἵων ἐστὶν ἡ μία ὀρθὴ Ϙ . διὰ δὲ τὰ προδεδειγμένα πάλιν καὶ ἡ ὑπὸ τοῦ ἐαρινοῦ ἰσημερινοῦ σημείου γινομένη | ||
| γίνεται τὸ ΕΖΗ τρίπλευρον τῷ ΕΚΛ , ἐπεὶ διὰ τὰ προδεδειγμένα καὶ τὰς τρεῖς πλευρὰς ταῖς τρισὶ πλευραῖς ἴσας ἔχει |
| διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
| ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
| καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ | ||
| ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν |
| ٣ ١٢ ٢٥ τὸ ἀπὸ τῆς Θ ٢٥ ٤٢ ٥١ ٢٥ ٤٢ ٥٢ Ἡ Α μονάδων τεσσάρων , ἡ ΓΗ | ||
| ٤٦ τὸ ἅπαξ ὑπὸ τῶν ΑΒ , ΒΓ ٥ ٣٥ ٢٥ ١١ ٢٨ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ |
| , ὥς φησι Τζέτζης , ἡ ἀερσιπότητος εὐθεῖα . . ΤΩΝ Ὁ Γ ' ΟΠΙΖΕΤΟ . Τούτων τῶν θεῶν ἐφοβεῖτο | ||
| ΛΕΞΙΣ ] ΟΙΚΕΙΑ ΜΕΝ [ ΕΣΤΙ [ ΚΑΤΑ ΤΗΝ ] ΤΩΝ ΡΥΘΜΩΝ [ ΦΥΣΙΝ ΟΥΣΑ ΙΑΜΒΙΚΗ ] ΤΟΥ ΙΑΜΒΟΥ [ |
| μετὰ κατασχασμοῦ . εἰ δὲ πλῆθος παράκειται , καὶ βδέλλαις κενοῦντα καὶ ταῖς κοιναῖς ὠμαῖς λύσεσι καταπλάττειν . Οἱ ἄπρακτα | ||
| χολὴν τῷ αἵματι ἐν τοῖς ἀγγείοις ὑπονοήσεις , ἐπὶ τὰ κενοῦντα τὸν τοιοῦτον χυμὸν ἔρχεσθαι κατὰ τὸ τηνικαῦτα . τοῦτο |
| ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ | ||
| ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ |