παίωνος ὄντος βʹ ἀντὶ Ἰωνικοῦ , ἔν τισι δὲ καὶ διϊάμβου διὰ τὴν ἀδιάφορον . Τὸ δʹ χοριαμβικὸν δίμετρον καταληκτικὸν
τρίμετρον ἀκατάληκτον ἐξ ἀντισπάστου , διϊάμβου καὶ αὖθις ἀντισπάστου ἢ διϊάμβου ἢ ἐπιτρίτου διὰ τὴν ἀδιάφορον . καλεῖται δὲ τοῦτο
7946673 ἰαμβου
καταληκτικόν : τὸ Ϙʹ δίμετρον ἐξ ἀμφιμάκρου , βακχείου , ἰάμβου καὶ ἀμφιμάκρου : τὸ ζʹ ἀναπαιστικὸν δίμετρον ἀκατάληκτον :
, τῶν ἑξῆς χοριάμβου γινομένων . διὰ τοῦτο καὶ ἀπὸ ἰάμβου ἄρχονται ἐν τῷ ἀναπαιστικῷ , ὥσπερ Ἀρχίλοχος ἐν τῷ
7777885 διτροχαιου
τρίτον τοῦ πρώτου ποδὸς πεντασυλλάβου καταληκτικόν . τὸ τέταρτον ἐκ διτροχαίου καὶ ἐπιτρίτου τρίτου ἀκατάληκτον . τὸ εʹ ὅμοιον τῷ
Τὸ αʹ προσοδιακὸν τρίμετρον ἀκατάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου καὶ διτροχαίου ἢ ἐπιτρίτου . Τὸ βʹ δακτυλικὸν τρίμετρον ἀκατάληκτον .
7768769 πυρριχιου
ιγʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον ἐξ ἐπιτρίτου πρώτου , διιάμβου καὶ πυρριχίου ἢ ἰάμβου διὰ τὴν ἀδιάφορον : τὸ μέντοι τῆς
. τὸ Ϛʹ καὶ Ϛʹ χοριαμβικὰ ἡμιόλια ἐκ χοριάμβου καὶ πυρριχίου , ἢ ἰάμβου διὰ τὴν ἀδιάφορον : εἰ δὲ
7710348 ἰωνικου
ἀμφιβραχέος . τὸ ξαʹ ἰωνικὸν δίμετρον ἀκατάληκτον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάττονος . τὸ ξβʹ ἰαμβικὸν τρίμετρον βραχυκατάληκτον
ἐν ἀρχῇ , ἢ περίοδος . τὸ δʹ προσοδικὸν ἀπὸ ἰωνικοῦ καὶ χοριαμβικοῦ . τὸ εʹ τὸ αὐτὸ τῷ γʹ
7673003 διιαμβου
ἐλάττονος δίμετρον ἀκατάληκτον ἐκ παίωνος τετάρτου ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ
καὶ πάλιν χοριάμβου : τὸ εʹ δίμετρον ἐκ χοριάμβου καὶ διιάμβου : τὸ Ϙʹ δίμετρον ἐκ χοριάμβου καὶ βακχείου :
7660567 χοριαμβου
. τὸ δʹ ὅμοιον τρίμετρον βραχυκατάληκτον ἐξ ἐπιτρίτου πρώτου , χοριάμβου καὶ ἰάμβου : τὸ μέντοι κῶλον τῆς ἀντιστροφῆς ἀντὶ
βʹ καὶ Κρητικοῦ . Τὸ γʹ χοριαμβικὸν δίμετρον ἀκατάληκτον ἐκ χοριάμβου καὶ ἀντισπάστου . Τὸ δʹ πολυσχημάτιστον τρίμετρον ἀκατάληκτον ἐκ
7639752 δισπονδειου
: τὸ ζʹ ” ἀμφήκει γλώττῃ “ χοριαμβικὸν πενθημιμερὲς ἐκ δισπονδείου καὶ συλλαβῆς : τὸ ηʹ ” λάμπων πρόβολος ἐμός
δίμετρον [ καταληκτικὸν ] ἤτοι ἑφθημιμερὲς ἐξ ἐπιτρίτου γʹ ἢ δισπονδείου καὶ βακχείου . προυσχόμην ] περιεποιούμην , ἐκράτουν .
7634795 ἰαμβικης
δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει , ἥτις οἰκειότητα πρὸς τροχαϊκόν
τὸν δεύτερον ἔχων πόδα πεντασύλλαβον . τὸ τρίτον περίοδος ἐξ ἰαμβικῆς καὶ τροχαϊκῆς βάσεως . τὸ δʹ ἀσυνάρτητον ἐξ ἀναπαιστικῆς
7609193 ἀντισπαστου
τροχαϊκῆς καταληκτικῆς . τὸ εʹ ἀντισπαστικὸν δίμετρον καταληκτικὸν Φερεκράτειον ἐξ ἀντισπάστου καὶ κρητικοῦ . τὸ Ϛʹ ὅμοιον τῷ γʹ ἰαμβικόν
ἰωνικοῦ καὶ διιάμβου . τὸ καʹ ἀντισπαστικὸν δίμετρον ὑπερκατάληκτον ἐξ ἀντισπάστου ἢ ἐπιτρίτου τετάρτου , διιάμβου καὶ συλλαβῆς . τὸ
7582497 ἀναπαιστου
ἀπόλωλεν τὸν πατέρ ' αὐτοῦ δήσας ” τρίμετρον καταληκτικὸν ἐξ ἀναπαίστου , σπονδείου , ἀναπαίστου καὶ βʹ σπονδείων : τὸ
εἴη ἂν καὶ ἰαμβικὸν τρίμετρον βραχυκατάληκτον , τοῦ τρίτου ποδὸς ἀναπαίστου . τὸ εʹ ὅμοιον τρίμετρον βραχυκατάληκτον , ἐκ διϊάμβου
7569279 τροχαιου
ἕξ : κρητικός , ὃς συνέστηκεν ἐκ τροχαίου θέσεως καὶ τροχαίου ἄρσεως : δάκτυλος κατ ' ἴαμβον , ὃς σύγκειται
προσοδιακὸν τρίμετρον ἀκατάληκτον : ἡ αʹ συζυγία τροχαϊκὴ τοῦ αʹ τροχαίου διαλελυμένου εἰς τρίβραχυν , εἶτα Ἰωνικὸς ἀπὸ μείζονος ,
7567344 τροχαϊκης
ἀκατάληκτος . τὸ δʹ περίοδος καταληκτικὴ ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς : εἰ δὲ βούλει , χοριαμβικὸν δίμετρον καταληκτικὸν
Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ τροχαϊκῆς συζυγίας , χοριάμβου καὶ Ἰωνικῆς καταληκτικῆς , ἤτοι ἀναπαίστου
7462240 ἰαμβικου
ὅσα πρὸς τῷ τελείῳ προσέλαβε μέρος ποδός , οἷον ἐπὶ ἰαμβικοῦ εἶμ ' ὧτε πυσσάκω λυθεῖσα : τοῦτο μὲν οὖν
μιᾶς λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ ,
7422711 ἐπιτριτου
τρίτου καὶ σπονδείου . τὸ μβʹ ὅμοιον δίμετρον ὑπερκατάληκτον ἐξ ἐπιτρίτου πρώτου , διιάμβου καὶ συλλαβῆς . τὸ μγʹ ὅμοιον
: τὸ Ϙʹ δίμετρον [ καταληκτικὸν ] ἤτοι ἑφθημιμερὲς ἐξ ἐπιτρίτου γʹ ἢ δισπονδείου καὶ βακχείου . προυσχόμην ] περιεποιούμην
7267377 παιωνος
μὲν δοχμιακά , ὧν τὸ μὲν συντίθεται ἐξ ἰάμβου καὶ παίωνος διαγυίου , τὸ δὲ δεύτερον ἐξ ἰάμβου καὶ δακτύλου
γʹ ὅμοιον τῷ αʹ : τὸ δʹ ὅμοιον ἡμιόλιον ἐκ παίωνος : τὸ εʹ δίμετρον ἐκ παλιμβακχείων : τὸ Ϛʹ
7258767 τριμετρον
καὶ πρέπον ἥρωσιν , ἡ κωμῳδία δὲ συνέσταλται εἰς τὸ τρίμετρον ἡ νέα . Τὰ πολλὰ οὖν κώλοις † τριμέτροις
, ὅ ἐστι Φερεκράτειον παρὰ συλλαβήν . τὸ ζʹ ἐπιωνικὸν τρίμετρον καταληκτικόν . ἡ αʹ συζυγία ἰωνική : ἡ βʹ
7191763 πενθημιμερους
τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν
τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου
7186943 τροχαϊκου
εἰκοσίκωλον , ὧν τὰ μὲν βʹ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ ἑφθημιμεροῦς : τὰ δὲ ἑξῆς δύο ἐν ἐκθέσει ἰαμβεῖα
. Ἄλλο ἀσυνάρτητον ὁμοίως κατὰ τὴν πρώτην ἀντιπάθειαν , ἐκ τροχαϊκοῦ διμέτρου ἀκαταλήκτου καὶ ἰαμβικοῦ ἑφθημιμεροῦς , ὅπερ ἐὰν παραλλάξῃ
7084172 ἀκαταληκτου
τετράδα , ἧς αἱ μὲν ὅμοιαι περίοδοι ἐξ ἰαμβικοῦ τριμέτρου ἀκαταλήκτου ἐν ἐκθέσει καὶ ἰωνικοῦ ἡμιολίου ἐν εἰσθέσει : ἡ
ὡς ἐμοὶ δοκεῖ , ἀσυνάρτητόν ἐστιν ἐκ παιωνικοῦ Κρητικοῦ διμέτρου ἀκαταλήκτου καὶ ἀντισπαστικοῦ διμέτρου βραχυκαταλήκτου , ἢ κατὰ συνίζησιν τῆς
7052148 ἰωνικον
τὸν δρόμον σου . ἐλάω , ἐλῶ κοινόν , ἐλαύω ἰωνικόν , ἐλαύνω ἀττικόν . ἴσθι δέ , ὅτι τὸ
ἐκ δισπονδείου καὶ ἰωνικοῦ ἀπ ' ἐλάττονος , καὶ ἔστιν ἰωνικόν : τὸ ιεʹ “ σιν καί μ ' ἀπολοῦσιν
7012802 χοριαμβικον
κατὰ τὸ ἰαμβικόν . τὸ δὲ δʹ ὅμοιον τοῖς πρώτοις χοριαμβικὸν δίμετρον ἀκατάληκτον , τὸ εʹ χοριαμβικὸν καθαρόν , τὸ
βραχυκατάληκτον . τὸ δʹ ἰαμβικὸν δίμετρον καταληκτικόν . τὸ εʹ χοριαμβικὸν δίμετρον βραχυκατάληκτον . τὸ Ϛʹ ἀναπαιστικὸν δίμετρον ὑπερκατάληκτον .
7007521 ἀναπαιστικης
τροχαϊκῆς βάσεως . ὁ δὲ νεʹ ἐξ ἰαμβικοῦ πενθημιμεροῦς καὶ ἀναπαιστικῆς βάσεως . ἐπὶ τῷ τέλει κορωνὶς ἐξιόντων τῶν ὑποκριτῶν
ἐν ἐπεισθέσει , ὧν τὸ πρῶτον ἐκ τροχαϊκῆς βάσεως καὶ ἀναπαιστικῆς , καὶ ἑφθημιμερὲς ἢ Ἰωνικόν , ἀπὸ μὲν τριμέτρου
6934929 διποδιας
καθαρόν , συντίθεται δὲ καὶ ἐπίμικτον πρὸς τὰς τροχαϊκὰς [ διποδίας ] οὕτως , ὥστε τὴν πρὸ τῆς τροχαϊκῆς ἀεὶ
ἰαμβικῇ λέγοιτο , τὸ δὲ ἐπιχοριαμβικόν , ὅτε τροχαϊκῆς προκειμένης διποδίας ἐπιφέρεται χοριαμβική , οἰκειότητα πρὸς τὴν ἐναντίαν τοῦ τροχαϊκοῦ
6872246 σπονδειου
κἀνάρμοστος ” δίμετρον ἐκ δακτύλου , σπονδείου , ἰάμβου καὶ σπονδείου : τὸ κζʹ “ καταπύγων εἶ κἀναίσχυντος ” δίμετρον
: τὸ ξθʹ ἐξ ἀναπαίστου , σπονδείου , δακτύλου καὶ σπονδείου : τὸ οʹ ἐκ βʹ ἀναπαίστων καὶ βʹ σπονδείων
6848621 διμετρον
. τὰ δὲ λοιπὰ δίμετρα ἀκατάληκτα : τὸ μέντοι δέκατον δίμετρόν ἐστι καταληκτικὸν ἤτοι ἑφθημιμερές , ὃ καλεῖται παροιμιακόν ,
δίμετρον καταληκτικόν : ] τὰς καταλήξεις ἔχον χορίαμβον καὶ μολοσσὸν δίμετρόν ἐστι καταληκτικόν . ἡ μετάληψις τῆς Σύριγγος οὕτως ἔχει
6842242 κατακλειδος
] πενθημιμεροῦς . τὸ ιʹ ἐξ ἀντισπάστου πεντασήμου καὶ τροχαϊκῆς κατακλεῖδος . τὸ ιαʹ ἰωνικὸν ἀπὸ μείζονος ἑφθημιμερές . τὸ
τινὲς δὲ ταῦτα τὰ τρία ἀπὸ ἰαμβικῆς βάσεως καὶ τροχαϊκῆς κατακλεῖδος . τὸ πέμπτον . . . ἐπιτρίτου καὶ .
6750218 ἀμφιβραχεος
βʹ . τὸ ηʹ καταληκτικὸν ἐκ διτροχαίου καὶ βακχείου ἢ ἀμφιβράχεος . τὸ θʹ ὅμοιον τῷ βʹ . τὸ ιʹ
. τὸ Ϛʹ ὅμοιον τρίμετρον καταληκτικὸν ἐξ ὁμοίων ποδῶν καὶ ἀμφιβράχεος . ἐπὶ τῷ τέλει παράγραφος . δυσδαίμων σφιν ἡ
6692255 τριβραχεος
ὧν τὸ πρῶτον τροχαϊκὸς τετράμετρος βραχυκατάληκτος , τοῦ ἕκτου ποδὸς τριβράχεος . ὁ δεύτερος παιωνικὸς καθαρὸς τετράμετρος καταληκτικός . τὸ
δίμετρον ἀκατάληκτον . τὸ τρίτον ὅμοιον , τοῦ τρίτου ποδὸς τριβράχεος ἢ χορείου . τὸ τέταρτον ὅμοιον καθαρόν : τὸ
6687288 βακχειου
τροχαϊκῆς . τὸ εʹ χοριαμβικὸν δίμετρον καταληκτικὸν ἐκ χοριάμβου καὶ βακχείου . ἐπὶ τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος
παιωνικὸν τρίμετρον καταληκτικὸν ἐκ παίωνος βʹ , ἐπιτρίτου γʹ καὶ βακχείου . Τὸ Ϛʹ ἀντισπαστικὸν τρίμετρον ἀκατάληκτον ἐξ ἀντισπάστου ,
6686962 βτερου
τὸ δʹ ἰωνικὸν ἡμιόλιον , ἐκ τροχαϊκῆς συζυγίας ἤτοι ἐπιτρίτου βτέρου καὶ ἰάμβου . τὸ εʹ ὅμοιον καθαρόν , ἐξ
ἀκατάληκτον ὅμοιον τῷ γʹ , ἐκ παίωνος γʹ καὶ ἐπιτρίτου βτέρου ἤτοι τροχαϊκῆς συζυγίας : εἰ δὲ βούλει , ἰαμβικὸν
6679004 ἑφθημιμερους
χοριαμβικοῦ ἐπιμίκτου , τοῦ τὴν δευτέραν ἰαμβικὴν ἔχοντος καὶ τροχαϊκοῦ ἑφθημιμεροῦς : Εὔιε κισσοχαῖτ ' ἄναξ , χαῖρ ' ,
ἐστι κώλων ἐννέα . τὸ αʹ σύνθετον ἐκ πενθημιμεροῦς καὶ ἑφθημιμεροῦς ἰαμβικόν . τὸ βʹ τρίμετρον ἐπιωνικὸν ἀκατάληκτον . ἄδηλον
6670120 διμετρου
τὴν βάσιν : οἷον εἰ ἐκκειμένου μὲν ἑνὸς δακτύλου , διμέτρου δὲ ἀναπαιστικοῦ κατὰ μέσον πέσοι σπονδεῖος , ἄδηλον πότερα
δέ ἐστι παρὰ Ἀρχιλόχῳ ἀσυνάρτητον ἐκ δακτυλικοῦ πενθημιμεροῦς καὶ ἰαμβικοῦ διμέτρου ἀκαταλήκτου ἀλλά μ ' ὁ λυσιμελής , ὠταῖρε ,
6639874 βραχυκαταληκτον
τὸ ηʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον : ἰδίως δὲ
τὸ βʹ τροχαϊκὸν μονόμετρον ὑπερκατάληκτον . τὸ γʹ Ἰωνικὸν δίμετρον βραχυκατάληκτον . τὸ δʹ χοριαμβικὸν δίμετρον ὑπερκατάληκτον . τὸ εʹ
6609943 τριμετρος
τέλους τῆς ἐπῳδοῦ τὰ σημεῖα , ὡς εἴρηται . ἰαμβικὸς τρίμετρος . τάδ ' αὐτόδηλα : αὐτὰ δὲ ταῦτα φανερά
, τὸ βʹ δίμετρον ἀκατάληκτον , τὸ γʹ ἰαμβικὸς στίχος τρίμετρος ἀκατάληκτος . Ἄπολλον ] ἀντιστροφὴ ἔχουσα κῶλα γʹ ὅμοια
6606545 ἀκαταληκτον
στροφὴ καὶ ἀντίστροφος κώλων δέκα . τὸ αʹ ἰαμβικὸν δίμετρον ἀκατάληκτον , ὡς τὸ τίς σὰς παρήειρε φρένας . τὸ
] διὰ τὸ δριμύ . ἰοὺ ἰού ] ἰαμβικὸν μονόμετρον ἀκατάληκτον . ἰοὺ ἰού : ἔκθεσις κορωνίδος ἐκ στίχων ἰαμβικῶν
6587491 κρητικου
τὸ αʹ ἀντισπαστικὸν τρίμετρον καταληκτικὸν ἐκ διιάμβου , διτροχαίου καὶ κρητικοῦ . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν ἐκ παίωνος δʹ
καὶ δίδου ἐν ἀνέσει # λειότατον πλῆρες , μετὰ γλυκέως κρητικοῦ . Ἐπικαλεῖται δὲ τὸ φάρμακον θεοῦ χείρ . Τοῦτο
6570508 ἐπιτεταρτου
δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον
, ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ
6527718 ἀντισπαστικον
ὅμοιον εἴη τῷ τῆς ἀντιστροφῆς ἤτοι δίμετρον : τὸ Ϙʹ ἀντισπαστικὸν ἐξ ἀντισπάστου καὶ κρητικοῦ ἤτοι ἀμφιμάκρου : τὸ ζʹ
καταληκτικόν . τὸ ηʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ τὸ αὐτό . τὸ
6510521 πενθημιμερες
δίμετρον ἀκατάληκτον παίωνα ἔχον ἀντὶ ἰωνικοῦ : τὸ δʹ δακτυλικὸν πενθημιμερές : τὸ αὐτὸ δὲ καὶ χοριαμβικὸν δύναται εἶναι δίμετρον
τῆς ἀμφήκης . λάμπων πρόβολος ἐμός ] τὸ ηʹ ἀναπαιστικὸν πενθημιμερές . πρόβολος ] τεῖχος , ἀσφαλὴς προστάτης . πρόβολος
6473133 ἀναπαιστων
ἀναπαιστικὸν λογαοιδικὸν καλούμενον καὶ Ἀρχεβούλειον . σύγκειται δὲ ἐκ βʹ ἀναπαίστων καὶ βʹ βακ - χείων , τοῦ βʹ καταληκτικοῦ
εἰ δὲ βούλει , ἰαμβικὸν τρίμετρον βραχυκατάληκτον ἐξ ἰάμβων καὶ ἀναπαίστων . Ἐπὶ τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος
6423435 παιωνικην
τοῖς κώλοις περιτιθέναι τοὺς παίωνας ἔνθεν καὶ ἔνθεν ἀμφοτέρους , παιωνικήν γε πάντως ποιησόμεθα τὴν σύνθεσιν , οἷον ἐκ μακρῶν
ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν ἰωνικὴν ἢ δευτέραν παιωνικήν , τὴν δὲ τρίτην τροχαϊκὴν ἑξάσημον ἢ ἑπτάσημον ,
6353243 βραχειων
: ἔπειτα τῷ ἡμίσει πλείους εἰσὶν αἱ μακραὶ συλλαβαὶ τῶν βραχειῶν ἐν ἑκατέρῳ τῶν στίχων : ἔπειτα πᾶσαι διαβεβήκασιν αἱ
τοῦ γὰρ ἰωνικοῦ ἀπὸ μείζονος ἐκ μακρῶν δύο καὶ δύο βραχειῶν ὄντος , ἔξεστι μεταθεῖναι καὶ ποιῆσαι διτρόχαιον ἐκ μακρᾶς
6352973 παλιμβακχειον
ἔχει ἔκ τε δακτύλου καὶ ϲπονδείου , ἐνίοτε δὲ καὶ παλιμβάκχειον καὶ ἀμφίμακρον δέχεται , καθαροὺϲ μέντοι καὶ ἐν τάξει
πρώτων δύο καὶ σπονδείου : τὸ μέντοι κῶλον τῆς ἀντιστροφῆς παλιμβάκχειον τὸν βʹ ἔχει πόδα : τὸ ζʹ περίοδος καταληκτικὴ
6346994 ἀσυναρτητον
, διότι μὴ πεφυκὸς ἡνώθη . τὸ δὲ ἐν κώλοις ἀσυνάρτητον τοῦτο ἀντιπαθές , ἐναντίοις ποσὶν ἡνωμένον . Τὸ βʹ
καὶ εʹ ὅμοια τῷ αʹ καὶ βʹ : τὸ Ϛʹ ἀσυνάρτητον ἐκ δύο τροχαικῶν πενθημιμερῶν συγκείμενον . ἐπὶ τῷ τέλει
6340706 καταληκτικον
ἢ δακτυλικὸν ὃ καλεῖται Φαλαίκειον . τὸ βʹ τροχαϊκὸν δίμετρον καταληκτικόν , ἤτοι ἑφθημιμερὲς Εὐριπίδειον . τὸ γʹ ἰαμβικὸν ἑφθημιμερές
ἀκατάληκτον μετρούμενον ὡς οἱ ἡρωϊκοί , τὸ δεύτερον δὲ ἑξάμετρον καταληκτικόν , τὸ τρίτον πεντάμετρον ἀκατάληκτον , τὸ τέταρτον πεντάμετρον
6304994 ἰωνικος
γʹ ˘˘˘ καὶ – , πεντάχρονος , οἷον Ἐπιγένης : ἰωνικὸς ἀπ ' ἐλάττονος ἐκ βʹ ˘˘ καὶ βʹ –
ἀκατάληκτον : αʹ τροχαῖος τοῦ αʹ ποδὸς λελυμένου : εἶτα ἰωνικὸς ἀπὸ μείζονος : εἶτα χορίαμβος . τὸ γʹ ἰαμβικὸν
6287727 μονομετρον
ἑφθημιμερῆ ζʹ † : . , † : . , μονόμετρον † : . , † : . , ἰαμβικὸν
. τὸ Ϛʹ ἀντισπαστικὸν τρίμετρον καταληκτικόν . τὸ ζʹ ἰωνικὸν μονόμετρον καταληκτικὸν δύο συλλαβῶν . τὸ ηʹ δακτυλικὸν τετράμετρον παρὰ
6275293 τριβραχεων
μὲν δύο τροχαϊκὰ δίμετρα ἀκατάληκτα . τὸ τρίτον ἰαμβικὸν ἐκ τριβράχεων . τὸ δ ' παιωνικὸν ἐκ κρητικῶν διρρύθμων .
παιωνικὸν ἐκ κρητικῶν διρρύθμων . τὸ πέμπτον ἰαμβικὸν ἑφθημιμερὲς ἐκ τριβράχεων . ἐφ ' ἑκάστης στροφῆς παράγραφος . ἐπὶ δὲ
6262099 ἀδιαφορον
καὶ μέμνησο ἀμφοτέρων , ὅτι καὶ διάφορον ὃ πράσσεις καὶ ἀδιάφορον ἐφ ' οὗ ἡ πρᾶξις . Ἔνδον σκάπτε ,
ἕκαστον αὐτῶν , ἔτι δὲ ὡρισμένον καὶ ἕν , τὴν ἀδιάφορον καὶ ἄτμητον ἀρχὴν ἐπισφραγιζομένην ἀποτυποῦν . κακὸν δὲ ἢ
6260960 ἑφθημιμερων
καλῶς ἐδεσμεύθη . διπλῆ καὶ ἕπεται δυὰς ὁμοία ἐκ στίχων ἑφθημιμερῶν τῇ πρώτῃ . Γ μέλλω γέ τοι θερίδδειν :
ἐξευρήματι καινῷ συμπτύκτοις ἀναπαίστοις . Καὶ τὸ ἐκ τῶν ἰαμβικῶν ἑφθημιμερῶν δικατάληκτον Καλλίμαχος Δήμητρι τῇ πυλαίῃ τῇ τοῦτον οὑκ /
6253735 διμετρων
, ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ μὲν αʹ , βʹ ,
τοῦ μακροῦ καὶ τῆς ἐκθέσεως τούτου παράγραφος . κώλων δέκα διμέτρων πλὴν τοῦ τελευταίου καταληκτικῶν . ἐπὶ πᾶσι παράγραφος .
6240340 ἐπιτριτων
τυχόντες , ἀλλ ' οἱ ἐπιδιμερεῖς , ἐκ δὲ τῶν ἐπιτρίτων οἱ ἐπιτριμερεῖς , ἐκ δὲ τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς
ἐξ ἀμφιμάκρου καὶ δισπονδείου : τὸ ζʹ δίμετρον ἐκ βʹ ἐπιτρίτων δευτέρων : τὸ ηʹ δίμετρον ἐξ ἀμφιμάκρου , παλιμβακχείου
6207105 χοριαμβικος
ὧν πρῶτον ” βοάσομαί γ ' ἄρα τὰν ὑπέρτονον “ χοριαμβικὸς τρίμετρος καταληκτικὸς ἐκ διιάμβου , διτροχαίου καὶ δακτύλου :
τροχαίου : τὸ ιʹ ” λυσανίας πατρῴων μεγάλων κακῶν “ χοριαμβικὸς τετράμετρος καταληκτικὸς ἐκ χοριάμβου – ˘˘ – , ἀντισπάστου
6174209 δακτυλικου
τοῦ αʹ ἰάμβου λελυμένου . ἔστι γὰρ ἐξ ἰαμβικοῦ καὶ δακτυλικοῦ πενθημιμερῶν . Τὸ ιαʹ Ἰωνικὸν δίμετρον καταληκτικὸν ἀπὸ ἐλάσσονος
δὲ καὶ συλλαβὴν μίαν πλείονα . εἴρηται δὲ πλὴν τοῦ δακτυλικοῦ , ὅτι τοῦτο μόνον κατὰ μονοποδίαν μετρεῖται διὰ τὸ
6144100 ἀναπαιστικον
, ἐκ δύο χοριάμβων καὶ συλλαβῆς , εἰ δὲ βούλει ἀναπαιστικὸν ἑφθημιμερές : τὸ βʹ ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον
ἀπ ' ἐλάττονος δίμετρα ἀκατάληκτα καθαρά : τὸ δὲ γʹ ἀναπαιστικὸν ἑφθημιμερές . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ .
6129156 τροχαιων
γὰρ αἱ μακραὶ συλλαβαί , ὥσπερ ἐπὶ τῶν ἰάμβων καὶ τροχαίων , ὡς εἴρηται , εἰς δύο βραχείας , οὕτω
ἐπιωνικὸν τρίμετρον ἀκατάληκτον . τὸ δʹ περίοδος ἐξ ἰάμβων καὶ τροχαίων . τὸ εʹ τὸ αὐτό . τὸ Ϛʹ ἰαμβικὸν
6127389 ἰωνικης
ὡς οὐκ ἀναπαιστικὸν ἡγούμενοι , ἀλλὰ προσοδιακόν , τὸ ἐξ ἰωνικῆς καὶ χοριαμβικῆς , τῆς ἰωνικῆς καὶ βραχεῖαν τὴν πρώτην
ἀλλὰ προσοδιακόν , τὸ ἐξ ἰωνικῆς καὶ χοριαμβικῆς , τῆς ἰωνικῆς καὶ βραχεῖαν τὴν πρώτην δεχομένης . δύναται δὲ καὶ
6110834 χοριαμβικης
βʹ συλλαβῶν . Τὸ ιϚʹ χοριαμβικὸν τρίμετρον καταληκτικόν , ἐκ χοριαμβικῆς καὶ ἰαμβικῆς συζυγίας καὶ βακχείου . Τὸ ιζʹ ἰαμβικὸν
ἀναπαιστικὸν ἡγούμενοι , ἀλλὰ προσοδιακόν , τὸ ἐξ ἰωνικῆς καὶ χοριαμβικῆς , τῆς ἰωνικῆς καὶ βραχεῖαν τὴν πρώτην δεχομένης .
6107239 τριμετρου
δυάδες τρεῖς , δικώλους ἔχουσαι τὰς περιόδους , ἐξ ἰάμβου τριμέτρου ἀκαταλήκτου ἐκκειμένου καὶ κώλων διαφόρων . τῆς μὲν οὖν
ἢ τετράδα , ἧς αἱ μὲν ὅμοιαι περίοδοι ἐξ ἰαμβικοῦ τριμέτρου ἀκαταλήκτου ἐν ἐκθέσει καὶ ἰωνικοῦ ἡμιολίου ἐν εἰσθέσει :
6053649 κατακλειδα
καταβολὴ κατὰ τῆς ἀριστερᾶς ὠμοπλάτης , εἶτ ' ἐπὶ τὴν κατακλεῖδα φέρεται , καὶ κατὰ τοῦ στήθους ὑπὸ τὴν δεξιὰν
τῆς ἀδιαφόρου . τὸ ιγʹ χοριαμβικὸν δίμετρον καταληκτικὸν εἰς ἰαμβικὴν κατακλεῖδα περαιούμενον , τουτέστιν εἰς ἀμφίβραχυν ἢ βακχεῖον διὰ τὸ
6049483 ἡμιολιου
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς
6036068 σπονδειων
ἢ δακτύλων σύγκειται τοῦτο τὸ μέτρον , ἐνταῦθα δὲ ἐκ σπονδείων , πλὴν τῆς τελευταίας : οἰκεῖοι δὲ καὶ οἱ
, σπονδείου καὶ βʹ ἀναπαίστων : τὸ ιθʹ ἐκ βʹ σπονδείων : τὸ κʹ ἐξ ἀναπαίστου καὶ σπονδείου : τὸ
6016150 φερεκρατειον
” : τὸ δυοκαιδέκατον ἀντισπαστικὸν δίμετρον καταληκτικόν , τὸ καλούμενον φερεκράτειον , ἑφθημιμερὲς ἐξ ἐπιτρίτου τετάρτου καὶ βακχείου , ὡς
φερεκρατείου . συνῆπται δὲ τῇ λέξει καὶ μόνον διακέκριται τὸ φερεκράτειον . παράγραφοι δὲ ἁπλαῖ μὲν πέντε , ἡ δὲ
6013043 ἰωνικων
. τὸ γʹ ἰωνικὸν ἀπὸ μείζονος τρίμετρον καταληκτικόν , ἐξ ἰωνικῶν δύο καὶ δακτύλου . τὸ δʹ ὅμοιον ἀπ '
αʹ ἰωνικὸν ἀπ ' ἐλάττονος τρίμετρον ἀκατάληκτον καθαρόν , ἐξ ἰωνικῶν τριῶν : τὸ βʹ καὶ τρίτον ὅμοια ἰωνικὰ δίμετρα
5993915 τροχαικον
: τὸ εʹ ἰαμβικὸν τρίμετρον βραχυκατάληκτον καθαρόν : τὸ Ϛʹ τροχαικὸν ἑφθημιμερὲς Εὐριπίδειον τὸν αʹ ἔχον πόδα χορεῖον : τὸ
δακτυλικὸν πενθημιμερές : τὸ βʹ ἀναπαιστικὸν πενθημιμερές : τὸ τρίτον τροχαικὸν ἑφθημιμερὲς Εὐριπίδειον : τὸ δʹ ὅμοιον τῷ αʹ :
5974785 ἀδιαφορου
δὲ τὸ κοινὸν καὶ τὸ ἴδιον καὶ τὸ ὅλον καλὸν ἀδιαφόρου τοῦ κοινοῦ ὄντος . Λέγεται δὲ οὐδ ' ὁ
τῆς αʹ μακρᾶς ἀναλυομένης . τὸ εʹ ἰωνικὸν δίμετρον ἀκατάληκτον ἀδιαφόρου τῆς ἀρχούσης . τὸ Ϛʹ ἰωνικὸν τρίμετρον βραχυκατάληκτον .
5974744 βραχυκαταληκτου
τρίτον ἐξ ὑπερκαταλήκτου , ἀντὶ τᾶς ἐγὼ οὐδὲ Λυδίαν καὶ βραχυκαταλήκτου , πᾶσαν οὐδ ' ἐραννάν . Ἀνακρέων δὲ οὐκ
Πελέκεως ἡ ἀνάγνωσις . δύναται καὶ ἀπὸ τοῦ μέτρου τοῦ βραχυκαταλήκτου τις ἄρχεσθαι , εἶτ ' αὐτῷ ἀνταποδιδοὺς τὸ ἴσον
5955684 ἐπιπεμπτου
μδʹ ρκαʹ , πάλιν δὲ ἐκ τῆς ἐπιτετραμεροῦς ἢ τετράκις ἐπιπέμπτου τῆς κεʹ μεʹ παʹ γεννᾶται ἡ διπλασιεπιτετραμερὴς πέμπτων ἐν
διπλάσιος , ὡς προδέδεικται , ἐξ ἐπιτρίτου καὶ ἐπιτετάρτου καὶ ἐπιπέμπτου , λαμβάνω πάλιν ἀντὶ μὲν ἐπιτρίτου μονάδα μίαν καὶ
5953980 συγκειται
Ἅ - πας δὲ ὅρος ἐκ γένους διαφόρου καὶ ἰδιότητος σύγκειται : τὸ γεγονὸς μέν ἐστιν , ἀφ ' οὗ
πέρας ἔχει τὴν ἀποδεικτικήν , ἡ ἀποδεικτικὴ δὲ ἐκ συλλογισμῶν σύγκειται , οἱ συλλογισμοὶ δὲ ἐκ προτάσεων , αἱ προτάσεις
5946072 χορειου
εἰ δὲ βούλει , ἰαμβικὸν τρίμετρον βραχυκατάληκτον τοῦ δευτέρου ποδὸς χορείου , τοῦ δὲ τρίτου δακτύλου . τὸ ναʹ ἀντισπαστικὸν
ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον καταληκτικόν , ἐξ ἰωνικοῦ καὶ χορείου ἢ ἀναπαίστου διὰ τὴν ἀδιάφορον : τὸ εʹ ὅμοιον
5921340 καταληκτικου
εἰ δὲ βούλει προσοδιακὸν δίμετρον καταληκτικὸν ἐκ χοριάμβου καὶ Ἰωνικοῦ καταληκτικοῦ . Τὸ θʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : ὁ αʹ
τοῦ βʹ χοριάμβου , τοῦ γʹ Ἰωνικοῦ ἀπ ' ἐλάσσονος καταληκτικοῦ . τοῦτο καὶ ἀναπαιστικόν ἐστι δίμετρον ἀκατάληκτον , σπονδείου
5907248 χοριαμβικην
θʹ ἀναπαιστικὸν ἰσοκατάληκτον . τὸ ιʹ ἀπὸ ἰαμβικῆς βάσεως εἰς χοριαμβικήν . τὸ ιαʹ δακτυλικὸν ἑφθημιμερές . τὸ ιβʹ γλυκώνειον
συζυγίαν ἔχει τροχαϊκὴν ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν χοριαμβικήν , τὴν δὲ κατάκλειδα ἐξ ἰάμβου καὶ τῆς ἀδιαφόρου
5884330 ἰαμβικον
τὸ ἰαμβικὸν μέτρον καὶ ἄριστά γε εἰδέναι τί ἐστι τὸ ἰαμβικόν , οὕτως ἔχει καὶ ἐπὶ τῶν μελῳδουμένωνοὐ γὰρ ἀναγκαῖόν
. Καὶ ἀπορήσεις ἐντεῦθεν , πῶς ἐπεὶ καὶ τὸ Δημοσθένης ἰαμβικόν ἐστιν ὄνομα , ἅτε τὴν παραλήγουσαν βραχεῖαν ἔχων ,
5879084 τροχαϊκην
, ἀπὸ μὲν τριμέτρου καταληκτικόν . ἀτακτότερον δὲ ἔχει τὴν τροχαϊκὴν βάσιν ἑπτάσημον . τὸ δὲ δεύτερον πενθημιμερὲς κοινὸν δακτυλικὸν
ἀναπαιστικὸν μονόμετρον ὑπερκατάληκτον . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν εἰς τροχαϊκὴν συζυγίαν . τὸ γʹ Φαλαίκειον ἀντισπαστικόν . τὸ δʹ
5865942 τρισυλλαβων
. . τούτων πάλιν συντιθεμένων γίνονται πόδες δισυλλάβων μὲν καὶ τρισυλλάβων πεντασύλλαβοι λβ , τῶν δὲ τρισυλλάβων ἀλλήλοις παρατιθεμένων ἑξασύλλαβοι
μορίων λέξεως διαφοραί τε καὶ ῥυθμοὶ καὶ σχήματα τοσαῦτα : τρισυλλάβων δ ' ἕτερα πλείω τῶν εἰρημένων καὶ ποικιλωτέραν ἔχοντα
5804683 τροχαϊκον
δίμετρα ἀκατάληκτα ἃ καλεῖται κρητικὰ δίρρυθμα . τὸ δὲ δʹ τροχαϊκὸν ἑφθημιμερὲς ὃ καλεῖται Εὐριπίδειον ἢ ληκύθιον , ὁ εʹ
ἑξῆς δʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , τὸ δὲ εʹ , τροχαϊκὸν ἑφθημιμερές . ὁ κζʹ ἰαμβικὸς στίχος τρίμετρος ἀκατάληκτος .
5799602 ριαʹ
ὑστέρας ριʹ . Περὶ αἱμορροΐδων ἐν μήτρᾳ ἐκ τῶν Ἀσπασίας ριαʹ . Περὶ λιθιώσης μήτρας ριβʹ . Περὶ τῶν ἐν
δὲ ἐπειλουμένου , τὸ δὲ πέρας ἀγκτηρίζεται . Κεφ . ριαʹ . Ταινίας ἡ μεσότης κατ ' ὀσφύος . αἱ
5776321 προσοδιακον
τὸ δʹ ἰωνικὸν ἀπὸ μείζονος δίμετρον ἀκατάληκτον . τὸ εʹ προσοδιακὸν δίμετρον ἀπὸ χοριάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος .
δευτέρῳ . τὸ ιʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . τὸ ιαʹ προσοδιακὸν μιᾷ συλλαβῇ περιττεῦον , ὅμοιον τῷ Ἐρασμονίδη Χαρίλαε .
5761081 συντιθεται
δὲ , ὅτι τὰς λεγομένας στάσεις φησὶν , οὐ γὰρ συντίθεται Μινουκιανῷ τὴν στάσιν ἀπὸ τούτου εἰρῆσθαι ἐτυμολογοῦντι , ἀπὸ
μὲν ἔξωθεν ἀκροβολισμοὺς τῶν ἐραστῶν εἰς πεῖραν φέρει καὶ ἄφνω συντίθεται τοῖς νεύμασιν : ἐὰν δὲ αἰτήσῃς τὸ ἔργον προσελθών
5743564 ἀναπαιστικων
† ἥκω δολιχῆς : σύστημα ἕτερον κατὰ περικοπὴν κώλων ὁμοίων ἀναπαιστικῶν ιδʹ , ὧν τὸ θʹ μονόμετρον , τὰ λοιπὰ
ὃ καλεῖται παροιμιακόν : τούτῳ γὰρ ἐν ταῖς ἀποθέσεσι τῶν ἀναπαιστικῶν χρῶνται . τὸ ζʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ
5739729 ὑπερκαταληκτον
καὶ μέχρι πενταμέτρου χωρεῖ τὸ προσοδιακόν . Τὸ δʹ δίμετρον ὑπερκατάληκτον προσοδιακὸν ἀπὸ Ἰωνικοῦ ἀπὸ μείζονος καὶ χοριάμβου . τοῦτο
ἀπ ' ἐλάττονος καὶ συλλαβῆς . Τὸ εʹ ἀντισπαστικὸν δίμετρον ὑπερκατάληκτον : ἔχει δ ' ἐπιτρίτους δʹ ἀντὶ ἀντισπάστων .
5734945 ἐπιωνικον
καὶ ἡμιόλιον . Τὸ θʹ ἰαμβικὸν ἑφθημιμερές . Τὸ ιʹ ἐπιωνικὸν τρίμετρον βραχυκατάληκτον : τῆς γὰρ αʹ συζυγίας οὔσης ἰαμβικῆς
καὶ κατ ' ἀντιπάθειαν μέτρα δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει
5733074 συνεστηκεν
δίμετρον ἀκατάληκτον . δέκατον μὲν ἔτος ] ὁ παρὼν χορὸς συνέστηκεν ἐκ κώλων σλβʹ , ὧν τὰ μὲν ξθʹ ἀναπαιστικὰ
θʹ ἐπιτρίτου , καὶ τὰ κδʹ πρὸς ιβʹ διὰ πασῶν συνέστηκεν ἐκ τοῦ κδʹ πρὸς ιηʹ ἐπιτρίτου καὶ τοῦ ιηʹ
5728903 τετραμετρων
ἐπὶ τῇ εὐχῇ πρὸς τοὺς θεατάς . τὸ ἐπίρρημα στίχων τετραμέτρων καταληκτικῶν καὶ ἀκαταλήκτων κʹ , ὧν τελευταῖος ἐπὶ τὸ
ὑμῶν ὦ θεαταί : τὸ ἐπίρρημα ἐκ στίχων ἐστὶ τροχαϊκῶν τετραμέτρων καταληκτικῶν κʹ , ὧν τελευταῖος : μηδὲν ἀττικοῦ καλεῖσθαι
5726195 διιαμβων
“ σὺ δ ' ἀνδρὸς ἐκπεπληγμένου ” δίμετρον ἀκατάληκτον ἐκ διιάμβων δύο : τὸ Ϙʹ “ καὶ φανερῶς ἐπηρμένου ”
βʹ καὶ μιᾶς συλλαβῆς : τὸ δʹ τετράμετρον ἐκ δύο διιάμβων , χοριάμβου , καὶ πάλιν διιάμβου : τὸ εʹ
5702940 πεντασυλλαβου
' ἐπὶ τῶν προτέρων “ δίμετρον ἀκατάληκτον ἐξ ἐπιτρίτου τρίτου πεντασυλλάβου καὶ χοριάμβου : τὸ εʹ ” πρὸς οὖν τάδ
ὅμοιον τῷ δʹ τῆς πρώτης στροφῆς ἐκ χοριάμβου καὶ διιάμβου πεντασυλλάβου . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ ἐν ἀρχῇ
5691358 παιωνων
διτροχαίου καὶ κρητικοῦ . τὸ μεʹ παιωνικὸν τρίμετρον καταληκτικὸν ἐκ παιώνων τετάρτων δύο καὶ μολοττοῦ . τὸ μϚʹ ὅμοιον τῷ
κώλων ιηʹ . τὸ αʹ παιωνικὸν τρίμετρον ἀκατάληκτον , ἐκ παιώνων τετάρτων : κατὰ μονοπεδίαν γὰρ μετρεῖται τὰ τοιαῦτα μέτρα
5669448 ξδʹ
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν
5663494 Ἀχθος
: Στῆσον δ ' αὖ ἀλόϊον ἓν ἥμισυ τοῦ προτέροιο Ἄχθος : ἄγε στάχυος Σινδογενοῦς ὀβολόν : Διστάσιος δ '
Διονύσου , ἃ δέδωκε τοῖς ἀνδράσι χαρὰν καὶ ἄχθος . Ἄχθος μὲν , διὰ τὸν εἰς τὴν ἐργασίαν τῶν ἀμπέλων
5643394 ἀναλογου
δὴ παράκειται ἐν τῷ παραλλακτικῷ κανόνι ἡλίου μὲν παραλλάξεως ἐξ ἀναλόγου # # κγ , σελήνης δε γʹ σελιδίῳ πρώτου
' ὧν ἔπαθέ τις καὶ ᾔσθετο συλλογισμὸς καὶ ὁμοίου καὶ ἀναλόγου ἢ μείζονος ἢ μικροτέρου παράθεσις . ἃ γὰρ αἱ
5639173 τριτου
ἐπὶ τῶν ἐξ ὑποκειμένου καὶ κατηγορουμένου καὶ ἐπὶ τῶν ἐκ τρίτου προσκατηγορουμένου , ἐθελήσοιμεν καὶ ἐπὶ τούτων ποιεῖν , εὑρεθησόμεθα
οὐκ ἐγκλίνονται φωνῆς ἕνεκεν . ] Μόνως ἐγκλίνονται αἱ τοῦ τρίτου δυϊκαί , καὶ ἡ μίν , αἵ τε μονοσύλλαβοι
5614453 εἰσθεσις
“ . σὸν ἔργον , ὦ πρεσβύτα : διπλῆ καὶ εἴσθεσις εἰς ἐπῳδικὴν τριάδα ἢ τετράδα , ἧς αἱ μὲν
. εἰ γάρ μοι γένοιτ ' ἰδεῖν : κορωνὶς καὶ εἴσθεσις χοροῦ μονοστροφικὴ στίχων καὶ κώλων ιεʹ , ὧν ὁ
5570189 Ἰωνικου
προσοδιακῶν . σύγκειται γὰρ ἐκ χοριάμβου , παίωνος βʹ ἀντὶ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου αὖθις καὶ Ἰωνικοῦ ἀπ '
. ἔστι δὲ τὸ προσοδιακὸν δίμετρον ἀκα - τάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου . Τὸ ζʹ Πινδαρικὸν ἐκ Σαπφικοῦ ἑνδεκασύλλαβον
5543135 ἑκατονταδων
' ὧν τὰ Β στερεὸς ἴσος ἐστὶν τῷ διὰ τῶν ἑκατοντάδων στερεῷ ἐπὶ τὸν ἐκ τῶν πυθμένων στερεόν , τουτέστιν
καὶ τεσσαράκοντα γίνονται ἑκατόν , ὁμοίως δὲ καὶ χιλιάδα ἐξ ἑκατοντάδων καὶ μυριάδα ἐκ χιλιάδων , μονὰς δὲ καὶ δεκὰς
5535297 ἰϲου
ἀμυδρῶϲ , τὸ ἀνάπαλιν , εἰ δὲ ϲυμμέτρωϲ , ἐξ ἴϲου . τὸ δὲ νᾶπυ πρὸ τῆϲ τρίψεωϲ ὄξει ἀποβρεχόμενον
α νήϲτει . Ἔλιγμα ἄλλο : βούτυρον νεαρὸν μετ ' ἴϲου μέλιτοϲ ἑψήϲαϲ δίδου κοχλιάρια β . ἐπὶ δὲ τῶν
5534636 ἀκαταληκτος
οἶμαί γε τῶν νεωτέρων τὰς καρδίας ” στίχος τρίμετρος ἰαμβικὸς ἀκατάληκτος : τὸ βʹ “ πηδᾶν ὅ τι λέξει ”
δʹ κῶλα . μεθ ' ὃ ἐν εἰσθέσει ἰαμβικὸς τρίμετρος ἀκατάληκτος . τῆς βʹ περιόδου κῶλα Ϛʹ , ὧν ὁ
5534521 καταληκτικης
συζυγίας τροχαϊκῆς ἤτοι ἐπιτρίτου βʹ , τῆς δὲ βʹ Ἰωνικῆς καταληκτικῆς . Τὸ ιϚʹ , ὡς ἐμοὶ δοκεῖ , ἀναπαιστικόν
τὸ γʹ περίοδος καταληκτική , ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς . τὸ δʹ χοριαμβικὸν καθαρὸν ἡμιόλιον . τὸ εʹ
5493729 ἀοριστου
πολλαί . τῷ ἀπηρτισμένῳ ⌈ δὲ ἀριθμῷ ἐχρήσατο ⌈ ἀντὶ ἀορίστου . Γ ἢ καὶ ἀπὸ ἱστορίας τὸ τοιοῦτον ἔλαβεν
: ἴδον ἔσχον . Τὰ εἰς ΟΝ προστακτικὰ τοῦ πρώτου ἀορίστου ὑπερδισύλλαβα προπαροξύνονται : ἄκουσον νόησον φίλησον : δισύλλαβα δὲ
5491078 χορειος
ἀνάπαιστος ὡς καὶ ἐνταῦθα τὸ πρύμνῃ πόλεως , ἀλλὰ καὶ χορεῖος . οἴακα νωμῶν : κυβερνήτης ὢν τῶν τῆς πόλεως
ἕκτῃ ἢ τροχαῖος ἢ σπονδεῖος ἢ δάκτυλος ἢ ἀνάπαιστος ἢ χορεῖος , ἐν δὲ τῇ πρώτῃ καὶ τρίτῃ καὶ πέμπτῃ
5489301 Γλυκωνειον
ἰαμβικήν . Τὸ δʹ ἀντισπαστικὸν δίμετρον ἀκατάληκτον , ὃ καλεῖται Γλυκώνειον , ἐκ διτροχαίου ἢ ἐπιτρίτου . Τὸ εʹ ἰαμβικὸν
τὸ ιγʹ ἐξ ἀντισπάστου καὶ ἰαμβικοῦ ἑφθημιμεροῦς . τὸ ιδʹ Γλυκώνειον . τὸ ιεʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . τὸ ιϚʹ

Back