ἡ μὲν ΒΓ τῆς ΓΞ , ἡ δὲ ΕΖ τῆς ΖΦ , ἔστιν ἄρα ὡς ἡ ΒΓ πρὸς τὴν ΓΞ | ||
, Ψ , Ω , Ϛ , καὶ συμπεπληρώσθω τὰ ΖΦ , ΞΩ στερεά : λέγω , ὅτι καὶ οὕτως |
ὅπερ ἐστὶν ἐπὶ τῆς ἐπιφανείας τοῦ κυλίνδρου , δίχα ἔσται τετμημένη κατὰ τὸ Ζ . ἐπεὶ γὰρ ἡ ΓΑ διάμετρος | ||
τὴν γλῶτταν Γ : κἀκ τούτου δηλοῖ , ὅτι ἰδίᾳ τετμημένη προσεφέρετο ἡ γλῶττα παρὰ τῶν παλαιῶν . Γ ἀπένεγκε |
ΚΒ ὕψος τέ ἐστι τοῦ ΚΔ παραλληλογράμμου καὶ βάσις τοῦ ΔΚΒ τριγώνου : τούτων οὕτως ἐχόντων γίνεται ἡ ΚΒ μέση | ||
ΔΚ , καὶ περὶ τὸ ΔΚΒ τρίγωνον κύκλος γεγράφθω ὁ ΔΚΒ : ἔσται δὴ αὐτοῦ διάμετρος ἡ ΔΒ , διὰ |
ἧς τὴν ἀναθυμίασιν ἐπινέμεται . Πλάτων Πυθαγόρας Ἀριστοτέλης παρὰ τὴν λόξωσιν τοῦ ζῳδιακοῦ κύκλου , δι ' οὗ φέρεται λοξοπορῶν | ||
καλουμένον ζῳδιακὸν ὑποβεβλῆσθαι . Πυθαγόρας δὲ πρῶτος ἐπινενοηκέναι λέγεται τὴν λόξωσιν τοῦ ζῳδιακοῦ κύκλου , ἣν Οἰνοπίδης ὁ Χῖος ὡς |
λόγους . Φασὶ δὲ ἐν τοῖς ἐγκωμίοις ἐπιτηδεύειν δεῖ τὴν γλαφυράν τε καὶ ἁβροτέραν καὶ θεατρικὴν φράσιν μετά τινος σεμνότητος | ||
ἀκατονομάστους μεταφορικοῖς ὀνόμασι καλῶ τὴν μὲν αὐστηράν , τὴν δὲ γλαφυράν [ ἢ ἀνθηράν ] , τὴν δὲ τρίτην εὔκρατον |
δὲ ἡ ΛΜ πρὸς ΜΩ , ἡ ΜΩ πρὸς τὴν ΜΑ͵ καὶ ἡ Α͵Μ πρὸς τὴν ΜΒ͵ , ἔσται ἄρα | ||
ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . ὡς δὲ ἡ ΩΜ πρὸς ΜΑ͵ , οὕτως |
ἔχων τὰς καλλίστας προαιρέσεις τῇ διανοίᾳ θεωρήσας οὕτω πρὸς τὴν τεταγμένην τῶν κατὰ μέρος τρέπηται διοίκησιν . οὐ γὰρ μόνον | ||
διαδεξάμενοι αὐτοῦ τὴν φιλοσοφίαν , ὅσαι οὐκ εἴρηνται εἰς τὴν τεταγμένην κατὰ τὰς ἀρετὰς περὶ αὐτοῦ διήγησιν . Τίς ἡ |
οὖν ἐφέμενοι τούτων εὐλόγως ἂν τὴν δευτέραν παρὰ σοὶ τιθεμένην αἰτιολογίαν περὶ τῶν αὐτῶν ἀποδεξαίμεθα ὡς ἡ ψυχὴ ταῦτα λέγει | ||
ἀντερώτησιν ἢ κατὰ ἀναβολὴν ἢ κατ ' ἀσφάλειαν ἢ κατὰ αἰτιολογίαν ἢ κατὰ τὸ ἀνακόλουθον ἢ κατὰ λύπην τοῦ ἀντιδίκου |
γραμματισταὶ μηχανῶνται ὑποχαράττοντες αὐτοῖς σημεῖα ἀμυδρά , οἷς ἐπάγοντες τὴν χειρουργίαν , ἐθίζονται τῇ μνήμῃ πρὸς τὴν τέχνην . Δοκοῦσιν | ||
δυσανασχετῇ ὁ πάσχων , τότε τοῖς δεσμοῖς χρώμεθα πρὸς τὴν χειρουργίαν . οἱ δ ' ὑπηρέται πλησίον καθεζέσθωσαν , καὶ |
ἀελίου . δὴ τότ ' ἐς γαῖαν πορεύεν θυμὸς ὥρμα Ἰστρίαν νιν : ἔνθα Λατοῦς ἱπποσόα θυγάτηρ δέξατ ' ἐλθόντ | ||
ἐπὶ τὸ πέμπτον εἴκοσι καὶ ἑκατόν , καὶ ἔνθεν εἰς Ἰστρίαν πόλιν στάδιοι πεντακόσιοι . ἐνθένδε ἐς Τομέα πόλιν στάδιοι |
Κρόνου μὲν οὖν ἐναντιουμένου καταψύξεις , Ἄρεως δὲ ῥιψοκινδυνίας . Ἐκκείσθω πάλιν τὰ παρὰ Δωροθέῳ τοιαῦτα οὕτω περὶ κλήρου στρατιᾶς | ||
ἀδίκως δίκην εἰσάγοντι , ὁ δὲ δικαίως ἐγκαλῶν νικήσει . Ἐκκείσθω δὲ καὶ τὰ ἐκ τῶν ἐπῶν τοῦ Δωροθέου μεταφρασθέντα |
Α σημεῖον , πρὸς τὴν ἐν τῇ ἑτέρᾳ σφαίρᾳ ὁμοιοταγῆ πυραμίδα τριπλασίονα λόγον ἔχει , ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς | ||
ΑΔΕ βάσιν , οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . καὶ συνθέντι πάλιν , ὡς ἡ ΑΒΓΔΕ βάσις |
, ΨϘ , ΨΦ ἐπὶ τῶν αὐτῶν εἰσιν εὐθειῶν τῶν ΩΧ , ϚΦ . ἀλλὰ τὸ ΨΥ στερεὸν τῷ ΑΕ | ||
τῆς ΡΤ καὶ ἐν ταῖς αὐταῖς παραλλήλοις ταῖς ΡΤ , ΩΧ : ἀλλὰ τὸ ΡΥΧΤ τῷ ΓΔ ἐστιν ἴσον , |
, δυνάμει δέ , καθὼς καὶ τὸ εἰς τὴν προκειμένην καταγραφὴν τετράγωνον ἔχει . τούτου γὰρ ἡ ὑποτείνουσα πλευρὰ τὴν | ||
τὰ δυτικῶν ἐν τοῖς ἀνατολικοῖς , καὶ οὕτως ἀσφαλτὸν τὴν καταγραφὴν γενέσθαι . Τῶν ΒΞ , ΔΞ . , ] |
τὰ ἑπόμενα τῶν μερῶν αὐτοῦ δεδειγμένην τῆς τῶν ἀπλανῶν σφαίρας μετακίνησιν . δεδόσθω γὰρ ἐπὶ τοῦ δεδειγμένου σχήματος ἡ ΕΖ | ||
φέρεσθαι , συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς |
δηλαδὴ λευκὸν γίνεται δίκην ψιμυθίου τὸ ἀπὸ μολύβδου γινόμενον . Δυνατὸν γὰρ οὕτως γενέσθαι καὶ ἄσβεστος : τεθέντα δηλαδὴ τὸν | ||
καὶ ὑμενοῦται τὸ δέρμα , καὶ γίνονται αἱ φλύκταιναι . Δυνατὸν δέ ἐστι πρὸς τούτοις καὶ ἄλλα σημεῖα ἐφευρεῖν , |
ΒΔ διπλάσιον τοῦ δὶς ἀπὸ ΒΕ : τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα προσλαβόντα τὰ ἀπὸ ΚΖΜ εἴδη ὅμοια τῷ πρὸς | ||
ΒΘ τῶν αὐτῶν Ϙθ θ , καὶ ὅλη μὲν ἡ ΝΖΘ ἔσται ση μγ , ἡ δ ' ἡμίσεια αὐτῆς |
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
, τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς αβ , οὕτω καὶ ἐπὶ τῆς ἀνισότητος τῆς | ||
ΑΒΓ ἄλλο τρίγωνον συστήσασθαι τὴν ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἴσην ἑκατέρᾳ τῷ ΔΕ , ΔΑ καὶ |
περίμετρος . Καὶ γέγονε φανερόν , ὅτι ἐν τοῖς σκαληνοῖς κώνοις τῶν διὰ τοῦ ἄξονος τριγώνων μεγίστη μὲν ἡ τοῦ | ||
. τὰ δὲ ἐπὶ ἴσων βάσεων τρίγωνα ἐν τοῖς ὀρθοῖς κώνοις ἴσα ἐστίν : ἴσα ἄρα τὰ ΑΓΔ , ΑΕΖ |
πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
ὀρθογωνίου καὶ ἀμβλυγωνίου εἶναι , ἣν δὲ ὀρθογωνίου εἶναι δυναμένην ὀξυγωνίου τε καὶ ἀμβλυγωνίου , ἣν δὲ ἀμβλυγωνίου δυναμένην εἶναι | ||
ἐπιπέδῳ τμηθῇ μὴ παρὰ τὴν βάσιν , ἡ τομὴ γίγνεται ὀξυγωνίου κώνου τομή , ἥτις ἐστὶν ὁμοία θυρεῷ . δῆλον |
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
Εἴωθεν ὁ γεωμέτρης ἐν τοῖς τῶν σχέσεων λόγοις δεικνύναι τὴν ταυτότητα διήκουσαν ἐν ἅπασι τοῖς πρὸς τὸ αὐτὸ τὴν αὐτὴν | ||
τρῆμα , μηδετέρου μετέχουσαν . ἀλλ ' ἰσότητα μόνον καὶ ταυτότητα . κατὰ βραχὺ δὲ τὰ γειτνιῶντα αὐτῇ καὶ ἐγγυτέρω |
προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
, τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως | ||
τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο |
κατὰ πάντων φέρεται , ὅλον τὸ ἐντὸς τῆς περιφερείας πλάτος καταμετρήσει , πλάτος δὲ καταμετροῦν ἕξει πλάτος : τὸ γὰρ | ||
ὁ πῆχυς τὸ μῆκος τῷ λαβεῖν τι μῆκος , ὃ καταμετρήσει τὸ ὅλον . ἡ γὰρ ὥρα τί ἐστιν ἄλλο |
θηλυκὸν διὰ τοῦ αινα τὸ Λάκαινα ἀλλ ' οὖν τῷ προλεχθέντι κανόνι ἐφύλαξε τὸ ω ἐπὶ τῆς γενικῆς , οἷον | ||
τὴν κατηγορουμένην ἐπὶ τοῖς ὅλοις ἔλαβε διαρρήδην τῷ λόγῳ τῷ προλεχθέντι μαχόμενος ; καὶ ὅτι μὲν πρὸς τὴν ὑποκειμένην τῷ |
περίκειται καὶ λίαν ὑψηλὴ καὶ τὸ ἱερὸν καὶ τὸ ὕδωρ ἀπολαμβάνουσα ἐν κοίλῳ τόπῳ καὶ βαθεῖ . τὰς μὲν οὖν | ||
κύκλον δεδομένον τῷ μεγέθει τὸν ΔΑΓ διῆκται εὐθεῖα ἡ ΒΓ ἀπολαμβάνουσα τμῆμα τὸ ΒΑΓ δεχόμενον γωνίαν δοθεῖσαν τὴν ὑπὸ τῶν |
μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ ὀξύ , τῷ δὲ | ||
, ὁ χρόνος ἐστίν , ἐν ᾧ προανατέλλει τῷ ΑΔΓ ὁρίζοντι , ὁ δὲ χρόνος , ἐν ᾧ τὴν ΛΒ |
ἡ καταβολὴ προδείκνυσιν . Αἱ μέντοι πόρρωθεν διαστάσεις βραδυτέραν τὴν ἀποτελεσματογραφίαν κέκτηνται , αἱ δὲ πλησίον σύντομον . τινὲς δὲ | ||
μοῖρα καθέστηκε τριταία ἡμέρα . ἡ δὲ ἑβδομαία εὑρεθήσεται πρὸς ἀποτελεσματογραφίαν ἐν τῇ τετραγώνῳ πλευρᾷ περὶ Ὑδροχόου μοίρας ζʹ : |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
λόφου τοῦ ὑψηλοῦ τὴν ἠλίβατον , ἤγουν τὴν μετέωρον καὶ ὀρθίαν , τουτέστι τὴν Ὀλυμπίαν , ὅπου παρέσχεν αὐτῷ , | ||
πλαγία ἡ ΒΑ πρὸς ΓΔ , ἡ ΓΔ πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα ἡ πλαγία πρὸς τὴν ὀρθίαν |
μοίρας καὶ τῶν προτεταγμένων κανονίων λαμβάνεται , πρότερον ἐπισκεψώμεθα τὴν ἡλιακὴν μοῖραν κατὰ τὸ ὁλοσχερέ - στερον οὕτως : τὰ | ||
ἡ ἀκριβὴς συζυγία τῆς μέσως θεωρουμένης μόνῳ τῷ παρὰ τὴν ἡλιακὴν ἀνωμαλίαν διαφόρῳ . ὑποκείσθω δὴ ὁ μὲν ἥλιος τὴν |
τοῦ ζωδιακοῦ κατὰ κορυφὴν ὄντος ἀεὶ τῷ ἐν τῇ γῇ ζωδιακῷ , τούτου δ ' οὐκ ἐκβαίνοντος ἔξω τῆς Αἰθιόπων | ||
τὸ γένος ἐχόντων : ὑπὲρ ἧστινος Ταπροβάνης ἄνωθεν ἐν τῷ ζωδιακῷ τοῦ οὐρανοῦ κύκλῳ ὁ διάπυρος καρκίνος ἀναστρέφεται , ὡς |
ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
ὧδε . Ἐπείτε δὴ ἐς τὰς Ἀφέτας περὶ δείλην πρωίην γινομένην ἀπίκατο οἱ βάρβαροι , πυθόμενοι μὲν ἔτι καὶ πρότερον | ||
μὲν ἐπὶ τῆς ἀνισότητος προκοπὴν καὶ ἐπαύξησιν ἀπεδείξαμεν ἀπὸ ἰσότητος γινομένην ἐπὶ πάσας ἁπλῶς τὰς σχέσεις μετά τινος εὐταξίας διὰ |
θαλάσσῃ . Στράβων . τὸ ἐθνικὸν Ἀναριάκαι , ὡς λέσχη Λέσχης καὶ ἀράχνη ἀράχνης . ἐν ᾗ δείκνυσθαί φασι μαντεῖον | ||
βοῦς , καὶ παρὰ τῷ Ἡρακλείδῃ ἐν τῇ ἀρχῇ τῆς Λέσχης . Τῶν βοῶν , τοῖς βουσίν : εἴρηται . |
ἢ ὅλως εὐθύγραμμον ἢ μικτήν : καὶ λόγῳ , ὅταν διπλασίαν λέγωμεν τῆσδε καὶ τριπλασίαν ἢ ὅλως μείζονα καὶ ἐλάσσονα | ||
ὧν πολὺς ἐφ ' ἱππομαχίᾳ λόγος . Ἀσπίδα δὲ ἄγομεν διπλασίαν δυνάμεως τῆς ἱππικῆς , οὐδ ' ἐν τούτοις ταῖς |
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
. Πάλιν , ἐπεὶ διπλῆ ἐστιν ἡ μὲν ΟΞ τῆς ΞΩ , ἡ δὲ ΡΟ τῆς ΨΩ , ὅλη ἄρα | ||
, Ω , Ϛ , καὶ συμπεπληρώσθω τὰ ΖΦ , ΞΩ στερεά : λέγω , ὅτι καὶ οὕτως ἴσων ὄντων |
δεδομένων ἄνευ θέσεως . τὰ δὲ ἑξῆς τούτοις Ϛʹ ἐν παραλληλογράμμοις ἐστὶ καὶ παραβολαῖς εἴδει δεδομένων χωρίων . τῶν δὲ | ||
πρὸς ἑκάτερον τῶν παραλληλογράμμων . ἀσύμμετρον ἄρα τὸ τετράγωνον τοῖς παραλληλογράμμοις . ῥητὸν δὲ τὸ τετράγωνον : ἄλογα ἄρα τὰ |
ἢ ταινίδιον , τὸ δὲ περὶ τῇ κοιλίᾳ περίζωμα ἢ περιζώστραν . τὸ δὲ περὶ τοῖς αἰδοίοις , οὐ μόνον | ||
μοι τῶν γάμων αἱ παρθένοι . ὡς δὴ παχεῖαν τὴν περιζώστραν ἔχει . τρίκλινον δ ' εὐθέως συνήγετο καὶ συναυλίαι |
ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
ψυχικῆς , κατὰ κείνησιν [ ἢ σχέσιν ] , κατὰ κείνησιν μὲν πάντα τὰ [ ἐν ἡμῖν ] κεινήματα πάθη | ||
[ ] δὲ διαθετικὸν [ ] ψυχῆς κατὰ [ ] κείνησιν ἢ σχέσιν [ ] ? κατὰ φύσιν . αὕτη |
τριγώνῳ καθέτου ἀχθείσης ἀφ ' οἵας τινὸς γωνίας ὑπὸ τὴν ὑποτείνουσαν αὐτὴν πλευράν , τὴν μὲν ἔχει ὀρθήν , τὴν | ||
διὰ Θαψάκου μεσημβρινῆς . τούτου δὲ τοῦ τριγώνου τὴν μὲν ὑποτείνουσαν τῇ ὀρθῇ τὴν ἀπὸ Θαψάκου εἰς Βαβυλῶνα τίθησιν , |
ἄνδρες δικασταὶ , ταύτην τὴν μαρτυρίαν παρέξομαι , ἀλλὰ καὶ ἐκμαρτυρίαν ἑτέραν Μυρωνίδου , ὃς ἦν τῶν δημοτῶν πρεσβύτατος . | ||
τὸν δῆμον διὰ τὸ ἀγγεῖλαι τὴν εἰρήνην . . τὴν ἐκμαρτυρίαν ] μαρτυρία μέν ἐστιν ὅταν τινὲς μαρτυρήσωσι παρόντι τινὶ |
καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ , ΩΣ παραλλήλους οὔσας ἀλλήλαις τε καὶ τῇ ΜΡ | ||
πρὸς τὸ συντεθῆναι τοὺς κανόνας , ἔστωσαν εὐθεῖαι παράλληλοι ταῖς ΨΦ , ΧΩ , ΡΥ , ΣΤ , αἱ ΑΒ |
συναρχία ἡ περὶ τὰ στρατιωτικά , καὶ αὕτη ταῖς πεντάσιν ἑξαχῇ διωρισμένη : ὧν τὴν μὲν μετὰ τοῦ ναυάρχου τάττουσι | ||
συναρχία ἡ περὶ τὰ στρατιωτικὰ , καὶ αὕτη ταῖς πεντάσιν ἑξαχῇ διωρισμένη : ὧν τὴν μὲν μετὰ τοῦ ναυάρχου τάττουσι |
λύκῳ ἔχει . ὡσαύτως καὶ τὰ περὶ τὴν ὀχείαν καὶ ἔκτεξιν . ἴδιον δὲ ἔχει τὸ μικροσκελῆ αὐτὸν ὑπάρχοντα ταχύτερον | ||
ἐπίπαν τῆς δι ' ἀστρολάβων ὡροσκοπείων κατ ' αὐτὴν τὴν ἔκτεξιν διοπτεύσεως τοῖς ἐπιστημονικῶς παρατηροῦσι τὸ λεπτὸν τῆς ὥρας ὑποβάλλειν |
ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις : ὅπερ ἔδει | ||
δὲ κατὰ τὸ α , γίνεται τὸ ὑπό τε τῆς ἀτμήτου τῆς βα καὶ ἑκάστου τῶν τμημάτων τῶν δα , |
τοίνυν Ἥλιος καὶ ὁ τοῦ Κρόνου ἀστὴρ τῷ πατρικῷ προσώπῳ συνοικειοῦται κατὰ φύσιν , ἡ δὲ Σελήνη καὶ ὁ τῆς | ||
τὰ μὲν περὶ τὴν Ὑρκανίαν καὶ Ἀρμενίαν καὶ Ματιανὴν μᾶλλον συνοικειοῦται τοῖς τε Διδύμοις καὶ τῷ τοῦ Ἑρμοῦ , διόπερ |
τοὺς ὀφθαλμοὺς ἄνω δύνασθαι θεωρεῖν : καὶ Ἀρχέλαον τὸν ἕξιν ἀρχικὴν ἔχοντα , ὁμοίως καὶ Βασιλικὸν ἢ Βασίλειον τὸν δυνάμενον | ||
ἰατρικὴν ἑστὼς ἰατρός , οὐ τοίνυν οὐδὲ ὁ κατὰ τὴν ἀρχικὴν ἐπιστήμην ἄρχων ὡρισμένος . λογικώτερον δὲ εἰπεῖν ἐπιχειρητέον , |
οὐκ . ἀλλαχοῦ δ ' . πολυηκόους . πολυηκόους . πολυμαθίαν . γρ . φιλομαθίαν . καταλογάδην . τῷ πεζῷ | ||
Πάνυ γε , ὥσπερ γε καὶ ἐν τῷ φιλοσοφεῖν τὴν πολυμαθίαν φιλοσοφίαν ἡγοῦμαι εἶναι . Κἀγὼ εἶπον , Ἡγῇ δὲ |
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
ΑΓ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐπεὶ γὰρ εὐθεῖα ἡ ΓΑ τέτμηται , ὡς | ||
ὀρθογώνιον ἴσον ἐστὶν τῷ ὑπὸ τῶν ΛΔ , ΔΜ περιεχομένῳ ὀρθογωνίῳ , ἕξομεν καὶ τὸ ὑπὸ τῶν ΛΔ , ΔΜ |
ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ | ||
κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ |
ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν | ||
, ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ |
ἀντιπαρατείνουσα ταύταις ἡ Ναρβωνησία κεῖται . Πάλιν δὲ μετὰ τὴν Βελγικὴν πρόσεισιν ἐπ ' ἀνατολὰς συχνὸν ὅσον ἡ Γερμανία , | ||
καταντικρὺ τῆς Κελτογαλατίας , παρά τε τὴν Λουγδουνησίαν καὶ τὴν Βελγικὴν μέχρι τῆς μεγάλης Γερμανίας ἐκτεινομένη . Οὐ γάρ ἐστι |
καὶ Δήμητρος καὶ Ἑστίας καὶ Ἥρας : τὴν δὲ τοῦ δωδεκαγώνου Διός : τὴν δ ' ἑκκαιπεντηκονταγώνου Τυφῶνος , ὡς | ||
ἐὰν δὲ ἀπολάβωμεν ἑκατέ - ραν τῶν ΓΗ ΓΘ περιφερειῶν δωδεκαγώνου , καὶ ἐπιζεύξωμεν τὴν ΗΘ καὶ τὰς ΕΗ ΕΘ |
διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ , Φ | ||
ὑπάρχειν ὥσπερ τοῖς ὑπὸ τὸ αὐτὸ γένος οἷον τοῖς τισὶν ἐπιπέδοις τὸ γενικὸν ἐπίπεδον . Περὶ τοῦ χρησίμου τῶν ἰδεῶν |
ΕΖ ἄρα ἴσον ἀπέχουσαι τοῦ τε ἰσημερινοῦ καὶ τῶν τροπικῶν συναφῶν ἐν ἴσῳ χρόνῳ ἀνατέλλουσιν : ἀλλ ' ἐν ᾧ | ||
τὰ φῶτα ἀλλήλων καὶ τῆς ὥρας ἀλλοτριωθῇ τῷ σχήματι τῶν συναφῶν πρὸς κακοποιοὺς γινομένων καὶ τῶν κέντρων ἢ τῶν ἐπαναφορῶν |
οἷς τὴν περὶ τούτων ἄγνοιαν καὶ ἀπάτην , ἀνοσιουργίαν καὶ ἀκαθαρσίαν νενόμικας , προτρέπεις τε ἡμᾶς ἐπὶ τὴν ἀληθῆ περὶ | ||
ἀθροιζομένη χορτώδης ὕλη : νῦν δὲ εἴρηκε διὰ τὸ πᾶσαν ἀκαθαρσίαν τοῦ σώματος εἰς τὴν γαστέρα συνερρυηκέναι ἀφυσγετόν ] τὸ |
μετοπωρινὴ ἰσημερία γέγονεν τῇ θʹ τοῦ Ἀθὺρ μετὰ τὴν ἡλίου ἀνατολήν , ἡ δὲ ἐαρινὴ τῇ ζʹ τοῦ Παχὼν μετὰ | ||
ἂρ Αἰγίοχος δαμάσει σθένος οὐλοὸν αὐτῶν . εἶτα τῶν κατὰ ἀνατολήν . καὶ τοῦτο ἐναντίως τῷ Δωροθέῳ : ἐκεῖνος γὰρ |
κύλινδρος ἐπιπέδῳ συμπίπτοντι τῷ τῆς βάσεως ἐπιπέδῳ κατ ' εὐθεῖαν ὀρθὴν πρὸς ΓΑ ἐκβληθεῖσαν , καὶ ἔστω ἡ γενομένη τομὴ | ||
γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν : λέγω , ὅτι |
οὐκ ἐκ μέρους χρὴ οὐδὲ ἀτελῶς συνυφαίνειν τοῖς θείοις τὴν ἐπιβάλλουσαν αὐτοῖς εὐσέβειαν . Ἐπειδὴ τοίνυν πρὸ τῆς παρουσίας τῶν | ||
ταύτην ἔλαχεν ὄνομα . καὶ σὺ τῶν Ἀράβων ἑκάστῳ τὴν ἐπιβάλλουσαν οὕτω διώρισας μοῖραν ὥσπερ εἰς λόγους ἐλθών που τῇ |
τὰ θραύσματα λωβήσασθαί σου τήν τε ῥῖνα καὶ τὴν δεξιὰν σιαγόνα , καὶ τοῦ αἵματος ἐνεχθῆναι κρουνούς , οἵους ὕδατος | ||
ὀφθαλμόν , καὶ τότε τὰ σκέλη τοῦ τελαμῶνος ὑπὸ τὴν σιαγόνα ἐνηνεγμένα διὰ τοῦ αὐχένος ἐπ ' ἰνίον ἄγεται καὶ |
καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν τῷ τεσσαρακοστῷ πρώτῳ θεωρήματι τὸ ΓΚΜ τρίγωνον τοῦ | ||
, πάνθ ' ἅμα καὶ μιᾷ δείξει καὶ τὰ μήπω δεδειγμένα καὶ τὰ ἤδη ὡς καὶ τὰ ἐν τῷ δωδεκάτῳ |
Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ | ||
οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ |
διάγνωσιν . Σύμμετρα δὲ εἰ τῷ ποσῷ τυγχάνει καὶ ὑπόστασιν ἀναλογοῦσαν ἔχει , ψυχράν τινα δυσκρασίαν σημανεῖ τοῦ ἥπατος : | ||
πηγάνῳ ὅμοιον , κλῶνας μικρούς . δύναμιν δ ' ἔχει ἀναλογοῦσαν τῷ τῆς μήκωνος ὀπῷ . Ὕσσωπος πόα γνώριμος δισσή |
οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
δʹ τὸ μʹ δύνει , ἅμα δὲ ἀνατέλλει , ὥστε συνδύσεται τῶν ἡγουμένων τινὶ τοῦ δʹ . Συνδυνέτω τῷ ξʹ | ||
ἀνατέλλοντος ὁ ἥλιος ὢν πρὸς τῷ αʹ δύσεται : καὶ συνδύσεται τῷ ἡλίῳ τὸ αʹ ἄστρον καὶ ἔσται τοῦ αʹ |
, καὶ οὐκ ἐᾷ τὸν ἀέρα τὸν ἔξωθεν πλήττειν τὴν μήνιγγα , ἀλλὰ αὐτὸς ὑποδεχόμενος τὰ εἴδη τῶν ψόφων διὰ | ||
ῥητέον οὖν ὅτι φυσικῶς πάλλοντος τοῦ ἐγκεφάλου , συμβαίνει τὴν μήνιγγα προστρίβεσθαι τοῖς ὀστέοις τοῖς περικειμένοις , ἀφ ' ὧν |
, οὕτως ἡ ΘΣ πρὸς τὴν ΘΤ , καὶ ἡ ΤΘ πρὸς τὴν ΘΡ , ” αὐτόθεν ἐλέγχεται τὸ ζητούμενον | ||
ΘΣ , οὕτως ἡ ΣΘ πρὸς τὴν ΘΤ καὶ ἡ ΤΘ πρὸς τὴν ΘΦ , ὡς δὲ ἡ ΛΜ πρὸς |
τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ | ||
, ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων |
ἰσογώνιόν ἐστιν . ἐπεζεύχθωσαν γὰρ αἱ ΡΒ , ΣΒ , ΦΒ . καὶ ἐπεὶ εὐθεῖα ἡ ΝΟ ἄκρον καὶ μέσον | ||
ΗΧ : ἀλλ ' ἐν ᾧ μὲν τὸ Φ τὴν ΦΒ διέρχεται , ἡ ΘΑ δύνει , ἐν ᾧ δὲ |
κύκλος ὁ ΗΘ , καὶ διῃρήσθω ἑκατέρα τῶν ΒΞ , ΔΞ εἰς τρία ἴσα κατὰ τὰ Κ , Λ , | ||
. ἤχθω γὰρ διὰ τοῦ Δ τῇ ΑΕ παράλληλος ἡ ΔΞ . ἐπεὶ οὖν ὑπερβολή ἐστιν ἡ ΑΒ καὶ διάμετρος |
καὶ γυναῖκα παθεῖν ἐν Ἤλιδι λόγος ἀνδρὶ μὲν κατὰ νόμον ἠγμένην , Αἰθίοπι δὲ τὴν εὐνὴν κλέπτουσαν . κόρην μὲν | ||
οἱ Πυθαγόρειοι λέγουσιν , ὥσπερ ἱκέτιν καὶ ἀφ ' ἑστίας ἠγμένην ὡς ἥκιστα δεῖν [ δοκεῖν ] ἀδικεῖν . . |
παραφερομένων κατὰ τὴν πρώτην καὶ ἀπ ' ἀνατολῶν ἐπὶ δυσμὰς περιαγωγὴν πρὸς τὴν διῃρημένην τοῦ μεσημβρινοῦ πλευρὰν τῶν ἐπιζητουμένων ἀστέρων | ||
ἀπαλλαγὴν τῶν ἀνθρωπίνων δεσμῶν παρέχειν καὶ λύσιν τῆς γενέσεως καὶ περιαγωγὴν ἐπὶ τὸ ὂν καὶ γνῶσιν τῆς ὄντως ἀληθείας καὶ |
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
τζʹ , γίγνονται τμʹ νεʹ . ταύτας εὗρον ἐν τῷ ἐγκλίματι περὶ τὴν κθʹ τοῦ Ὑδροχόου καὶ προσέθηκα τὰς ηʹ | ||
φῶς πλῆρες καὶ ἡ ὥρα ἡ δʹ πλήρης ψηφισθεῖσα σὺν ἐγκλίματι ἤνεγκεν ὡροσκόπον Ταύρῳ μοίρᾳ κθʹ . κατὰ δὲ τὸ |
ὀρθαί εἰσιν αἱ ὑπὸ ΚΖΒ , ΒΛΚ διὰ τὸ ἐν ἡμικυκλίοις εἶναι καὶ ἐκ κέντρου τὰς ΚΖ , ΚΛ , | ||
ΘΛΑ τὰς ὑπὸ ΒΓΑ , ΘΛΑ ἴσας ἔχουσιν : ἐν ἡμικυκλίοις γάρ : ἔχει δὲ τὸ ΘΛΑ τρίγωνον τὴν ὑπὸ |
καὶ ἐπὶ τοῦ λθʹ ἐλέγομεν , καὶ τὸ παραλελειμμένον τῷ στοιχειωτῇ τῆς εἰς ἀδύνατον ἀπαγωγῆς ὡσαύτως ἀποδείκνυται καὶ οὐδὲν δεῖ | ||
γὰρ νοσοῦσι μηδὲν ὅλως ὑγιὲς φέρουσαι . καὶ τῷ μὲν στοιχειωτῇ οὐ περιάπτω τὸ ἁμάρτημα , τῷ γραφεῖ δέ : |
δὲ μισθοφόροις καὶ συμμαχικαῖς παμμιγέσι , καὶ τῶν διὰ τὴν συμφωνίαν δυσυποστάτων περιεγένετο διὰ τῆς ἰδίας ἀγχινοίας καὶ στρατηγικῆς ἀρετῆς | ||
ἐν ἐπογδόῳ γίνεσθαι λόγῳ , καὶ τὸ τὴν διὰ τεσσάρων συμφωνίαν ἐλάττονα συνίστασθαι δύο καὶ ἡμίσεος τόνων , ἀλλ ' |
προτερήσασι , δίχα μὲν τοῖς ἀρχιτέκτοσι , χωρὶς δὲ τοῖς οἰκοδόμοις καὶ πάλιν τοῖς ἐργαζομένοις : καὶ αὐτὸς δὲ μετὰ | ||
σπάρτη καὶ τὸ ὀρθογώνιον τρίγωνον , ὃ ἀλφάδιον παρὰ τοῖς οἰκοδόμοις καὶ τέκτοσιν ὀνομάζεται . ἡ μὲν γὰρ κάθετος ἐν |
λέγω , ὅτι ἴσον ἐστὶ τὸ ΒΚ παραπλήρωμα τῷ ΚΔ παραπληρώματι . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ , διάμετρος | ||
ΚΖ , καὶ τὸ ΚΖ παραπλήρωμα ἴσον ἐστὶ τῷ ΚΓ παραπληρώματι . τὸ ΕΤ ἄρα μεῖζόν ἐστι τοῦ ΚΓ . |
καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ | ||
ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν |
οἶμαι , ῥαγὶ σταφυλῆς τὴν ἐκτὸς λειότητα καὶ τὴν ἐντὸς δασύτητα . καὶ κατὰ τοῦτο μόνον τὸ τρῆμα τοῦ κερατοειδοῦς | ||
κάτω † ἄρας ἐπέθηκε τοῖς ὤμοις αὐτοῦ : οἱ δὲ δασύτητα περὶ τὴν πυγὴν τοῦ Ἡρακλέους ὁρῶντες ἐγέλων , ἀναμνησθέντες |
τις εὐλογώτερον , εἰ πρὸς ταῖς ἀληθέσιν οὐσίαις καὶ τὴν φαινομένην διακόσμησιν οὐσίαν προσαγορεύεσθαι δίκαιον : μήποτε γὰρ αὐτῇ τὸ | ||
τίνα τὸ πᾶν λαμβάνει τὴν ἀνάλυσιν . τὸ μὲν οὖν φαινομένην εἶναι λέγειν τὴν τῶν ὅλων ἀρχὴν ἀφύσικόν πως ἐστίν |
ἡ ΕΓ ἄρα πρὸς ΓΒ μείζονα λόγον ἔχει ἤπερ ἡ ΔΓ πρὸς ΓΒ : πολλῷ ἄρα μείζων ἐστὶν ἡ ΕΓ | ||
καὶ τὸ ΕΖ . , ] ὅμοιον γάρ ἐστι τῷ ΔΓ δεδομένῳ . Καί ἐστιν ἴσον τοῖς ΑΓ , ΚΘ |
ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ | ||
Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν |
ἐμβάλλομεν ἀπὸ διαστημάτων δακτύλου πλατυτέρου ἑνός : σφίγγοντες ἀκριβέστατα , ἀποτέμνομεν τὴν ἀρτηρίαν κατὰ τῶν δύο βρόχων τὴν μεσότητα , | ||
διὰ τῶν βάσεων αὐτῶν διείροντες ἀποσφίγγοντες , μετὰ δύο ὥρας ἀποτέμνομεν . τῶν δὲ συρίγγων αἱ μέν εἰσιν ἀσύντρητοι , |
γεννημάτων ] τῆς ἐπαφῆς καὶ ψαύσεως Γεννήματα Διὸς λέγει τὴν ἐπαφὴν ἐπειδὴ ἐξ αὐτῆς ἐτεκνοποίησεν : αὕτη γὰρ ἀντὶ σπέρματος | ||
τοῦ Ἑρμοῦ καὶ τοῦ τῆς Ἀφροδίτης , πότε κατὰ τὴν ἐπαφὴν ὁ ἀστὴρ γίγνεται τῆς ἐκβαλλομένης εὐθείας ἀπὸ τῆς ὄψεως |
, καὶ μὴ γίνηταί τις παραλλαγὴ περὶ τὰ μεταξὺ τῶν ἀποψαλμάτων μήκη , διὰ τὸ μὴ δεῖν τὰ κινούμενα τῶν | ||
λήψεται κατὰ τὰ Ε καὶ Η σημεῖα τὰς ἀρχὰς τῶν ἀποψαλμάτων . ἐπ ' αὐτῶν γὰρ ποιήσεται τὰς ἐπαφὰς τῶν |
κίνησιν καὶ συμπεριλαμβάνων τὰ ἄστρα συμπεριῆγεν αὐτὰ καὶ τὴν νῦν περιφορὰν αὐτῶν μετέωρον ἐφύλαττε : κἄπειτα ἐκ μὲν τῶν ὑποκαθιζόντων | ||
κίνησιν καὶ συμπεριλαμβάνων τὰ ἄστρα συμπεριῆγε ταῦτα καὶ τὴν νῦν περιφορὰν αὐτῶν μετέωρον ἐφύλαττε . κἄπειτα ἐκ μὲν τῶν ὑποκαθιζόντων |
μείζων ἐστὶν ἡ ΓΕ περιφέρεια τῆς ΕΔ περιφερείας . ὁ πόλῳ γὰρ τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος | ||
φανερὸς μὲν ἀεὶ κύκλος γίνεται ὁ πόλῳ μὲν τῷ βορείῳ πόλῳ τοῦ ἰσημερινοῦ , διαστήματι δὲ τῷ τοῦ πόλου ἐξάρματι |
τῆς γῆς , τοῖς δ ' αὖ ἐν τῇ σῇ δεικνυμένοις ψυχῇ . Ἀνὴρ Ἑρμοῦ φίλος , ὁ σοφιστὴς Στρατήγιος | ||
οὐκ ἔστιν , ἀλλὰ δεῖ συγγενεῖς εἶναι τὰς ἀρχὰς τοῖς δεικνυμένοις καὶ ἐκ τῶν καθ ' αὑτὰ ὑπαρχόντων . Λέγω |
οὐραίου βʹ λαμπρούς , ἀπὸ δὲ τῆς οὐρᾶς ἕως τοῦ κυρτώματος τοῦ κενεῶνος εʹ , ὑπὸ τὴν κοιλίαν Ϛʹ : | ||
νότιος αὐτῷ πόλος ἀποκρυφθήσεται ἀναγκαίως ὑπὸ τοῦ κατὰ τὴν γῆν κυρτώματος , ὁ δὲ βόρειος ἐκ τοῦ πρὸς λόγον εἰς |
τοσαύτην κατὰ πλάτος παραχώρησιν ὁ ἥλιος διορθοῦται πρὸς τοῖς ἰσημερινοῖς τμήμασιν τέταρτον μιᾶς μοίρας κατὰ μῆκος ἐπὶ τοῦ λοξοῦ κύκλου | ||
] ὡς ὕλη , ἐπειδὴ δύναται χωρίζεσθαι ἐφ ' οἷς τμήμασιν ἐπιγίνεται τὸ τοῦ κύκλου εἶδος . τὰ γοῦν τμήματα |