καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ , ΩΣ παραλλήλους οὔσας ἀλλήλαις τε καὶ τῇ ΜΡ
πρὸς τὸ συντεθῆναι τοὺς κανόνας , ἔστωσαν εὐθεῖαι παράλληλοι ταῖς ΨΦ , ΧΩ , ΡΥ , ΣΤ , αἱ ΑΒ
7708787 ΘΗ
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε
7703203 ΠΚ
ΒΓ . , ] ἐπεὶ γὰρ ἡ ΓΠ ἴση τῇ ΠΚ , ἡ ΓΝ μείζων τῆς ΝΚ . ὥστε καὶ
ΟΚ , καὶ ἡ ΠΡ πρὸς ΡΟ , καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ ,
7649299 ΔΞ
κύκλος ὁ ΗΘ , καὶ διῃρήσθω ἑκατέρα τῶν ΒΞ , ΔΞ εἰς τρία ἴσα κατὰ τὰ Κ , Λ ,
. ἤχθω γὰρ διὰ τοῦ Δ τῇ ΑΕ παράλληλος ἡ ΔΞ . ἐπεὶ οὖν ὑπερβολή ἐστιν ἡ ΑΒ καὶ διάμετρος
7594227 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
7538634 ΜΑ͵
δὲ ἡ ΛΜ πρὸς ΜΩ , ἡ ΜΩ πρὸς τὴν ΜΑ͵ καὶ ἡ Α͵Μ πρὸς τὴν ΜΒ͵ , ἔσται ἄρα
ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . ὡς δὲ ἡ ΩΜ πρὸς ΜΑ͵ , οὕτως
7528338 ΜΑ
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ
7514729 ΕΡ
? [ ] [ ] ΧΕ [ ] [ ] ΕΡ ? ? ! [ ] [ ] ΓΟ [
. τίς ἄρα ὁ τῆς ΕΠ πρὸς ΠΤ τῷ τῆς ΕΡ πρὸς ΡΤ ; ἀλλ ' ὁ τῆς ΕΡ πρὸς
7506114 ΖΘ
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν
7494880 ΚΘ
ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ , προσαρμόζουσα δὲ ταύτῃ ἡ ΖΚ . ἤτοι δὴ
ΞΔ πρὸς ΔΜ . ἀλλ ' ὡς ἡ ΛΚ πρὸς ΚΘ , οὕτως ἡ ΕΚ πρὸς ΚΒ : καὶ ὡς
7484129 ΓΜ
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ
7458730 ΚΖ
δὴ ὑποκείσθω τὸ αὐτὸ σχῆμα , καὶ ἔστω τετραγώνου ἡ ΚΖ , καὶ ἴσαι ἀπειλήφθωσαν ἐπὶ τὰ Ζ Δ μέρη
ΔΖ πρὸς τὴν ΘΖ , οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ . Ὡς γὰρ αἱ γωνίαι , δι ' ὧν
7458012 ΜΞ
, καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι
μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ ,
7447397 ΑΜ
ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ
ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ
7429290 ΕΚ
ἀπὸ τῶν ΚΖ , ΖΕ , τουτέστι τοῦ ἀπὸ τῆς ΕΚ : ἡ ΓΕ ἄρα ἐλάσσων ἐστὶ τῆς ΕΚ .
τῶν ΕΚ ΚΒ : ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΕΚ πρὸς τὸ ἀπὸ τῆς ΚΛ , οὕτως ἡ ΕΚ
7419175 ΖΕ
τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας : ἡ ΖΕ ἄρα ὀρθή ἐστι πρὸς ἑκάστην τῶν ΑΕ , ΒΕ
ΓΒ , οὕτως τὸ ΔΖ πρὸς μεῖζόν τι μέγεθος τοῦ ΖΕ . καὶ τὰ λοιπὰ φανερά . ζʹ . Ἐχέτω
7417107 ΒΜ
, καὶ παράλληλος τῇ ΖΔ ἡ ΑΜ , καὶ τῶν ΒΜ , ΜΓ μέση ἀνάλογον ἔστω ἡ ΜΗ , καὶ
: διάμετρος ἄρα ἐστὶν ἡ ΒΘ , ὀρθία δὲ ἡ ΒΜ . λέγω , ὅτι τὸ ὑπὸ ΔΑΖ ἴσον ἐστὶ
7415168 ΒΖ
τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς
' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς
7401922 ΕΔ
τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ
ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ
7399686 ΛΜ
Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ .
. ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη
7386371 ΜΩ
ἄρα ἀπὸ τῆς ΜΓ ἔλασσόν ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . τὸ δὲ ἀπὸ τῆς ΜΓ τοῦ ἀπὸ τῆς
τῶν ΓΩ , ΩΜ ἐλάσσονά ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . ἀλλὰ τὸ ἀπὸ τῶν ΓΩ , ΩΜ ἴσον
7376525 ΑΟ
ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν
, ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ
7368645 ΕΗ
εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ
τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε
7363887 ΠΑ
καὶ Δωρικῶς : ἄλλη ἀλλαχοῦ . . ΠΑΡΑΚΛΙΝΟΥΣΙ . Τὸ ΠΑ μακρὸν ἐδέξατο , καὶ τὸ ΚΛΙ βραχύ : ὢ
! [ ] [ ἀναγκ ] [ ] [ ] ΠΑ ? ? [ ] [ ] ΟΞΩ ! [
7363352 ΦΥ
δὲ ἡ ΣΡ τῆς ΟΡ : διπλῆ ἄρα καὶ ἡ ΦΥ τῆς ΟΡ . ἴση δὲ ὑπόκειται ἡ ΟΡ τῇ
δύο τῶν διπλασίων τοῦ ἑνός . ἔστι δὲ καὶ ἡ ΦΥ . , ] παραλληλόγραμμον γάρ ἐστι τὸ ΡΣΦΥ χωρίον
7346390 ΞΖ
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς
7341709 ΒΕ
ἀπὸ τῶν ΕΖ , ΖΒ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΒΕ , τοῖς δὲ ἀπὸ τῶν ΕΖ , ΖΛ ἴσον
ΓΔ : τὸ ἄρα ὑπὸ ΑΕ ΕΔ μετὰ τοῦ ὑπὸ ΒΕ ΕΓ ἴσον ἐστὶν τῷ ὑπὸ ΑΓΔ . ιθʹ .
7336623 ΒΗ
, ΖΗ καὶ ἐν ταῖς αὐταῖς παραλλήλοις ταῖς ΑΘ , ΒΗ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ παραλληλόγραμμον
ἴσῳ τριγώνῳ τῇ ΒΖ , γίνεται ὡς συναμφότερος ἡ ΖΒ ΒΗ πρὸς τὴν ΖΗ , οὕτως τὸ ἀπὸ ΑΖ τετράγωνον
7333863 ΗΚ
τὸ ΗΚ . ἴσον δή ἐστι τὸ ΑΒ στερεὸν τῷ ΗΚ στερεῷ : ἐπί τε γὰρ ἴσων βάσεών εἰσι τῶν
ἄρα καὶ ἡ ΑΗ τῇ ΗΚ . ὥστε καὶ ἡ ΗΚ τῇ ΗΒ ἐστιν ἴση : ὅπερ ἀδύνατον . οὐκ
7326370 ΓΖ
τὸ ἀπὸ τῆς ΕΖ ἴσον ἐστὶν τοῖς ἀπὸ τῶν ΕΓ ΓΖ , ἔστιν δὲ καὶ τὰ ἀπὸ τῶν ΕΑ ΑΖ
: ἔστιν ἄρα καὶ ὡς ἡ ΑΕ βάσις πρὸς τὴν ΓΖ βάσιν , οὕτως τὸ ΑΒ στερεὸν πρὸς τὸ ΓΔ
7318444 ΑΛ
τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ
τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ
7315599 ΕΟ
τὸ ΠΝ , καὶ διὰ τοῦ Π σημείου τετμήσθω ὁ ΕΟ κύλινδρος ἐπιπέδῳ τῷ ΤΥΣ παραλλήλῳ τοῖς τῶν ΕΖΗΘ ,
ΟΣ , ΣΒ μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΕΟ . καὶ ἐπεὶ αἱ ΓΝ , ΝΚ , ΚΗ
7310494 ΔΗ
ριδ ι , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΔΗ περιφέρεια τοιούτων ριδ ι οἵων ἐστὶν ὁ περὶ τὸ
παράκειται πλάτος ποιοῦν τὴν ΔΗ : ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει . πάλιν , ἐπεὶ
7309552 ΘΚ
σημεῖον . Κείσθω γὰρ τῇ ΖΗ περιφερείᾳ ἴση περιφέρεια ἡ ΘΚ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
, ΗΛ ἐν ἴσῳ χρόνῳ δύνουσιν : ὁμοίως καὶ αἱ ΘΚ , ΛΜ . διὰ τὰ αὐτὰ δὴ καὶ αἱ
7303618 ΠΟ
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς
7298599 ΝΘ
κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ :
αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται
7296134 ΜΟ
ἐπιπέδῳ ὢν αὐτοῖς , καὶ ἐπεζεύχθω ἡ ΜΟ : ἡ ΜΟ ἄρα διάμετρός ἐστι τοῦ διορίζοντος ἐν τῇ σελήνῃ τό
τῷ ἀπὸ τῆς ΛΜ . ἡ ΛΜ ἄρα δύναται τὸ ΜΟ , ὃ παράκειται παρὰ τὴν ΘΕ πλάτος ἔχον τὴν
7289171 ١٤
٥٠ ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ]
٥ ٣٣ ١٨ ٤٠ ٢٥ τὸ ἀπὸ τῆς ΒΕ ١ ١٤ ٣ ٢ ١٢ ١٥ τὸ ὑπὸ τῶν ΑΒ ,
7284472 ΠΘ
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα
7277312 ΜΡ
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ
7268644 ΜΝ
ὀρθία τοῦ παρὰ τὴν ΒΤ εἴδους . δίχα τετμήσθω ἡ ΜΝ κατὰ τὸ Π : ἔστιν ἄρα , ὡς ἡ
καὶ πανσελήνους . ἐὰν γὰρ γράψωμεν περὶ τὸ Α τὸν ΜΝ ἐπίκυκλον , ὁ τῆς ΑΕ πρὸς τὴν ΑΜ λόγος
7262677 ΑΡ
δὲ δεύτερα ἐπὶ δεύτερα , τέταρτα : ἐὰν γὰρ τὰ ΑΡ , ΡΨ δεύτερα δύο ἐπὶ τὰ ΑΠ , ΠΗ
ἐπεὶ ὀρθογώνιά ἐστι τὰ τρίγωνα , ἡ δὲ ΠΑ τῆς ΑΡ μείζων : τριγώνου γὰρ τοῦ ΠΑΡ μείζων γωνία ἡ
7260917 ΘΤ
ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω
ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως
7258930 ΕΞ
Αἰγόκερω μοίραις γ ι λοξώσεως . ἔστιν δὲ καὶ ἡ ΕΞ τῶν τοῦ ἐξάρματος ἐν Ἀλεξανδρείᾳ μοιρῶν λ νη .
ΓΘ πρὸς τὴν ΕΞ : παραλλήλου οὔσης τῆς ΓΘ τῇ ΕΞ εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ Ξ Ζ
7224227 ΚΛ
ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ
ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι
7219891 ΖΛ
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν
7207348 ΜΔ
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ
7200767 ΓΚ
. ἐκβεβλήσθω γὰρ ἐπ ' εὐθείας τῆς ΓΘ εὐθεῖα ἡ ΓΚ , καὶ πεποιήσθω ὡς ἡ ΓΔ πρὸς τὴν ΕΖ
, ὧν ὁ ΔΓ ἐστὶ δυάς , λοιπὸς ἄρα ὁ ΓΚ μείζων δυάδος τοῦ ΓΔ : ἡ ἄρα διχοτομία τοῦ
7199061 ΖΔ
πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ ,
ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ
7190619 ΛΒ
ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ
μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι
7188900 ΖΚ
καί ἐστι τὸ μὲν ὑπὸ τῶν ΓΖ , ΖΑ τὸ ΖΚ : ἴση γὰρ ἡ ΑΖ τῇ ΖΗ : τὸ
ἄρα ἐστὶν ταῖς ΑΔ ΒΕ , καὶ ἴση ἐστὶν ἡ ΖΚ τῇ ΚΗ . ἐπεὶ δὲ τρεῖς εἰσιν παράλληλοι αἱ
7164215 ΘΑ
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ
7160512 ΩΜ
ἔστιν ὡς ἡ ΛΜ πρὸς τὴν ΜΩ , καὶ ἡ ΩΜ πρὸς τὴν ΜΑ͵ , καὶ δοθεῖσα ἡ ΩΜ :
, καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . ὡς δὲ ἡ ΩΜ πρὸς ΜΑ͵
7154489 ΖΓ
ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ
ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ
7149776 ΓΗ
τῶν ΑΗ , ΓΛ ἴσων οὐσῶν καὶ κοινῆς ἀφαιρεθείσης τῆς ΓΗ , λοιπὴ ἡ ΑΓ τῇ ΗΛ ἴση ἐστίν .
τὰ ια λ , ὁ δὲ τῆς ΓΔ πρὸς τὴν ΓΗ ὁ τῶν οα λ πρὸς τὰ μη λ ,
7148888 ΒΚ
ΔΜ , πέμπτον δὲ τὸ ΓΛ , ἕκτον δὲ τὸ ΒΚ , ἕβδομον δὲ τὸ ΑΘ , μόνα δὲ καὶ
ταῦτα γὰρ ἡμῖν πάντα προαποδέδεικται : τοιούτων καὶ ἑκατέρα τῶν ΒΚ καὶ ΚΘ ἔσται ιε νε . πάλιν , ἐπεὶ
7143969 ΗΝ
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ .
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ :
7134576 ΖΗ
κ , οἵων ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριγ μγ : ὥστε καί , οἵων
ὡς μὲν ἡ ΖΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΖΗ πρὸς τὴν ΗΕ , ὡς δὲ ἡ ΜΔ πρὸς
7134427 ΚΑ
κέντρου δύναται τὸ ὑπὸ ΟΓ ΚΑ ἢ τὸ ὑπὸ Θ ΚΑ ἐλάσσων ἐστὶν τῆς σφαιρικῆς τοῦ τμήματος ἐπιφανείας . ἀλλὰ
, οἵων ἐστὶν ἡ ΑΖ διάμετρος ρκ , ἡ δὲ ΚΑ τῶν αὐτῶν ργ νε : ὥστε καί , οἵων
7134372 ΠΡ
ΑΒ πρὸς τὴν ΓΔ , οὕτως ἡ ΕΖ πρὸς τὴν ΠΡ , ἴση δὲ ἡ ΠΡ τῇ ΗΘ , ἔστιν
περιφερείας , ἡ δὲ κατὰ τὸ Ο βορεία παράλλαξις τῆς ΠΡ , ἡ δὲ κατὰ τὸ Μ βορεία τῆς ΛΚ
7123923 ΘΓ
τοῦ Θ ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐκβαλλομένη συμπεσεῖται τῇ ΘΓ . δυεῖν ἄρα εὐθειῶν τὰ αὐτὰ πέρατα ἔσται :
ἀπὸ ΘΓ τοῦ ἀπὸ ΕΗ : μείζων ἄρα καὶ ἡ ΘΓ τῆς ΕΗ . καί εἰσι παράλληλοι : ἡ ΕΖ
7122713 ΒΝ
περὶ τὸ ΒΘΝ ὀρθογώνιον κύκλος τξ , αὐτὴ δὲ ἡ ΒΝ εὐθεῖα τοιούτων ριη μγ , οἵων ἐστὶν ἡ ΒΘ
, ΒΝ , τὸ δὲ δὶς ὑπὸ τῶν ΑΒ , ΒΝ ἴσον δέδεικται τῷ ἀπὸ τῆς ΒΖ μετὰ τοῦ ἀπὸ
7121344 ΚΓ
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ
7119866 ΗΘ
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς
7117578 ΛΚ
τῆς τοῦ ὀκταέδρου πλευρᾶς . Ἐπεὶ γὰρ αἱ τρεῖς αἱ ΛΚ , ΚΜ , ΚΕ ἴσαι ἀλλήλαις εἰσίν , τὸ
τοῦ μὲν ΕΚ ἄξονος καὶ τοῦ ΒΗ κυλίνδρου ὅ τε ΛΚ ἄξων καὶ ὁ ΠΗ κύλινδρος , τοῦ δὲ ΚΖ
7109088 ΛΓ
, ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ
ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα
7106710 ΟΕ
πάλιν ἐπεὶ ἀπὸ τοῦ κέντρου ἐπὶ τὴν ἁφὴν ἐπέζευκται ἡ ΟΕ , ἡ ὑπὸ ΚΕΟ γωνία ὀρθή ἐστιν . καὶ
τοῦ κύκλου καὶ ἔστω τὸ Ο , καὶ ἐπεζεύχθω ἡ ΟΕ . καὶ ἐπεὶ ἐπὶ τεταρτημορίου βέβηκεν , ἡ ὑπὸ
7095339 ΔΘ
ΒΓ ΕΖ τοῖς Η Θ , καὶ ἐπεζεύχθωσαν αἱ ΑΗ ΔΘ , καὶ ἔστωσαν ἴσαι , καὶ μηδετέρα τῶν ΑΗ
ΓΘ τῇ Ε : τὸ ἄρα ΒΗ ἴσον ἐστὶ τῷ ΔΘ . καί ἐστιν ἰσογώνια . τῶν δὲ ἴσων καὶ
7091095 ΑΗ
τὸ Ζ : δι ' ἴσου ἄρα ἐστὶν ὡς τὸ ΑΗ πρὸς τὸ Γ , οὕτως τὸ ΔΘ πρὸς τὸ
ἐστὶ τῷ ΓΕ , λοιπὸν ἄρα τὸ δὶς ὑπὸ τῶν ΑΗ , ΗΒ ἴσον ἐστὶ τῷ ΖΛ . ῥητὸν δὲ
7079569 ΚΔ
, οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ :
ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ
7074233 ΑΠ
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ
7073347 ٢٥
٣ ١٢ ٢٥ τὸ ἀπὸ τῆς Θ ٢٥ ٤٢ ٥١ ٢٥ ٤٢ ٥٢ Ἡ Α μονάδων τεσσάρων , ἡ ΓΗ
٤٦ τὸ ἅπαξ ὑπὸ τῶν ΑΒ , ΒΓ ٥ ٣٥ ٢٥ ١١ ٢٨ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ
7065933 ٥٤
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ
7053978 ΔΖ
τῆς ὑπὸ ΑΔΒ . ἐπεὶ παράλληλοι μὲν αἱ ΒΓ , ΔΖ καὶ πρὸς ὀρθὰς τῇ ΒΖ , οὐκ ἐλάττων δὲ
καὶ τὸ ἄρα ἀπὸ τῆς ΕΔ πρὸς τὸ ἀπὸ τῆς ΔΖ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΒΑ πρὸς τὸ
7052513 ΗΖ
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ
7049535 ΛΝ
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ
7046745 ΕΘ
καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ
ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν
7042810 ΚΗ
ἴσαι ἀλλήλαις εἰσίν , ὧν αἱ τέσσαρες αἱ ΕΚ , ΚΗ , ΖΛ , ΛΘ ἴσαι ἀλλήλαις εἰσίν [ ὁμοίως
πρὸς τὸ ΓΔΛ τρίγωνον , οὕτως ἡ ΘΚ πρὸς τὴν ΚΗ , ἀλλ ' ὡς τὸ παραλληλόγραμμον πρὸς τὸ τρίγωνον
7039081 ΦΧ
ἴση δὲ ἡ μὲν ΩΦ τῇ ΨΧ , ἡ δὲ ΦΧ τῇ ΧΠ , ἔστιν ἄρα ὡς ἡ ΨΧ πρὸς
, ἡ δὲ ΧΒ ὅλη διὰ τὸ ἴσην εἶναι τὴν ΦΧ τῇ ΦΘ τοιούτων ξδ κζ , οἵων καὶ ἡ
7035436 ΧΞ
ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς ΝΞ μείζων
ΤΜ , ΜΥ , ΥΦ , ΦΝ , ΝΧ , ΧΞ ἄρα ἑξῆς ἀλλήλων μείζονές εἰσιν ἀρχόμεναι ἀπὸ μεγίστης τῆς
7034071 ΚΝ
, διὰ δὲ τοῦ Κ τῇ ΑΒ παράλληλος ἤχθω ἡ ΚΝ , καὶ ἐκβεβλήσθω ἡ ΔΘ ἐπὶ τὸ Ν .
τὸ Α ὄμμα ἐπὶ τὸ Ν , καὶ περὶ τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ
7033477 ٢٣
٤ ٤٨ ٤٨ ٣٦ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢٣ ١٠ ٣ ١١ ٥٣ ٢٠ ἡ ΑΖ ١١ ٥١
τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ ٨
7030691 ٤٢
٢٢ ٥٦ τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ ٤٧ ٤٢ ٣٥ ٤٤ Ἐκ τῆς εἰς ἄτοπον ἀπαγωγῆς . Ἡ
٢١ ἡ ΒΕ ١ ٤٠ ١٦ ἡ ΔΖ ٥ οὐδέν ٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ
7030593 ΖΑ
τὸ ΑΔΖ τρίγωνον τῷ εἴδει : λόγος ἄρα ἐστὶ τῆς ΖΑ πρὸς τὴν ΑΔ δοθείς : ἡ δὲ ΑΖ συναμφότερός
διὰ τὸ ἴσα εἶναι τά τε ἀπὸ τῶν ΒΖ , ΖΑ καὶ τὰ ἀπὸ τῶν ΒΚ , ΚΑ τῷ ἀπὸ
7030337 ΓΑ
ΖΕ καὶ τοῦ τῆς ΓΑ πρὸς ΗΕ ὁ τοῦ ἀπὸ ΓΑ ἐστὶν πρὸς τὸ ὑπὸ ΖΕ ΗΕ , τουτέστιν πρὸς
ΓΑ , ΑΒ τετραγώνων μεῖζόν ἐστι τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐν ἄρα τοῖς ἀμβλυγωνίοις
7009008 ΓΕ
λ , ἡ δὲ ΔΕ ρκ , τοιούτων ἐστὶν ἡ ΓΕ εὐθεῖα α κ κγ . τῶν δὲ αὐτῶν ἐδείχθη
τῆς παρούσης καταγραφῆς τὸ ἕτερον εἶδός ἐστιν : ἡ γὰρ ΓΕ ἴση ἐστὶ τῇ ΔΒ . τέμνουσαν ἔλαβεν ὁ στοιχειωτὴς
6999780 ΝΥΝ
τελευταίους , ὡς ἀλόγῳ γνωμολογεῖν οὐκ ἂν προσῆκον . . ΝΥΝ Δ ' ΑΙΝΟΝ . Μυθικὴν παραίνεσιν . Εἰκάζει δὲ
τοιοῦτο δὲ σύνηθες καὶ παρὰ τῷ πεζῷ λόγῳ . . ΝΥΝ ΔΕ ΕΓΩ ΜΗΤ ' ΑΥΤΟΣ . Τὸ μὲν λεγόμενον
6993063 ΕΑ
περιφέρειαι αἱ ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ ἴσαι ἀλλήλαις εἰσίν . ὑπὸ δὲ τὰς ἴσας περιφερείας
ΓΒ , τουτέστιν ὡς τὸ ὑπὸ ΕΑΓ πρὸς τὸ ὑπὸ ΕΑ ΓΒ , οὕτως τὸ ὑπὸ ΓΑΕ πρὸς τὸ ὑπὸ
6989605 ΕΝ
Ἠγείρετο δὲ πολὺς κτύπος τούτων μαχομένων . . . ΙΔΕΙ ΕΝ ΑΙΝΟΤΑΤΩι . Τὸν καιρὸν λέγει τῆς μάχης . Ἴδει
, ] πῶς ἔλασσον τὸ Ξ στερεὸν τῆς ἐν τῷ ΕΝ κώνῳ πυραμίδος ; δείξομεν οὕτως : ἐπεὶ ὁ ΕΝ
6989308 ΗΛ
πρὸς τὴν ΗΛ . καί ἐστι παράλληλος ἡ ΕΘ τῇ ΗΛ : εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ ,
τοῦ κύκλου ἐπιπέδῳ τῇ ΓΔ πρὸς ὀρθὰς αἱ ΚΒ , ΗΛ , καὶ ἐπεζεύχθω ἡ ΒΛ . ἐπεὶ οὖν δύο
6984383 ΒΑ
ΒΑ πρὸς τὴν ΑΔ . μείζων δὲ ἡ ΔΒ τῆς ΒΑ : μείζων ἄρα καὶ ἡ ΒΑ τῆς ΑΔ .
ὀξεῖα ἄρα ἡ ὑπὸ ΞΑΗ γωνία . καὶ ἐπεὶ ἡ ΒΑ τῆς ΑΓ οὔκ ἐστιν ἐλάττων , καὶ ἡ ὑπὸ
6984134 ΜΚ
τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ
οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ
6975676 ΛΡ
ἐν τριγώνῳ οὖν τῷ ΚΛΡ μείζων ἐστὶν ἡ ΛΚ τῆς ΛΡ : αὕτη δὲ τῆς ΛΠ μείζων . ὥστε καὶ
ἀρχόμεναι ἀπὸ μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων
6975456 ٣٠
١١ ٤٣ ἡ αὐτῶν πλευρὰ ἢ καὶ ΔΖ ٠ ٥ ٣٠ ٤ ٤٧ καὶ ἀσύμμετρος τῇ ΑΓ . , ]
καὶ δεύτερα σοϚ . καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι
6970550 ΚΒ
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ
6966064 ΑΞ
ΟΔ , ὡς δὲ τὸ ἀπὸ ΛΑ πρὸς τὸ ἀπὸ ΑΞ , τὸ ἀπὸ ΖΕ πρὸς τὸ ἀπὸ ΕΔ :
ὡς ἄρα ἡ ΚΑ πρὸς ΑΔ , ἡ ΗΑ πρὸς ΑΞ . ἔστι δὲ καί , ὡς ἡ ΓΑ πρὸς
6962011 ΤΟ
δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ :
τὸ Ξ κέντρον γεγραμμένου κύκλου τοῦ ΜΝΠΦ αἱ ΡΟ ΥΟ ΤΟ , καὶ ἀπὸ τῶν διχοτομούντων τὰς ΟΟ περιφερείας σημείων
6961703 ΔΜ
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ
6961676 ٢٦
ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ τῆς
٥٠ ٢٠ τὸ ἀπὸ ταύτης ٤٢ ٥٢ ٢ ٢٣ ٣٣ ٢٦ ٤٠ ὃ μέλλει πρὸς τὸ ἀπὸ τῆς ΘΗ παραβληθῆναι
6961535 ΑΘ
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ
6961350 ΧΦ
ΧΚ καὶ ἡ ΧΦ , καὶ ἀπὸ τοῦ Σ τῇ ΧΦ παράλληλος ἡ ΣΨ , ἀπὸ δὲ τοῦ Ψ τῇ
ἡ ΚΧ πρὸς τὴν ΧΑ : παράλληλος ἄρα ἐστὶν ἡ ΧΦ τῇ ΚΒ . καὶ ἐπεὶ ἑκατέρα τῶν ΟΦ ,

Back