κατὰ τὸ Π , πρὸς ὀρθὰς δὲ αὐτῇ ἔστω ἡ ΕΠΖ , καὶ ὄμματα τὰ Β , Θ μεταξὺ κείμενα
. λελείφθω , καὶ ἔστω τὰ ἐπὶ τῶν ΘΟΕ , ΕΠΖ , ΖΡΗ , ΗΣΘ : λοιπὴ ἄρα ἡ πυραμίς
7449641 ΖΡΗ
καὶ ἡ ὑπὸ ΒΡΗ , καὶ ὅλη ἄρα ἡ ὑπὸ ΖΡΗ δοθεῖσά ἐστιν . ἦν δὲ καὶ ἡ ὑπὸ ΡΖΗ
τῷ ΕΝ κώνῳ , ἀλλὰ τὰ ΕΘΟ , ΕΠΖ , ΖΡΗ , ΗΣΘ ἀποτμήματα ἐλάσσονά ἐστι τοῦ Ψ στερεοῦ ,
6511156 ἐπιζευχθεισης
ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ
μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως
6264723 ἐκβαλλομενη
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω
6260929 ΑΓΖ
δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ ΑΔΒΖ παραλληλόγραμμον τῷ ΑΓΖ τριγώνῳ , καὶ κοινοῦ ἀφαιρουμένου τοῦ ΑΕΒΖ λοιπὸν τὸ
. ἐπεὶ οὖν ὀρθὴ ἡ ὑπὸ ΓΖΑ , ἡ ὑπὸ ΑΓΖ ἄρα ἐλάσσων ὀρθῆς . τὴν δὲ μείζονα γωνίαν ἡ
6166174 συμπτωσις
καὶ συγχυθῇ : ἔστι δὲ καὶ αὐτὸ ἀνίατον . Ἡ σύμπτωσις ἐναντία ἐστὶ τῇ πλατυκορίᾳ , ὅταν συμπίπτῃ καὶ στενῶται
πένω . Πότμος . ὁ θάνατος , καὶ ἡ ἐσχάτη σύμπτωσις τοῦ βίου . ἀπὸ τοῦ πεσεῖν . ἐπὶ δὲ
6120936 ἀντιστραφεισης
ἐλάττονα μερικὴν καταφατικὴν ἀναγκαίαν : αὕτη γὰρ τῆς μερικῆς καταφατικῆς ἀντιστραφείσης , τῆς ἐλάττονος λέγω ἀναγκαίας , ἀνάγεται εἰς τὸν
δὲ μείζων καθόλου καταφατικὴ ἐνδεχομένη , ὁ αὐτὸς ἔσται συλλογισμὸς ἀντιστραφείσης τῆς ἀποφατικῆς ὑπαρχούσης . καὶ τέως δεικτέον τὴν ἐκ
6106484 Προσωπον
ἱκανοὶ γὰρ οἱ γενιῶντες πρὸς τὸ λέγειν . Σωρανός . Πρόσωπον . ἀπὸ τοῦ πρόσω καὶ ἔμπροσθεν τοὺς ὦπας ἔχειν
, οὐ δεδορκότες , κίνησις σχολαία , φωνὴ ἠπία . Πρόσωπον ἀνιαροῦ ἰσχνόν , μέτωπον ῥυσσόν , ὀφρύες ἀπεστραμμέναι ,
6082904 ἐκκοπτεσθω
δὲ φθαρῇ τὰ τῶν ὀστέων πέρατα ἑκατέρωθεν , περιτιτράσθω καὶ ἐκκοπτέσθω . ἐκ πληγῆς δὲ τῆς διαστάσεως γεγενημένης , ἀνυπερθέτως
, ἑκατέρωθεν περιτιτράσθω τῷ τρυπάνῳ τὸ τῆς κεφαλῆς ὀστοῦν καὶ ἐκκοπτέσθω , καὶ τῇ πυοποιῷ ἀγωγῇ θεραπευέσθω , ὡς ἐπὶ
6063792 βασεως
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν :
6057489 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
6036430 ΒΔΜΛ
ἡ ΒΓ πρὸς τὴν ΖΗ . καί ἐστι τοῦ μὲν ΒΔΜΛ στερεοῦ ἕκτον μέρος ἡ ΑΒΓ πυραμὶς τοῦ ΖΘΡΟ στερεοῦ
ὕψεσιν , ἴσα ἐστὶν ἐκεῖνα . ἴσον ἄρα ἐστὶ τὸ ΒΔΜΛ στερεὸν τῷ ΖΘΡΟ στερεῷ . καί ἐστι τοῦ μὲν
6003738 ΑΕΖ
δὴ δείξομεν , ὅτι ἴση ἐστὶν ἡ ΑΔΖ περιφέρεια τῇ ΑΕΖ περιφερείᾳ . καὶ τετμήσθω ἡ ΑΖ περιφέρεια δίχα κατὰ
καὶ ἐν ταῖς αὐταῖς παραλλήλοις : τὸ δὲ ΗΕΖ τῷ ΑΕΖ ἴσον : τὸ ἄρα ΑΓΔ τοῦ ΑΕΖ μεῖζόν ἐστιν
5992911 ΕΒΖ
ἀλλήλων οἱ κύκλοι : ἐφάψεται ἄρα ὁ ΑΒ κύκλος τοῦ ΕΒΖ κύκλου . διὰ ἄρα τοῦ δοθέντος σημείου τοῦ Β
τὸ ΓΑΔ πρὸς τὸ ΕΚΖ . εἶχε δὲ καὶ τὸ ΕΒΖ πρὸς τὸ ΕΚΖ διπλασίονα λόγον ἤπερ τὸ ΓΑΔ πρὸς
5976886 ἀσυμπτωτος
ἧς ἄξων ὁ ΑΒ , κέντρον δὲ τὸ Ε , ἀσύμπτωτος δὲ ἡ ΕΤ , ἡ δὲ δοθεῖσα γωνία ὀξεῖα
, ΓΕ . Τῶν αὐτῶν ὄντων δεικτέον , ὅτι ἑτέρα ἀσύμπτωτος οὐκ ἔστι τέμνουσα τὴν περιεχομένην γωνίαν ὑπὸ τῶν ΔΓΕ
5974216 ΝΥ
Ν , Ο , Π τῇ ΑΒ παράλληλοι ἤχθωσαν αἱ ΝΥ , ΟΣ , ΤΠ : ἴσον ἄρα ἐστὶ τὸ
τῆς ΖΝ βάσεως , ὑπερέχει καὶ τὸ ΛΥ στερεὸν τοῦ ΝΥ [ στερεοῦ ] , καὶ εἰ ἴση , ἴσον
5950461 ἀντικειμενη
τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ
φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς
5949724 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
5946454 ΖΘΡΟ
τῶν ὁμολόγων πλευρῶν . τὸ ΒΔΜΛ ἄρα στερεὸν πρὸς τὸ ΖΘΡΟ στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν
ἑξαπλάσιον τὸ ΒΔΜΛ στερεόν , τῆς δὲ ΕΖΗΘ ἑξαπλάσιον τὸ ΖΘΡΟ στερεόν , ἴσον ἄρα ἐστὶ τὸ ΒΔΜΛ στερεὸν τῷ
5938675 ἐκβληθεισης
ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων
ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ
5923982 ΞΝ
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ
5918935 Ταρρακωνησιας
μέχρι τῶν τῆς Λουσιτανίας ὅρων περίπλους . Λουσιτανίας περίπλους . Ταρρακωνησίας περίπλους . Τῆς καλουμένης Κελτογαλατίας περίπλους . Τὰ δὲ
Οἰάσσω λεγόμενον τοῦ περίπλου τῆς παρὰ τὸν ὠκεανὸν παραλίας τῆς Ταρρακωνησίας εἰσὶ στάδιοι οὐ πλεῖον ͵͵ατκζʹ , οὐκ ἔλαττον σταδίων
5868707 λεληφθω
, ἧς ὑπερέχει ὁ ΖΘΜΝ κύκλος τοῦ Α στερεοῦ . λελήφθω καὶ ἔστω τὰ ἐπὶ τῶν ΕΞΖ , ΘΗΠ ,
ὅλου κυλίνδρου , ἃ ἔσται ἐλάττονα τοῦ Ρ στερεοῦ . λελήφθω καὶ ἔστω τὰ ἐπὶ τῶν ΑΕΒ , ΒΖΓ ,
5833390 ἀντεστραμμενα
ΒΓΔ τῆς ΑΒ ἐφαπτέσθω κατὰ τὸ Β , καὶ ἐχέτωσαν ἀντεστραμμένα τὰ κυρτά , καὶ συμπιπτέτω πρῶτον ἡ ΒΓΔ τῇ
τῇ Ε συμβάλλει . Ἐὰν ὑπερβολὴ μιᾶς τῶν ἀντικειμένων ἐπιψαύῃ ἀντεστραμμένα τὰ κυρτὰ ἔχουσα , ἡ ἀντικειμένη αὐτῇ τῇ ἑτέρᾳ
5832007 ἐπιφανειας
ἧς δεῖ τὴν διάμετρον ἐκθέσθαι , καὶ εἰλήφθω ἐπὶ τῆς ἐπιφανείας τῆς σφαίρας δύο τυχόντα σημεῖα τὰ Α , Β
, πρότερον δὲ καταδεδυκότων διὰ τὴν κυρτότητα τῆς τοῦ ὕδατος ἐπιφανείας . Τούτου δὲ θεωρηθέντος , εἴ τις ἐφεξῆς καὶ
5825105 ΡΘ
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ
5815918 καταφανους
ταύτῃ πορευτέον . ἀμελῆσαι δὲ οὐ θεμιτόν ἐστι θεῶν , καταφανοῦς γενομένης τῆς πάντων αὐτῶν κατὰ τρόπον λεγομένης φήμης εὐτυχοῦς
εἰς τὰ Κεντόριπα παρεισπεσεῖν εἰσδεχομένων αὐτόν τινων πολιτικῶν ἀνδρῶν , καταφανοῦς δὲ τῆς ἐπιβουλῆς γενομένης καὶ τῶν φρουρῶν παραβοηθησάντων ἐξέπεσεν
5809410 ταπεινοτερα
καὶ δι ' ὃ πάντα ἐστὶν ὁμοῦ , τά τε ταπεινότερα τά τε ὑψηλότερα . ἀλλ ' ὅσα μέν ἐστιν
ιαʹ . Τῶν ἄνω τοῦ ὄμματος ἐπιπέδων κειμένων τὰ πόρρω ταπεινότερα φανεῖται . ἔστω γὰρ ὄμμα τὸ Β κάτω τοῦ
5805454 ΞΓΔ
ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα
κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα
5785876 ΑΘ
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ
5781791 ἐφαπτηται
ἦκται ἡ ΑΒ : ὅπερ ἔδει ποιῆσαι . Ἐὰν κύκλου ἐφάπτηταί τις εὐθεῖα , ἀπὸ δὲ τοῦ κέντρου ἐπὶ τὴν
ὀρθαὶ αἱ πρὸς τῷ Κ ; ἐπεὶ κύκλου τοῦ ΑΓΒΔ ἐφάπτηταί τις εὐθεῖα ἡ ΗΘ , ἀπὸ δὲ τοῦ κέντρου
5779608 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
5772657 ΞΓ
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ
5734058 ΜΓ
χρόνω δύνουσιν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ΜΓ , ΑΗ περιφέρειαι ἐν ἴσῳ χρόνῳ δύνουσιν . καὶ
τοῦ ζῳδιακοῦ κύκλου ] . δεῖ δὲ τὴν ἴσην τῇ ΜΓ ἀνατέλλουσαν μεταξὺ πάλιν εἶναι τῶν αὐτῶν παραλλήλων , διότι
5732577 συμπιπτει
, ὅτι καὶ ὡς ἐπὶ τὰ Ζ , Β ἐκβαλλομένη συμπίπτει . ἡ ΓΔ ἄρα ἐκβαλλομένη ἐφ ' ἑκάτερα συμπεσεῖται
' ἐκ παθημάτων τὸ στόμα τῆς κοιλίας στενόν ἐστι , συμπίπτει μὲν τὰ ὅμοια , λυομένων δὲ τῶν παθῶν ἀνὰ
5732470 στρεφομενης
δὲ καὶ τοῦτο , ποῖον τῶν φώτων ἐν τῇ γενέσει στρεφομένης τῆς τοῦ παντὸς φορᾶς πρῶτον ἔρχεται εἰς τὸ ὑπόγειον
. καὶ οἱ μὲν διὰ τῶν πόλων τῆς σφαίρας πάντες στρεφομένης τῆς σφαίρας ἐφαρμόζουσιν ἑαυτοῖς , οἱ δὲ λοξοὶ πάντες
5731166 ΕΧ
τῇ ὑπὸ ΘΗΧ ἐστιν ἴση . παράλληλος ἄρα ἐστὶν ἡ ΕΧ τῇ ΗΘ . πεποιήσθω δή , ὡς ἡ ΠΗ
ἐστὶν ἡ ΔΧ τῇ ΧΖ , ἴση ἄρα καὶ ἡ ΕΧ τῇ ΖΗ : ὥστε καὶ ἡ ΓΗ ἴση τῇ
5728667 γευστικον
μέρος αὐτοῦ πνευματικὴ ὅρασις καὶ πνεῦμα ἀκουστικὸν καὶ ὀσφρητικὸν καὶ γευστικὸν καὶ ἁπτικόν . τοῦτο τὸ πνεῦμα ἀνάλογον γενόμενον διανοίας
ὥσπερ ἐκεῖ τὸ δίοσμον . ἔτι εἰ , διότι τὸ γευστικὸν καὶ ἅπτεται , ἔστιν ἐγχωροῦν καὶ ἁφὰς εἶναι πλείονας
5713536 Συμπεπληρωσθω
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν
5705781 ἡμισεια
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ :
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία
5682626 ἐφαπτομενη
διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια
, καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα
5681389 ἀνακλωμενας
ἢ κατ ' εὐθείας ἢ κατὰ καμπύλας ἢ κατ ' ἀνακλωμένας , γραμμὰς ἀδήλους λόγῳ θεωρητὰς καὶ ἀσωμάτους . κατὰ
ἐπεὶ ἴση ἐστίν . , ] διὰ τὸ τὰς μὲν ἀνακλωμένας ἴσας εἶναι , ἐκβληθείσης δὲ τῆς ΘΓ τὰς κατὰ
5679762 ὑπερθερμανθῃ
: καὶ ὁκόταν ὑπερυγρανθῇ , καὶ τοῦτο αὐτὸ τὸ ὑγρὸν ὑπερθερμανθῇ ὑπ ' αὐτῆς τῆς σαρκὸς , σκίδναται ἀνὰ τὸ
μάλιστα μεθίσταται τὰ νουσήματα : ὁκόταν γὰρ ἡ ἄνω κοιλίη ὑπερθερμανθῇ , ἕλκει ἐφ ' ἑωυτὴν , καὶ ὑποδέχεται ὁ
5672294 συμπεσειται
ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ .
Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ
5671223 ΘΟΕΠΖΡΗΣ
σημεῖον , πρὸς τὴν πυραμίδα , ἧς βάσις μὲν τὸ ΘΟΕΠΖΡΗΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον . καὶ
στερεοῦ , λοιπὴ ἄρα ἡ πυραμίς , ἧς βάσις τὸ ΘΟΕΠΖΡΗΣ πολύγωνον , ὕψος δὲ τὸ αὐτὸ τῷ κώνῳ ,
5663347 ΑΜΒ
καὶ ἐπεζεύχθω ἡ ΛΖ . ἐπεὶ οὖν αἱ ΑΗΒ , ΑΜΒ τομαὶ κατὰ τὰ Α , Β ἐφάπτονται , κατ
πλαγία πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα τὸ ὑπὸ ΑΜΒ πρὸς τὸ ἀπὸ ΜΝ , ἡ πλαγία πρὸς τὴν
5655628 ΒΧ
ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ
ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ ,
5647344 ἐγκλινομενης
ζῳδιακοῦ θέσεσιν , ὡς ἐπὶ τῶν καθ ' ἡμᾶς οἰκήσεων ἐγκλινομένης καὶ τῆς ΔΕ πρὸς τὴν ΒΖ τουτέστιν γωνίαν ποιούσης
τῶν τριῶν καρπὸς ἐκτείνεται , κατὰ μὲν τὸν μικρὸν δάκτυλον ἐγκλινομένης ὡς ἐπὶ τὸ πρηνὲς σχῆμα τῆς ἄκρας χειρός ,
5646189 γηʹ
τοῦ ζʹ , οὐδὲ μὴν ἡ κατὰ διάμετρον αὐτῇ ἡ γηʹ : τῆς γὰρ εδʹ περιφερείας ἀνατελλούσης ἡ κατὰ διάμετρον
∠ ʹγιβʹ , καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥρας μιᾶς γηʹ : ἡ δὲ Πέλλα ἔχει τὴν μεγίστην ἡμέραν ὡρῶν
5644448 αβʹ
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ
5643505 κομπασματα
] τὰ παλαιὰ αὐτῶν κομπάσματα . κομπάσματα ] ἀλαζονεύματα . κομπάσματα ] ἐπάρσεις , κενοδοξίαι . κομπάσματα ] ὑψηγορήματα .
θ ὀβρίμων ] ἰσχυρῶν . ὀβρίμων ] μεγαλαύχων . θ κομπάσματα ] τὰ παλαιὰ αὐτῶν κομπάσματα . κομπάσματα ] ἀλαζονεύματα
5643480 Δραγγιανη
ἐκτὸς Ἰμάου ὄρους Σηρική : πίναξ θʹ . Ἀρεία Παροπανισάδαι Δραγγιανή Ἀραχωσία Γεδρωσία : πίναξ ιʹ . Ἰνδικὴ ἡ ἐντὸς
Γεδρωσίας , δυτικὴν ἐχούσης τὴν Καρμανίαν , ᾗ ὑπόκειται ἡ Δραγγιανή . Τὴν δὲ λοιπὴν τὴν μέχρι τῶν Θινῶν ἤπειρον
5643186 τετμημενης
ὑπὸ ΑΓΔ τῆς ὑπὸ ΒΑΕ . ὁμοίως δὴ τῆς ΒΓ τετμημένης δίχα δειχθήσεται καὶ ἡ ὑπὸ ΒΓΗ , τουτέστιν ἡ
ἀφορίζουσαι αὐτήν . ἰσοσκελὲς ἄρα τὸ τρίγωνον , καὶ δίχα τετμημένης τῆς βάσεως ἡ ἐπιζευχθεῖσα ὀρθὰς ποιήσει γωνίας καὶ ἐλάσσων
5637843 πυραμιδος
οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον
ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ
5637203 εὐθυμετρικον
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
5632613 ΕΞΖ
μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι αἱ ΚΡΛ , ΕΞΖ , ΑΝΒ , ΗΟΘ , ΓΠΔ περιφέρειαί εἰσιν .
τὸ Α στερεὸν τῆς πυραμίδος τῆς βάσιν μὲν ἐχούσης τὸ ΕΞΖ ΟΗΠΘΡ πολύγωνον , κορυφὴν δὲ τὸ Ν σημεῖον .
5628762 ἐναρμοσαι
, καὶ εὐθείας τῆς ΔΕ , εἰς τὰς ΑΒ ΒΓ ἐναρμόσαι εὐθεῖαν ἴσην τῇ ΔΕ καὶ παράλληλον αὐτῇ . Τοῦτο
' ὅλου ἡ ἔξαψις κατὰ συμφωνίαν τῶν ἁρμοσθέντων πρὸς τὸ ἐναρμόσαι οἷόν τε . οὕτω γὰρ καὶ ὀφθαλμὸς ὁρᾷ οὐ
5628652 καθετων
τῆς ΔΒ καὶ τῆς ΒΘ καὶ ἔτι τῆς ΕΘ , καθέτων δ ' ἀγομένων ἐπὶ μὲν τὴν ΔΒ τῆς ΖΚ
κώνου , οὗ βάσις μὲν ὁ ὑπὸ τῶν πτώσεων τῶν καθέτων γραφόμενος κύκλος , κορυφὴ δὲ ἡ αὐτὴ τῷ ἐξ
5621791 ΑΔΒ
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ
5621486 προσεικασται
, τὰ δὲ ὑπὸ τὴν γαστέρα κόκκῳ γνησιωτάτῳ καὶ καλλίστῳ προσείκασται , κεφαλὴ δὲ καὶ δέρη λευκὰ ἄμφω . φθέγγεται
αὐτῆς θαλάττης θρέμμα . ἔχει δὲ πτερύγια , καὶ χρυσῷ προσείκασται ὅσα γε ἰδεῖν τὰ παρ ' ἑκάτερα , καὶ
5619439 ΤΜ
ΚΛ δύνει ἤπερ ἡ ΛΞ . πάλιν , ἐπεὶ ἡ ΤΜ τῆς ΗΞ μείζων ἐστὶν ἢ ὁμοία , ἔστω τῇ
μείζων ἐστὶν ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς
5609044 Τραχειας
ἀνατείνων δὲ πρὸς ἄρκτους , ἐγγυτάτω μὲν πρὸς Σελινοῦντα τῆς Τραχείας Κιλικίας ἐν διάρματι χιλίων σταδίων , πρὸς Σίδην δὲ
εἴ τι ἄλλο πόλισμα ἔρημον ἢ ὀλιγάνθρωπον ἦν τῆσδε τῆς Τραχείας Κιλικίας , συνῴκιζε : τοὺς δέ τινας αὐτῶν καὶ
5605795 ΓΧ
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς
5603254 ΡΣ
, Μ , Ν σημεῖα παράλληλοι κύκλοι οἱ ΟΠ , ΡΣ , ΤΥ , ΦΧ , καὶ γεγράφθωσαν διὰ τῶν
λόγον τέτμηται , καὶ τὸ μεῖζον αὐτῆς τμῆμά ἐστιν ἡ ΡΣ . ἴση δὲ ἡ ΡΣ τῇ ΥΦ : τῆς
5598833 Ἀδρυμητος
δὲ τὴν Σύρτιν ταύτην Νεάπολίς ἐστι . Παράπλους δὲ ἀπὸ Ἀδρύμητος ἐπὶ Νέαν πόλιν ἡμέρας ἐστί . Μετὰ δὲ Νέαν
καὶ ἀρσενικῶς καὶ θηλυκῶς καὶ οὐδετέρως . κέκληται ἀπό τινος Ἀδρύμητος , τῆς γενικῆς παραχθείσης εἰς εὐθεῖαν , καὶ τὸ
5592095 ΔΒΕ
ὡς ἄρα τὸ ΔΒΕ τρίγωνον πρὸς τὸ ΗΘΙ , τὸ ΔΒΕ πρὸς τὸ ΓΒΘ . ἴσον ἄρα ἐστὶ τὸ ΗΘΙ
ΒΕ , ΔΓ , ΖΗ : ἴσον ἄρα ἐστὶν τὸ ΔΒΕ τρίγωνον τῷ ΔΓΕ τριγώνῳ . κοινὸν προσκείσθω τὸ ΔΑΕ
5587928 ΓΠ
ἐπεί ἐστιν , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΓΠ πρὸς ΑΟ , καί ἐστιν ἡ μὲν ΓΠ τῆς
δευτέρας καταγραφῆς , καὶ ἐπεζεύχθωσαν αἱ ΒΞ , ΞΓ , ΓΠ . ἐπεὶ οὖν αἱ ΒΞΓ τῆς ΒΓ μείζους εἰσίν
5585377 Τιγγιτανης
καὶ ιε κθ ∠ ʹ . Πόλεις δέ εἰσι τῆς Τιγγιτανῆς μεσόγειοι αἵδε [ ἐπίσημοι ] : Ζιλία . .
περίπλους . Τὰ δὲ κατὰ μέρος οὕτως ἔχει . Μαυριτανίας Τιγγιτανῆς περίπλους . Λιβύης τῆς ἐντὸς περίπλους . Περὶ τῶν
5584539 αβγʹ
. Διὰ γὰρ τῶν πόλων τῆς σφαίρας κύκλος μένων ὁ αβγʹ ὁριζέτω τό τε φανερὸν τῆς σφαίρας καὶ τὸ ἀφανές
δὲ αἰεὶ φανερῶν ἔστω ὁ αδʹ , ὧν ἐφάπτεται ὁ αβγʹ ὁρίζων , καὶ γεγράφθω τις μέγιστος κύκλος ἐφαπτόμενος τῶν
5583548 ΛΝ
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ
5576227 διχοτομιας
, ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος
τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον .
5574973 ὁποτερασουν
τροπῶν θερινῶν ἐπὶ τροπὰς χειμερινὰς ἴσαι ἔσονται αἱ ἴσον ἀπέχουσαι ὁποτερασοῦν ἡμέρας . Ἔστω ὁρίζων ὁ ΑΒΓΕ , θερινὸς δὲ
, , ] διὰ τὸ ιεʹ : ἴσον γὰρ ἀπέχουσιν ὁποτερασοῦν τῶν συναφῶν ἀπὸ τοῦ σχολίου τοῦ ζ ∻ .
5572302 ΩΨ
διπλῆ ἡ ΦΧ : πενταπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΩΨ τοῦ ἀπὸ τῆς ΧΦ . καὶ ἐπεὶ τετραπλῆ ἐστιν
δὲ ΣΟ τῇ ΨΥ ἴση , καὶ τὰ ἀπὸ τῶν ΩΨ , ΨΥ τριπλάσιά εἰσι τοῦ ἀπὸ τῆς ΟΝ .
5570345 διχοτομια
γὰρ ὄντος τοῦ ΑΕΓ , οὗ διάμετρος ἡ ΑΓ , διχοτομία δὲ τὸ Ε , καὶ κέντρον τὸ Ζ ,
λαιὸν εὐώνυμον λέγεται κέρας καὶ οὐρά . αὕτη δὲ ἡ διχοτομία τοῦ μήκους ὀμφαλὸς προσαγορεύεται καὶ στόμα καὶ ἀραρός .
5569883 χαμαιακτη
ὥσπερ ἐκεῖνο παρδάλεις . Ἀκτὴ ἥ τε δενδρώδης καὶ ἡ χαμαιάκτη ξηραντικῆς ἀμφότεραι δυνάμεώς εἰσι τῆς κολλητικῆς τε καὶ μετρίως
, πολύχυλον , οἰνώδη . τὸ δ ' ἕτερον αὐτῆς χαμαιάκτη καλεῖται , ὑφ ' ὧν δ ' ἕλειος ἀκτῆ
5568922 ΡΥ
, καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ
ἡ μὲν ΖΡ τῇ ΡΣ , ἡ δὲ ΡΝ τῇ ΡΥ , δύο αἱ ΖΡΝ δυσὶ ταῖς ΣΡΥ ἴσαι εἰσίν
5568751 φωτιζομενον
πρὸς τὸ ἐν πυρὸς αὐγῇ , τὸ ἀπὸ τοῦ πυρὸς φωτιζόμενον . . . . ψ ἐν πυρὸς αὐγῇ :
ἄπειρον ἐκπίπτουσα . οἷον ἔστω φωτίζον μὲν τὸ αβ , φωτιζόμενον δὲ τὸ γδ , ἴσα δὲ ἀλλήλοις καὶ σφαιρικά
5567003 ἀπεσπασται
αὐτῆς τί ἐστι τῆς οὐσίας , ἡ δὲ δυὰς πολὺ ἀπέσπασται τῆς μονάδος : ἀλλ ' ὡς δεύτερος ὅλος κόσμος
τε εἶναι αὐτήν , ἐπειδήπερ καὶ τὸ ἀφ ' οὗπερ ἀπέσπασται ἀθάνατόν ἐστι . τὰ δὲ ζῷα γεννᾶσθαι ἐξ ἀλλήλων
5566723 ἐνοπτρον
κυρτῶν ἐνόπτρων ἀνεστραμμένα φαίνεται . ἔστω ὕψος τὸ ΑΕ , ἔνοπτρον δὲ κυρτὸν τὸ ΑΔΓ , ὄψεις δὲ αἱ ΒΔ
τῆς περιφερείας , αἱ ὄψεις ἀνακλώμεναι συμπεσοῦνται . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , κέντρον δὲ τῆς σφαίρας τὸ Β
5564591 ὑποτεινουσης
ʂ α Μο α , καὶ γίνεται συναμφοτέρου τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν τὸ ἥμισυ ἐφ ' ἑαυτὸ
τῷ ἐμβαδῷ αὐτοῦ , λείψας τὸν ἐν συναμφοτέρῳ τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν , ποιῇ δοθέντα ἀριθμόν .
5559102 ΑΒΔ
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ :
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου
5552409 ἐλασμα
, καὶ τῇ δεομένῃ πλευρᾷ ἀναιρέσεως πλατὺ μήλης ἢ μηνιγγοφύλακος ἔλασμα ὑπερειδέσθω ἕδρας χάριν , καὶ ἡ ἀκμὴ τοῦ τρυπάνου
φοινίκων καὶ κυδωνίων καὶ μυρσίνης καταπλάσμασι καὶ κηρωταῖς χρῆσθαι . ἔλασμα δὲ μολύβδου πλατὺ καὶ λεπτὸν ὑποβλητέον τῇ ὀσφύι νυκτός
5552198 χελωνιοις
, ἵνα μὴ διολισθαίνῃ τὸ ἅμμα , ἢ τὸ βέλτιον χελωνίοις προσηλωμένοις , ὥστε δίχα ἐγκοπῆς ἑνωθῆναι τὸ ἔργον καὶ
τὸ χελώνιον μεδίμνας χωρεῖν πέντε . ὁ Ἀγαθαρχίδης δὲ τοῖς χελωνίοις χρῆσθαι † πλήοις † ὡς ὀροφώμασι τῶν καλυβῶν .
5550024 ΚΖΛ
τῷ ΚΖΛ . καὶ φανερόν , ὅτι ἴσον γίνεται τὸ ΚΖΛ τρίγωνον τῷ ΜΗΚΔ τετραπλεύρῳ . Τῶν αὐτῶν ὑποκειμένων ἐὰν
ΑΒ ἡ ΕΜ . ἐπεὶ οὖν ἴσον ἐστὶ τὸ ὑπὸ ΚΖΛ τῷ ἀπὸ ΑΖ , ἔστιν , ὡς ἡ ΚΖ
5549778 διαιρεθεντες
πειρασμῶν ταῖς φλογώσεσιν . ὡς γὰρ βιαίως οὕτως ἐξ ἀλλήλων διαιρεθέντες φύρδην ταῖς ὁλκάσιν εἰσήχθησαν , εὐρείαις τε οὔσαις καὶ
οὐ παριέντων οὐδ ' ὣς αὐτόν , οἱ μὲν ὁπλῖται διαιρεθέντες ἐς τὰ πλάγια τῆς ὁδοῦ καὶ τῆς ἀγορᾶς ἐπεχείρουν
5549258 στεφανη
βέλους δ ' αἱ ἀκίδες ὄγκοι καὶ πώγωνες καλοῦνται . στεφάνη δὲ εἶδος ἂν εἴη περικεφαλαίας , ὥσπερ καὶ κέρως
καὶ τὴν ἄτοκον : “ βοῦν ἥτις ἀρίστη . ” στεφάνη ἐπὶ μὲν τῆς κυκλοτεροῦς καταφορᾶς “ ὅντε κατὰ στεφάνης
5545497 ἁμμου
Ἐχινάσι νήσοις . ἐκδέχονται δὲ ταύτην τὴν παράλιον ἀέριοι θῖνες ἅμμου κατά τε τὸ μῆκος καὶ τὸ πλάτος , μέλανες
καὶ φαγεδαίνας καὶ τὰ ἕλκη τὰ σαπρὰ μετὰ γάλακτος καὶ ἅμμου καταπλασσομένη . ἡ δὲ ῥίζα αὐτῆς ὀπτὴ ἐσθιομένη ἔφηλιν
5542864 Σφαιρας
τὸ γʹ , καὶ ἔσται τὸ στερεὸν τοῦ κώνου . Σφαίρας ἡ διάμετρος ιγ : εὑρεῖν αὐτῆς τὸ στερεόν .
ΖΓ . ὅλη ἄρα ἡ ΒΓ περιφέρεια εὐθεῖα δόξει . Σφαίρας ὁπωσδηποτοῦν ὁρωμένης ὑπὸ ἑνὸς ὄμματος ἔλασσον ἀεὶ ἡμισφαιρίου φαίνεται
5537091 ἐξεστηκε
οὔτε λογισμόν , ἤτοι οὔτε τὸν λόγον , ἀλλ ' ἐξέστηκε τῆς φύσεως . οὐ τοῦτό φησιν , ὅτι ἔξω
διάκειται ἡ δύναμις καὶ τὸ ἔμφυτον θερμὸν τῆς οἰκείας κράσεως ἐξέστηκε , τότε πέττεται μέν , ἀλλὰ τὸ χείριστον καὶ
5535646 Χηλης
Κάνωβος κρύπτεται . ὡρῶν ιε : ὁ λαμπρὸς τῆς νοτίου Χηλῆς ἑῷος δύνει . Αἰγυπτίοις ἐπισημαίνει . Εὐκτήμονι καὶ Φιλίππῳ
. δʹ . ὡρῶν ιε : ὁ λαμπρὸς τῆς βορείου Χηλῆς κρύπτεται . Αἰγυπτίοις καὶ Καλλίππῳ χειμάζει , δυσαερία .
5529758 ῥαφης
καὶ τὰ διιστάμενα ὀστᾶ συνάγειν πρὸς τὴν κατὰ φύσιν τῆς ῥαφῆς συναρμογήν , ἔπειτα ὅλην τὴν κεφα - λὴν ἀποξυρᾶν
τῆς τε διαρθρώσεως αὐτῆς καὶ τοῦ κάτω πέρατος τῆς λαβδοειδοῦς ῥαφῆς . κάμπτουσιν οἱ μύες οὗτοι σὺν τῷ τραχήλῳ τὴν
5529514 ΑΚΖ
ἐστι : τὸ ἄρα ὑπὸ ΑΘΔ μεῖζόν ἐστι τοῦ ὑπὸ ΑΚΖ . ἀλλὰ τῷ μὲν ὑπὸ ΑΘΔ ἴσον ἐστὶ τὸ
τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου : ἡ ΑΚΖ ἄρα μείζων ἐστὶ τῆς , ὑφ ' ἣν ὑποτείνει
5528343 ΓΗΔ
ἤτοι ἐντὸς αὐτοῦ πεσεῖται ἢ ἐκτὸς ἢ παραλλάξει ὡς τὸ ΓΗΔ , καὶ κύκλος κύκλον τέμνει κατὰ πλείονα σημεῖα ἢ
καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΑΕΒ , ΒΖΓ , ΓΗΔ , ΔΘΑ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
5527366 ψωροφθαλμια
μικραὶ καὶ σκληραὶ ὑποτρέφονται . Περὶ ψωροφθαλμίας . Ἡ δὲ ψωροφθαλμία ἐστὶ κνησμός τις περὶ τὰ βλέφαρα ἐπιγενόμενος καὶ οἱ
μὲν ἐμφύϲημα ὄγκοϲ ἐϲτὶν οἰδηματώδηϲ τοῦ βλεφάρου , ἡ δὲ ψωροφθαλμία κνηϲμώδηϲ τοῦ βλεφάρου ψωρίαϲιϲ δι ' ἁλμυρὸν καὶ νιτρῶδεϲ
5525238 Λοιπη
εἰρηνικοὺς ἀλλὰ καὶ πολιτικοὺς ἤδη τινὰς αὐτῶν ἀπεργασάμενος τυγχάνει . Λοιπὴ δ ' ἐστὶ τῆς Ἰβηρίας ἥ τε ἀπὸ τῶν
καὶ δρυμῶν ἀβάτων ἐφ ' ἡμέρας πλείους ἐποίησαν μεστήν . Λοιπὴ δ ' ἐστὶ τῆς μεταξὺ Ἴστρου καὶ τῶν ὀρῶν
5519490 φεραιος
ὁ δὲ φεραῖος οὔ , καὶ τροφῇ χρῆται ὁ μὲν φεραῖος τῇ ἀφ ' αὑτοῦ γενομένῃ μύξῃ , ὁ δὲ
ὁ μὲν χελλὼν πρὸς τῇ γῇ νέμεται , ὁ δὲ φεραῖος οὔ , καὶ τροφῇ χρῆται ὁ μὲν φεραῖος τῇ
5516979 ἀξιοιμεν
τῶν θηλειῶν συγκρῖναι , ὁπότερον αὐτῶν ἐστιν ἀνδρειότερον , [ ἀξιοῖμεν ] τὸν ἀνδρειότατον ἄνδρα πρὸς τὴν ἀνδρειοτάτην γυναῖκα συγκρίνοντες
ἄλλων ἑκάστῳ , ὅτῳ ἂν καὶ δύνηται . εἴτε οὖν ἀξιοῖμεν γενέσθαι τι , φήσομεν ἐπιχειροῦντες δεῖν αὐτὸ γενέσθαι ,
5516314 συμπιπτῃ
ἀπὸ δὲ τῆς κορυφῆς εὐθεῖα ἀναχθῇ παρὰ τεταγμένως κατηγμένην καὶ συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ
ἕν . εἰ δὲ ἡ ΒΓ τῇ Δ τομῇ μὴ συμπίπτῃ , ὡς ἐπὶ τοῦ τρίτου σχήματος , διὰ μὲν
5511966 γεννητα
αἰσθητά , δόξῃ περιληπτὰ μετ ' αἰσθήσεως , γιγνόμενα καὶ γεννητὰ ἐφάνη . τῷ δ ' αὖ γενομένῳ φαμὲν ὑπ
' αὐτῆς ἐδημιούργησε , τὸ δὲ ἔσχατον αὐτῆς εἰς τὰ γεννητὰ καὶ φθαρτὰ σώματα διεκόσμησεν . Διευκρινηθέντων δὴ οὖν τούτων
5511358 ἐπιβεβηκε
δὲ ἀστράγαλος κατὰ μῆκος τοῦ ποδὸς κείμενος τῇ μὲν περόνῃ ἐπιβέβηκε καὶ συνήρμοσται ἀκινήτως . τοῖς δὲ τῆς κνήμης ὀστοῖς
γεγονότα πάντα ὑποζεύξας ἑαυτῷ περιέχεται μὲν ὑπ ' οὐδενός , ἐπιβέβηκε δὲ πᾶσιν . ἐπιβεβηκὼς δὲ καὶ ἔξω τοῦ δημιουργηθέντος
5511153 διεχον
αὐτῶν ἀνάπλους : εἶθ ' ὕστατον τὸ ἱερὸν ἀκρωτήριον , διέχον τῶν Γαδείρων ἐλάττους ἢ δισχιλίους σταδίους : τινὲς δ
ἱερὸν τοῦ Ἀπόλλωνος ἐκ Δήλου ἀφιδρυμένον , Ταναγραίων πολίχνιον Αὐλίδος διέχον σταδίους τριάκοντα , ὅπου μάχῃ λειφθέντες Ἀθηναῖοι προτροπάδην ἔφυγον

Back