, ὁ ἐπὶ τὰ ἔσω ἔχων τοὺς πόδας , καλεῖται ῥαιβός , ὁ διερραισμένος , ἤτοι διεφθαρμένος τὸ ἴσον τῆς | ||
οὐδ ' ὑπεξυρημένον : ἀλλά μοι , φησίν , εἴη ῥαιβός , ἀσφαλῶς βεβηκὼς καὶ ἐπὶ κνήμαισιν δασύς . μὴ |
. Ἀλλ ' ἐν ᾧ μὲν χρόνῳ τὸ Ν τὴν ΝΒ περιφέρειαν διελθὸν ἐπὶ τὸ Β παραγίγνεται , ἡ ΑΕ | ||
ἡ τοῦ εἰκοσαέδρου πλευρὰ ἡ ΜΒ τῆς τοῦ δωδεκαέδρου τῆς ΝΒ , δείξομεν οὕτως . Ἐπεὶ γὰρ ἰσογώνιόν ἐστι τὸ |
στήθεος ὀστέον ὑποδεδυκέναι , τὸ δὲ ἀπὸ τῆς ἀκρωμίης ὀστέον ὑπερέχειν καὶ ἐποχέεσθαι ἐπὶ τοῦ ἑτέρου , οὐδεμιῆς μεγάλης ἰητρείης | ||
. . : νομίζων τό τε δεξιὸν τῶν Λακεδαιμονίων ἔτι ὑπερέχειν τῶν ἐναντίων καὶ τὸ εὐώνυμον τὸ κατὰ τοὺς Μαντινεῖς |
ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ κῶνον καὶ ὁ ΕΒ κύλινδρος πρὸς τὸν ΖΔ κύλινδρον | ||
καὶ ὡς ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον , οὕτως ὁ ΓΔΘ κῶνος ἢ |
δέ εἰσιν ἄνισοι , ὥς φησιν , αἱ ΑΔ , ΛΔ . τὸ γὰρ ἀπὸ ΑΛ , τῶν # λ | ||
ἄρα οὐκ ἐφάπτεται τοῦ ΕΖΗΘ κύκλου : πολλῷ ἄρα αἱ ΛΔ , ΔΝ οὐκ ἐφάπτονται τοῦ ΕΖΗΘ κύκλου . ἐὰν |
ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ | ||
ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ , |
τὰ αὐτά . ὁμοίως δὴ δείξομεν ὅτι ἐστὶν ὡς ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , οὕτως ὁ ΔΘΕ τομεὺς | ||
ΛΘΕ , πρὸς τὴν ὑπὸ ΔΘΕ , τουτέστιν ἤπερ ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , ὡς δὲ ὁ ΛΘΕ |
δὲ τῇ τοῦ τετραγώνου πλευρᾷ γεγράφθω μεγίστου κύκλου τμῆμα τὸ ΖΗΘ . καὶ προσαναπεπληρώσθω τό τε ΕΓΗ τεταρτημόριον καὶ τὸ | ||
πρὸς τὸν ΖΗΘ κύκλον καὶ ἐξ οὗ ὃν ἔχει ὁ ΖΗΘ κύκλος πρὸς τὸ ὑπὸ τῶν ΖΒΘ εὐθειῶν καὶ τῆς |
καὶ ἤχθωσαν αὐτῆς δύο συζυγεῖς διάμετροι , ὀρθία μὲν ἡ ΑΕΓ , πλαγία δὲ ἡ ΒΕΔ , καὶ παρὰ τὰς | ||
ὁ ΑΒΓΔ περὶ κέντρον τὸ Ε καὶ διάμετρος αὐτοῦ ἡ ΑΕΓ ἐκβεβλημένη ἐπὶ τὸ Ζ κέντρον τοῦ διὰ μέσων τῶν |
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ | ||
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν |
τοῦ Θ ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐκβαλλομένη συμπεσεῖται τῇ ΘΓ . δυεῖν ἄρα εὐθειῶν τὰ αὐτὰ πέρατα ἔσται : | ||
ἀπὸ ΘΓ τοῦ ἀπὸ ΕΗ : μείζων ἄρα καὶ ἡ ΘΓ τῆς ΕΗ . καί εἰσι παράλληλοι : ἡ ΕΖ |
[ τῶν ] ΔΩ , ΩΒ , ἀναγραφομένου ἀπὸ τῆς ΒΩ τετραγώνου καὶ συμπληρουμένου τοῦ ἐπὶ τῆς ΩΔ παραλληλογράμμου καὶ | ||
Ω ἀρξάμενον ἀπὸ τοῦ Ξ τὴν ΞΩ διέρχεται , ἡ ΒΩ δύνει : ἐν ᾧ δὲ τὸ Ψ τὴν ΟΨ |
πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ , | ||
ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ |
ἡ ΒΓ πρὸς τὴν ΖΗ . καί ἐστι τοῦ μὲν ΒΔΜΛ στερεοῦ ἕκτον μέρος ἡ ΑΒΓ πυραμὶς τοῦ ΖΘΡΟ στερεοῦ | ||
ὕψεσιν , ἴσα ἐστὶν ἐκεῖνα . ἴσον ἄρα ἐστὶ τὸ ΒΔΜΛ στερεὸν τῷ ΖΘΡΟ στερεῷ . καί ἐστι τοῦ μὲν |
ὑπὸ ΒΚΑ τῆς ὑπὸ ΒΗΑ μείζων ἐστὶν ἐκτὸς οὖσα τοῦ ΒΗΚ τριγώνου . πολλῷ ἄρα ἡ ὑπὸ ΒΚΑ μείζων ἐστὶν | ||
, οὕτως ἡ ΒΑ πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ |
καὶ Δωρικῶς : ἄλλη ἀλλαχοῦ . . ΠΑΡΑΚΛΙΝΟΥΣΙ . Τὸ ΠΑ μακρὸν ἐδέξατο , καὶ τὸ ΚΛΙ βραχύ : ὢ | ||
! [ ] [ ἀναγκ ] [ ] [ ] ΠΑ ? ? [ ] [ ] ΟΞΩ ! [ |
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς | ||
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ |
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ | ||
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ |
: τὴν δὲ ΒΓΚ μοιρῶν σνη λη : καὶ τὴν ΒΓΝ μοιρῶν σϘ μα . Διὰ ταῦτα οὖν ὅταν ὁ | ||
ΑΓΒ ἴσαι ἀλλήλαις εἰσίν . αἱ ἄρα ὑπὸ ΑΓΒ , ΒΓΝ ταῖς ὑπὸ ΔΒΓ , ΓΒΜ ἴσαι εἰσίν . ὀρθαὶ |
٣ ١٢ ٢٥ τὸ ἀπὸ τῆς Θ ٢٥ ٤٢ ٥١ ٢٥ ٤٢ ٥٢ Ἡ Α μονάδων τεσσάρων , ἡ ΓΗ | ||
٤٦ τὸ ἅπαξ ὑπὸ τῶν ΑΒ , ΒΓ ٥ ٣٥ ٢٥ ١١ ٢٨ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ |
τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν | ||
τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ |
ΞΠ τῇ ΑΒ ἴση ἡ ΧΞ , καὶ ἐπεζεύχθω ἡ ΧΚ καὶ ἡ ΧΦ , καὶ ἀπὸ τοῦ Σ τῇ | ||
τὸ ἀπὸ ΚΕ τὸν συγκείμενον ἔχει λόγον ἐκ τοῦ τῆς ΧΚ πρὸς ΚΕ καὶ τοῦ τῆς ΖΚ πρὸς ΚΕ , |
καὶ τὸ Μαλλός θηλυκὸν ὄνομα πόλεως . Τὰ εἰς δύο ΛΛ προσηγορικὰ εἰ μὴ παραλήγοιεν Ι ὀξύνεται : μαλλός φαλλός | ||
[ ] [ ] Μ ! [ ] [ ] ΛΛ [ ] [ ] Ο [ ] [ ] |
σοι μοιχείας ἔχειν γραφὴν , ἀλλὰ καὶ φόνου κρίνεσθαι . ΤΗ ΜΕΤΑΘΕΣΕΙ ΤΗΣ ΑΙΤΙΑΣ , Ο ΚΑΛΕΙΤΑΙ ΧΡΩΜΑ . Ἀλλ | ||
Βατή τὸ τοῦ δήμου . . . . Τὰ εἰς ΤΗ παραληγόμενα τῷ Ε κύρια ὄντα βαρύνεται : Βρεμέτη Ὠκυπέτη |
ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ΑΗ ١٣ ٤٥ ٥٥ ٤٠ ἡ ἡμίσεια τῆς ΑΗ ٦ ٥٢ ٥٨ ٥٠ | ||
١ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ |
τὸ ΠΝ ὕψος , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον . καὶ ὡς ἄρα ὁ ΑΞ κύλινδρος πρὸς | ||
ΔΡ τῇ ΓΚ ἐστι παράλληλος , αἱ ἄρα ΔΡ , ΕΣ παράλληλοί τέ εἰσιν ἀλλήλαις καὶ ἐν ἑνί εἰσιν ἐπιπέδῳ |
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ | ||
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν |
ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ | ||
καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ |
٤ ٤٨ ٤٨ ٣٦ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢٣ ١٠ ٣ ١١ ٥٣ ٢٠ ἡ ΑΖ ١١ ٥١ | ||
τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ ٨ |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς | ||
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον |
καί ἐστι τὸ μὲν ὑπὸ τῶν ΓΖ , ΖΑ τὸ ΖΚ : ἴση γὰρ ἡ ΑΖ τῇ ΖΗ : τὸ | ||
ἄρα ἐστὶν ταῖς ΑΔ ΒΕ , καὶ ἴση ἐστὶν ἡ ΖΚ τῇ ΚΗ . ἐπεὶ δὲ τρεῖς εἰσιν παράλληλοι αἱ |
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
١٣ ٤٣ ἡ ΑΗ ٥ ١٣ ١١ ἡ ΓΚ ٢ ٤٨ ٤٠ ٥٧ ἡ ΚΜ ١ ١٤ ٣٠ ٢ ١٢ | ||
١ ١١ ١٦ τὸ ὑπὸ τῶν ΒΑ , ΑΖ ٢ ٤٨ ١٠ ٤ ٤٥ Ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΖ |
, διὰ δὲ τοῦ Κ τῇ ΑΒ παράλληλος ἤχθω ἡ ΚΝ , καὶ ἐκβεβλήσθω ἡ ΔΘ ἐπὶ τὸ Ν . | ||
τὸ Α ὄμμα ἐπὶ τὸ Ν , καὶ περὶ τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ |
κ , οἵων ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριγ μγ : ὥστε καί , οἵων | ||
ὡς μὲν ἡ ΖΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΖΗ πρὸς τὴν ΗΕ , ὡς δὲ ἡ ΜΔ πρὸς |
ἄρα ΣΤ ἐπὶ τὸ Τ παρῆκται διὰ τὸ καὶ τὴν ΜΣ παρῆχθαι ὡς ἐπὶ τὸ Τ μᾶλλον τῶν ἄλλων ἀκτίνων | ||
τῇ ΜΣ . καὶ δοθεῖσά ἐστιν ἑκάστη τῶν ΜΛ ΛΒ ΜΣ ΣΑ [ οὕτως καὶ ἡ ΖΗ ΔΕ καὶ ΒΛ |
τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΤΧ . καί ἐστιν ἡ ΣΞ ἔγγιον τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΤΧ . ἐν | ||
, ΠΚ ἑξῆς ἴσαι ἀλλήλαις εἰσίν , αἱ ΝΣ , ΣΞ ἄρα ἑξῆς ἀλλήλων μείζους εἰσὶν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
ΑΔ παράλληλος ἤχθω ἡ ΒΕ . Παραλληλόγραμμον ἄρα ἐστὶ τὸ ΑΔΕΒ : ἴση ἄρα ἐστὶν ἡ μὲν ΑΒ τῇ ΔΕ | ||
περιεχομένῳ ὀρθογωνίῳ . Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΑΒ τετράγωνον τὸ ΑΔΕΒ , καὶ ἐπεζεύχθω ἡ ΒΔ , καὶ διὰ μὲν |
٢٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ٥٠ ٢٨ ٥٩ ἡ αὐτοῦ πλευρά ١ ٤١ ٨ ἡ ΖΗ ٥ | ||
٢٤ ١٦ τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ |
τὰ οὖν ΗΘ ΘΙ τμήματα ἐλάττω ἐστὶ τοῦ περὶ τὴν ΗΙ τμήματος τοῖς τμήμασι [ καὶ ] τοῖς ὑπὸ τοῦ | ||
τμήμασιν ἀπὸ τοῦ ἐντὸς κύκλου . τὸ γὰρ ἐπὶ τῆς ΗΙ τμῆμα ἴσον ἦν τοῖς τε ΗΘ ΘΙ τμήμασι καὶ |
τῶν τεσσάρων , ΔΥ τοσούτων ὅσων ἐστὶ δπλ . τοῦ ἐμβαδοῦ , τὸν μὲν αον ΔΥ ͵δνϚ , τὸν δὲ | ||
μεῖζον , τῶν δὲ μετ ' αὐτὴν ἡ περίμετρος τοῦ ἐμβαδοῦ ἐλάσσων . πρῶτος τετράγωνος καὶ ἐν ἀρτίοις πρώτη τετρακτύς |
ἀπὸ τῶν ΚΖ , ΖΕ , τουτέστι τοῦ ἀπὸ τῆς ΕΚ : ἡ ΓΕ ἄρα ἐλάσσων ἐστὶ τῆς ΕΚ . | ||
τῶν ΕΚ ΚΒ : ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΕΚ πρὸς τὸ ἀπὸ τῆς ΚΛ , οὕτως ἡ ΕΚ |
χαυνῶ κοινῶ οἰνῶ , χωρὶς τοῦ ἐλαύνω . Τὰ εἰς ΝΩ ὑπερδισύλλαβα παραληγόμενα τῇ ΕΙ διφθόγγῳ ἢ μακρῷ τῷ Ι | ||
ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν τῷ ἐπιπέδῳ κατὰ τὰ |
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ : | ||
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία |
ΞΝ τῆς ΜΟ ἐλάσσων ἐστὶν ἢ β : καὶ ἡ ΣΛ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ β : ὥστε | ||
ΞΟ τῇ ΘΣ ἐστὶν ὁμοία , ἡ δὲ ΟΠ τῇ ΣΛ ἐστὶν ὁμοία , καὶ ἡ ΘΣ ἄρα τῇ ΣΛ |
ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ | ||
ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
ΑΓ , ΓΒ μέσα ἐστίν . μέσον ἄρα ἐστὶ τὸ ΔΛ . καὶ παρὰ ῥητὴν τὴν ΔΕ παραβέβληται : ῥητὴ | ||
ἡ μὲν ΑΚ τῇ ΛΒ , ἡ δὲ ΓΚ τῇ ΔΛ , δύο δὴ αἱ ΑΚ , ΚΓ δύο ταῖς |
τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας : ἡ ΖΕ ἄρα ὀρθή ἐστι πρὸς ἑκάστην τῶν ΑΕ , ΒΕ | ||
ΓΒ , οὕτως τὸ ΔΖ πρὸς μεῖζόν τι μέγεθος τοῦ ΖΕ . καὶ τὰ λοιπὰ φανερά . ζʹ . Ἐχέτω |
δὲ ἡ ΣΡ τῆς ΟΡ : διπλῆ ἄρα καὶ ἡ ΦΥ τῆς ΟΡ . ἴση δὲ ὑπόκειται ἡ ΟΡ τῇ | ||
δύο τῶν διπλασίων τοῦ ἑνός . ἔστι δὲ καὶ ἡ ΦΥ . , ] παραλληλόγραμμον γάρ ἐστι τὸ ΡΣΦΥ χωρίον |
ἐκεῖνος τὸν διπλάσιον αὑτοῦ μετρεῖ , ἐκεῖνος δὲ τὸν ἐκείνου διπλάσιον , ἐκεῖνός τε τὸν ἐκείνου διπλάσιον , καὶ ἀεὶ | ||
ἄρα ὑπὸ ΖΒΝ μετὰ τοῦ ὑπὸ ΒΖΝ μεῖζόν ἐστιν ἢ διπλάσιον τοῦ ὑπὸ ΒΖΝ . ἀλλὰ τὸ μὲν ὑπὸ ΖΒΝ |
τὸ ΠΝ , καὶ διὰ τοῦ Π σημείου τετμήσθω ὁ ΕΟ κύλινδρος ἐπιπέδῳ τῷ ΤΥΣ παραλλήλῳ τοῖς τῶν ΕΖΗΘ , | ||
ΟΣ , ΣΒ μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΕΟ . καὶ ἐπεὶ αἱ ΓΝ , ΝΚ , ΚΗ |
ΗΒ ἴσον ἐστὶ τὸ ΖΛ : ἀσύμμετρον ἄρα ἐστὶ τὸ ΓΛ τῷ ΖΛ . ὡς δὲ τὸ ΓΛ πρὸς τὸ | ||
τῆς ΛΟ ἐλάσσων ἐστὶν ἢ β . καὶ ἐπεὶ ἡ ΓΛ κάθετός ἐστιν ἐπὶ τὴν ΒΛ , παράλληλος ἄρα ἐστὶν |
ἄρα πρὸς τὴν ΕΔ μείζονα λόγον ἔχει ἤπερ ὁ ΕΗΘ τομεὺς πρὸς τὸν ΕΖΘ τομέα . ὡς δὲ ὁ τομεὺς | ||
κέντρου τοῦ κύκλου διπλάσιόν ἐστιν τοῦ τομέως . Ἔστω γὰρ τομεὺς κύκλου ὁ ΑΒΓ . καὶ τοῦ ὑπὸ τῆς ΑΕΒ |
ΚΗ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ λοιπῇ τῇ ΗΓ ἐστὶν ἴση , ὅπερ : ∼ Φανερὸν δὴ ὅτι | ||
, ΗΖ . Ἐπεὶ οὖν ἡ ΑΓ μείζων ἐστὶν τῆς ΗΓ [ ηʹ τοῦ τρίτου ] , ἡ δὲ ΓΕ |
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ . | ||
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ : |
τὸ ἀπὸ τῆς ΕΖ ἴσον ἐστὶν τοῖς ἀπὸ τῶν ΕΓ ΓΖ , ἔστιν δὲ καὶ τὰ ἀπὸ τῶν ΕΑ ΑΖ | ||
: ἔστιν ἄρα καὶ ὡς ἡ ΑΕ βάσις πρὸς τὴν ΓΖ βάσιν , οὕτως τὸ ΑΒ στερεὸν πρὸς τὸ ΓΔ |
τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ ἀπό ٣ | ||
ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΚΖ ٣ ٣٦ ٣٥ ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ |
διήχθω γὰρ λόγου χάριν ἡ ΛΚ , καὶ κάθετος ἡ ΛΟ , καὶ ἐκβεβλήσθω ἐπὶ τὸ Ρ , καὶ ἐπεζεύχθωσαν | ||
ΧΕΤ . καὶ ἐπεὶ ζητῶ τίς ἡ ΖΘ περιφέρεια τῇ ΛΟ , τουτέστιν ἡ ΕΗ τῇ ΚΦ , ζητήσω ἄρα |
τῶν ὁμολόγων πλευρῶν . τὸ ΒΔΜΛ ἄρα στερεὸν πρὸς τὸ ΖΘΡΟ στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν | ||
ἑξαπλάσιον τὸ ΒΔΜΛ στερεόν , τῆς δὲ ΕΖΗΘ ἑξαπλάσιον τὸ ΖΘΡΟ στερεόν , ἴσον ἄρα ἐστὶ τὸ ΒΔΜΛ στερεὸν τῷ |
τὸ θεώρημα τῆς δὲ ΑΒ ἐξ ἑτέρας παραλλήλους διὰ τὸ ΝΕ , ΖΔ σημεῖον . Ἡ ΑΒ Ϛ , ἡ | ||
τομέως . διὰ τὰ αὐτὰ δὴ καὶ ὁσαπλασίων ἐστὶν ἡ ΝΕ περιφέρεια τῆς ΕΖ περιφερείας , τοσαυταπλασίων ἐστὶ καὶ ὁ |
τὸ ἀπὸ τῆς ΕΗ διαμέτρου , οὕτως τὸ ὑπὸ τῶν ΦΝ , ΝΖ πρὸς τὸ ἀπὸ τῆς ΜΝ : ὃ | ||
τῇ ἀνατολῇ τμήματα ὅμοια εἶναι : ὁμοία ἄρα ἔσται ἡ ΦΝ τῇ ͵ΑΟ . Ἀλλ ' ἡ ΦΝ τῇ ΨΡ |
καὶ ἐπεὶ δεῖ τὸν μέσον αὐτῶν τῷ ἴσῳ ὑπερέχειν καὶ ὑπερέχεσθαι , γίνεται ἡ Ζ εὐθεῖα μονάδων τριῶν [ μέσον | ||
, τὸ δὲ εὖ δρᾶν καὶ εὐεργετεῖν ὑπερέχειν ἐστίν , ὑπερέχεσθαι δὲ τὸ εὖ πάσχειν , φυσικῶς ἄρα φιλοῦμεν τὸ |
ἀποικία ; ὡς μὲν γάρ εἰσι νήστιδες , γιγνώσκεται . Πόλος τόδ ' ἐστίν ; εἶτα πόστην ἥλιος τέτραπται ; | ||
ἕτερον τῶν ἡγουμένων κατώτερός ἐστιν ἄλλος ἀστήρ , ὃς καλεῖται Πόλος , περὶ ὃν δοκεῖ ὅλος ὁ κόσμος στρέφεσθαι . |
τῶν μὲν θυρῶν ἀνεπιβουλεύτων βλεπομένων , τοῦ δὲ ὀρόφου ὄντος ἀσινοῦς καὶ τῶν τοίχων μὴ διεσκαμμένων : ἑωρᾶτο δὲ καὶ | ||
παιδός . ἁγνῆς ] λευκῆς , ἢ ἀγελαίας , ἢ ἀσινοῦς . παμφαές ] φαιδρόν . παρθένου πηγῆς μέτα ] |
λόγον , ἡμιόλιον τυχὸν ἢ ἐπίτριτον ἢ ἄλλον τινὰ τῶν ἐπιμορίων ἢ τῶν ἐπιμερῶν , τὰ μὲν ἀπ ' αὐτῶν | ||
. ἐκ τούτων πάλιν κατὰ ἀναστροφὴν γίνονται τὰ εἴδη τῶν ἐπιμορίων : οἷόν ἐστι πρῶτον εἶδος τῶν πολλαπλασίων τὸ διπλάσιον |
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ | ||
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ |
συνημμένον ἔχει λόγον ἐξ οὗ ὃν ἔχει ἡ ΤΣ πρὸς ΣΥ καὶ ἡ ΤΣ πρὸς ΣΡ καὶ ἐξ οὗ ὃν | ||
στερεόν . τὸ ΕΜ ἄρα πρὸς ἑκάτερον τῶν ΗΝ , ΣΥ τὸν αὐτὸν ἔχει λόγον . ἴσον ἄρα ἐστὶ τὸ |
ΕΔ οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣ ٢١ ٤ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ | ||
ἡ ΓΚ ٢ ٤٧ ٥١ ٤٧ ٤٢ ἡ ΚΜ οὐδέν ٤١ ٥٣ ٢١ ٤ Ἡ ΑΒ ٢٠ ἡ ΓΔ ٢٥ |
χοριάμβων καὶ ἰάμβων : τινὰ δὲ τούτων ἀντὶ μὲν χοριάμβου διίαμβον ἔχουσιν , ἀντὶ δὲ ἰάμβου τροχαῖον ἢ σπονδεῖον , | ||
τὸ Ϛʹ συνίζησιν κατὰ τὸν δεύτερον πόδα , ἤτοι τὸν διίαμβον . ἐπὶ τῷ τέλει παράγραφος μόνη . ἀλλ ' |
οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣ ٢١ ٤ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ | ||
ΒΕ ἢ ΕΒ ١ ٣٩ ٩ ἡ ΑΕ ٤ ٣٧ ٥٣ ἡ ΔΖ ٣ ١٨ ١٨ ἡ ΓΖ ٩ ١٥ |
٤٢ ٢٠ ١٥ τοῦ ι ἡ πλευρά ٣ ٩ ٤٧ ٣٧ ١٨ Ἐντεῦθεν δῆλον , ὅτι τὰ ῥητὰ καὶ σύμμετρα | ||
ἀπὸ ταύτης [ ἤτοι τῆς ΒΓ ] τετράγωνον ٦ ٥٥ ٣٧ ٤٠ ٩ τὸ ἀπὸ ταύτης [ ἤτοι τῆς ΒΑ |
Ζ , τοῦ δὲ ΕΘΗ διχοτομία τὸ Θ : ὁ ΑΛΚ ἄρα προσαναπληρούμενος ἥξει καὶ διὰ τῶν Ζ , Θ | ||
τὸ ΞΓΠΔ . ἴσον δὲ τὸ μὲν ΛΓΡΖ τετράπλευρον τῷ ΑΛΚ τριγώνῳ , τὸ δὲ ΞΓΠΔ τῷ ΑΝΞ : ὡς |
παρὰ δὲ τὸ αὐτὸ χαίρω χάρτης , χωρητικὸς ὢν τῶν ἐγγραφομένων . Φιλόξενος ἐν τῷ Περὶ μονοσυλλάβων ῥημάτων . . | ||
ἑξαγώνου καὶ τὴν τοῦ δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων . Ἔστω κύκλος ὁ ΑΒΓΔΕ , καὶ εἰς τὸν |
, ἡ δὲ ΜΓ ὁμοίως # ιϚ , ἡ δὲ ΜΖ ὅλη ξ ιϚ , διὰ τοῦτο δὲ καὶ ἡ | ||
. ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ |
μετατεθήσεται . Γ ἐγγεγράψεται ] ἐγγεγραμμένος διαμενεῖν . Γ τὸν πόρπακα τὸν Κλεωνύμου : δειλὸς γὰρ καὶ ῥίψασπις ὁ Κλεώνυμος | ||
τὸν βαστάζοντα τὸ ὅπλον καὶ τὰς ἡνίας αὐτῶν ὑπὸ τὸν πόρπακα κατέχειν διὰ τὸ μὴ ἐγγεγράφθαι τὸν ἡνίοχον μήτε τὸ |
μήτε διαναγκάζηται , μήτε ἐνσείηται . Ἐχρῆν τὸν ἰητρὸν τῶν ἐκπτωσίων τε καὶ κατηγμάτων ὡς ἰθυτάτας τὰς κατατάσιας ποιέεσθαι : | ||
τῷ Περὶ ἀγμῶν φησιν : “ ἐχρῆν τὸν ἰητρὸν τῶν ἐκπτωσίων καὶ κατηγμάτων ὡς ἰθύτατα τὰς κατατάσιας ποιεῖσθαι . αὕτη |
τῆς ΑΒ ⸎ ٥٢ ٢٥ ٣٦ ١٦ ἡ ΓΖ ٢ ١٣ ٦ ٢٤ ٤ ἡ ΑΗ ٤ ٣٧ ٥٣ λοιπὸν | ||
٤٤ ٣ ἡ ΓΔ ٧ ١٥ ٣٣ ἡ ΔΖ ٥ ١٣ ٣٠ Ἡ ΓΖ ١ ٢٧ ٤٩ ٣٣ ἡ ΖΘ |
κέντρου δύναται τὸ ὑπὸ ΟΓ ΚΑ ἢ τὸ ὑπὸ Θ ΚΑ ἐλάσσων ἐστὶν τῆς σφαιρικῆς τοῦ τμήματος ἐπιφανείας . ἀλλὰ | ||
, οἵων ἐστὶν ἡ ΑΖ διάμετρος ρκ , ἡ δὲ ΚΑ τῶν αὐτῶν ργ νε : ὥστε καί , οἵων |
ἐστὶν τῇ ΜΒ περιφερείᾳ . καὶ βέβηκεν ἐπὶ μὲν τῆς ΟΓ περιφερείας γωνία ἡ ὑπὸ ΔΑΟ , ἐπὶ δὲ τῆς | ||
ἀπὸ τῆς ΟΓ τετραγώνῳ . ἀλλὰ τῷ μὲν ἀπὸ τῆς ΟΓ ἴσον ἐστὶ τὸ ὑπὸ τῶν ΔΓΦ , τῷ δὲ |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
ΔΜ , πέμπτον δὲ τὸ ΓΛ , ἕκτον δὲ τὸ ΒΚ , ἕβδομον δὲ τὸ ΑΘ , μόνα δὲ καὶ | ||
ταῦτα γὰρ ἡμῖν πάντα προαποδέδεικται : τοιούτων καὶ ἑκατέρα τῶν ΒΚ καὶ ΚΘ ἔσται ιε νε . πάλιν , ἐπεὶ |
ἡμίσεια τῆς ΑΗ ٦ ٥٢ ٥٨ ٥٠ τὸ ἀπὸ ταύτης ٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ | ||
τῆς ΗΓ ١٠ ١٧ ٨ ٣٤ ١٧ ἡ ΒΓ ٢ ٤٧ ٣٥ ἡ ΗΓ ٣ ١٢ ٢٥ τὸ ἀπὸ τῆς |
τῆς τοῦ ὀκταέδρου πλευρᾶς . Ἐπεὶ γὰρ αἱ τρεῖς αἱ ΛΚ , ΚΜ , ΚΕ ἴσαι ἀλλήλαις εἰσίν , τὸ | ||
τοῦ μὲν ΕΚ ἄξονος καὶ τοῦ ΒΗ κυλίνδρου ὅ τε ΛΚ ἄξων καὶ ὁ ΠΗ κύλινδρος , τοῦ δὲ ΚΖ |
ΖΗ κύκλος γεγράφθω ὁ ΗΚΛ : θέσει ἄρα ἐστὶν ὁ ΗΚΛ : θέσει δὲ καὶ ὁ ΔΘΚ κύκλος : δοθὲν | ||
κέντρῳ τῷ Δ καὶ διαστήματι τῷ ΔΗ κύκλος γεγράφθω ὁ ΗΚΛ . Ἐπεὶ οὖν τὸ Β σημεῖον κέν - τρον |
προκειμένων διαφορῶν . γενομένου τούτου , πλησίον τοῦ ὀργάνου ὑποπόδιον τιθέσθω , ᾧ ὁ καταρτιζόμενος ἐπιβαινέτω , καὶ τότε τὴν | ||
τὸ δ ' ὅτι καὶ ὑπόκειται μηκέτι προσισχυόντων διδάσκειν , τιθέσθω καὶ τὰ λήμματα τῆς ἀποδείξεως ὅτι φαίνεται , καὶ |
δὴ ὑποκείσθω τὸ αὐτὸ σχῆμα , καὶ ἔστω τετραγώνου ἡ ΚΖ , καὶ ἴσαι ἀπειλήφθωσαν ἐπὶ τὰ Ζ Δ μέρη | ||
ΔΖ πρὸς τὴν ΘΖ , οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ . Ὡς γὰρ αἱ γωνίαι , δι ' ὧν |
ὀρθία τοῦ παρὰ τὴν ΒΤ εἴδους . δίχα τετμήσθω ἡ ΜΝ κατὰ τὸ Π : ἔστιν ἄρα , ὡς ἡ | ||
καὶ πανσελήνους . ἐὰν γὰρ γράψωμεν περὶ τὸ Α τὸν ΜΝ ἐπίκυκλον , ὁ τῆς ΑΕ πρὸς τὴν ΑΜ λόγος |
ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν | ||
ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι |
ὀρθὰς ἤχθωσαν αἱ ΓΕ , ΔΖ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΖΒ , ΕΒ . καὶ ἐπεὶ διπλῆ ἐστιν | ||
ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ , οὕτως ἡ ΑΖ πρὸς τὴν ΖΕ , δι ' ἴσου ἄρα ἐστὶν |
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ | ||
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ |
٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ | ||
٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ |
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ | ||
ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ |
, ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον | ||
ἐπὶ τὴν τοῦ κύκλου περιφέρειαν διὰ τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ |
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
٢٥ τὸ ἀπὸ τῆς Θ ٢٥ ٤٢ ٥١ ٢٥ ٤٢ ٥٢ Ἡ Α μονάδων τεσσάρων , ἡ ΓΗ Ϛ , | ||
πλευρὰ τοῦ ϘϚ ٣ ٤٧ ٥٢ ἡ ΓΒ ٩ ٤٧ ٥٢ τὰ ἀπὸ τῆς Θ ξ , ἡ Θ ἡ |
٢٢ ٥٦ τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ ٤٧ ٤٢ ٣٥ ٤٤ Ἐκ τῆς εἰς ἄτοπον ἀπαγωγῆς . Ἡ | ||
٢١ ἡ ΒΕ ١ ٤٠ ١٦ ἡ ΔΖ ٥ οὐδέν ٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ |
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ | ||
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ |
٥٦ ٥٢ ١٥ ἡ αὐτῆς ἡμίσεια ٥ ١١ ٥ ⸎ ١٦ ٣٠ τὸ ἀπὸ ταύτης ἤτοι τῆς ἡμισείας τῆς ΑΗ | ||
٤٣ ἡ ΖΒ ١ ١٠ ٢١ ἡ ΑΖ ١ ١١ ١٦ τὸ ὑπὸ τῶν ΒΑ , ΑΖ ٢ ٤٨ ١٠ |