| ὑπερβαλεῖ τὴν πρὸς τῷ Β ὀρθὴν γωνίαν . ἀλλὰ δὴ ἐλλειπέτω τὸ ἐπὶ τῆς ΑΓ γραφόμενον ἡμικύκλιον ὡς τὸ ΑΕΖΓ | ||
| εἶναι τὴν ΒΔ ιβ , τὴν δὲ ΔΓ γ , ἐλλειπέτω δὲ καὶ εἴδει τετραγώνῳ τῷ ΔΡ θ ὄντι . |
| καὶ ἔστω ἡ ΒΔ ἑπτάπους μείζων ἢ τὸ ἥμισυ τῆς δεκάποδος , ἥτις ἑπτάπους νενοήσθω ἡ ἀνασταθεῖσα πυραμὶς ἀπὸ τοῦ | ||
| ἦν μείζων τοῦ ἡμίσεος τῆς ΑΒ , τῆς δὴ ΒΕ δεκάποδος οὔσης λείπεται τὴν ΕΑ τετράποδα εἶναι : ὥστε ἐπεὶ |
| καὶ γυναῖκα παθεῖν ἐν Ἤλιδι λόγος ἀνδρὶ μὲν κατὰ νόμον ἠγμένην , Αἰθίοπι δὲ τὴν εὐνὴν κλέπτουσαν . κόρην μὲν | ||
| οἱ Πυθαγόρειοι λέγουσιν , ὥσπερ ἱκέτιν καὶ ἀφ ' ἑστίας ἠγμένην ὡς ἥκιστα δεῖν [ δοκεῖν ] ἀδικεῖν . . |
| δὲ ἡ ΛΜ πρὸς ΜΩ , ἡ ΜΩ πρὸς τὴν ΜΑ͵ καὶ ἡ Α͵Μ πρὸς τὴν ΜΒ͵ , ἔσται ἄρα | ||
| ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . ὡς δὲ ἡ ΩΜ πρὸς ΜΑ͵ , οὕτως |
| ἐτύγχανον δ ' οὗτοι τὴν χειμασίαν ἔχοντες ἐν πολλοῖς μέρεσι διεζευγμένην , ὥστ ' ἐνίους ἀπ ' ἀλλήλων ἀπέχειν ὁδὸν | ||
| . εἰ δὲ καὶ δ καὶ πλείους λάβῃς , ὡς διεζευγμένην ποιῆσαι ἔκθεσιν , καὶ οὕτω μονάδι ἔσται ἡ ὑπεροχὴ |
| γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν | ||
| γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν |
| τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
| , καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
| ἐν ἑνὶ ἐπιπέδῳ , ἀλλ ' ἴσας ἔχουσαι πάσας τὰς καθέτους τὰς ἀγομένας ἀπὸ τῶν τῆς ἑτέρας σημείων ἐπὶ τὴν | ||
| ἐπὶ τὸν διὰ μέσων ἀπὸ τῶν Η καὶ Θ σημείων καθέτους τὰς ΗΚ καὶ ΘΛ , τὴν ΒΔ πάλιν ἕξομεν |
| . Αἱ μὲν προτεταγμέναι τάξεις εὑρημάτων παλαιῶν εἰσιν ἀνδρῶν , ἐκτεθεῖσθαι πρὸς στρατιώτας μεμελετηκότας δέχεσθαι τὰς τῶν πολεμίων προσβολάς : | ||
| ΔΖ , τὰς τρεῖς μεσότητας ἔλεγεν ἁπλῶς ἐν τῷ ἡμικυκλίῳ ἐκτεθεῖσθαι , τὴν μὲν ΕΓ μέσην ἀριθμητικήν , τὴν δὲ |
| Η , καὶ δι ' αὐτοῦ παρὰ τὴν ΓΕ ἡ ΗΚΘ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΓΕΖ τῇ | ||
| οἵων ἡ μία ὀρθὴ Ϙ , καὶ λοιπὴν τὴν ὑπὸ ΗΚΘ τῶν αὐτῶν # γ . Ἐὰν οὖν ποιήσωμεν ὡς |
| ἔνεστιν ] ἀπολαβεῖν ? [ ] τὴν διὰ τοῦ πίνειν ἱκανωτέραν ἡδονὴν [ ] καὶ ταῦτ ' οὐ καθ ' | ||
| οὐκ ᾐδεῖτό σου τὴν σιωπὴν οὐδ ' ἁπάντων λόγων ἡγεῖτο ἱκανωτέραν εἶναι τοὺς προσήκοντας αὐτῷ λογισμοὺς περὶ σοῦ παραστῆσαι , |
| τὸ ἔλασσον ἢ ἐν λόγῳ δοθέντι . Ὁ αὐτὸς αὐτῷ γεγονέτω . , ] σχόλιον εἰς τὸ ιαʹ θεώρημα ̅ | ||
| , ΕΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι . καὶ γεγονέτω ὡς ἡ ΑΒ πρὸς ΓΔ , ἡ ΑΕ πρὸς |
| νῆσον τὴν Στυρέων , καλεομένην δὲ Αἰγιλίην , τοῦτο δὲ καταγομένας ἐς τὸν Μαραθῶνα τὰς νέας ὅρμιζε οὗτος , ἐκβάντας | ||
| τῆς ΕΖΗΘ τομῆς : πάσας γὰρ τὰς παρὰ τὴν ΚΛ καταγομένας ἐπ ' αὐτὴν δίχα τέμνει , ὥσπερ τὴν ΖΘ |
| Λαμψακηνὸς Στράτων . , . . , : οἱ δὲ ἰσόμετρον αὐτὸ τῷ κοσμικῷ σώματι ποιοῦσι , καὶ διὰ τοῦτο | ||
| μὲν μείζονα τῆς γῆς ἀποφαίνονται . . . οἱ δὲ ἰσόμετρον . . . οἱ δέ γε ἐλάττονα . . |
| . Ἀρκεῖ ἡ παροῦσα ὑπόληψις καταληπτικὴ καὶ ἡ παροῦσα πρᾶξις κοινωνικὴ καὶ ἡ παροῦσα διάθεσις εὐαρεστικὴ πρὸς πᾶν τὸ παρὰ | ||
| συνόδου γιγνομένης ἀδελφαῖς σὺν ἀδελφῷ , ἑτέρα τις ἱερῶν ἐτέθη κοινωνικὴ σύνοδος , ἣν δὴ φρατρίαν ὠνόμαζον ” . καὶ |
| ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ | ||
| ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ |
| ἢ ὅλως εὐθύγραμμον ἢ μικτήν : καὶ λόγῳ , ὅταν διπλασίαν λέγωμεν τῆσδε καὶ τριπλασίαν ἢ ὅλως μείζονα καὶ ἐλάσσονα | ||
| ὧν πολὺς ἐφ ' ἱππομαχίᾳ λόγος . Ἀσπίδα δὲ ἄγομεν διπλασίαν δυνάμεως τῆς ἱππικῆς , οὐδ ' ἐν τούτοις ταῖς |
| ΔΕΖ , τὴν δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ . Συνεστάτω γὰρ πρὸς τῇ ΔΖ εὐθείᾳ καὶ τοῖς πρὸς αὐτῇ | ||
| ] ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ ῥητόν ἐστιν . Συνεστάτω οὖν τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , |
| ΓΕΝ ! καὶ ΟΥ ! [ ] [ καθάπερ ] ΠΡΑ ! ! [ ] [ ] ΚΕΙΝΠΑ ! [ | ||
| ΡΑΞ γωνία τῆς ὑπὸ ΠΑΝ . ὅτι δὲ ἡ ὑπὸ ΠΡΑ γωνία ἀμβλεῖά ἐστιν , ἐκδηλότερον οὕτω δειχθήσεται : ἐπεὶ |
| ἔστιν ὡς ἡ ΛΜ πρὸς τὴν ΜΩ , καὶ ἡ ΩΜ πρὸς τὴν ΜΑ͵ , καὶ δοθεῖσα ἡ ΩΜ : | ||
| , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . ὡς δὲ ἡ ΩΜ πρὸς ΜΑ͵ |
| τοὺς ὀφθαλμοὺς ἄνω δύνασθαι θεωρεῖν : καὶ Ἀρχέλαον τὸν ἕξιν ἀρχικὴν ἔχοντα , ὁμοίως καὶ Βασιλικὸν ἢ Βασίλειον τὸν δυνάμενον | ||
| ἰατρικὴν ἑστὼς ἰατρός , οὐ τοίνυν οὐδὲ ὁ κατὰ τὴν ἀρχικὴν ἐπιστήμην ἄρχων ὡρισμένος . λογικώτερον δὲ εἰπεῖν ἐπιχειρητέον , |
| ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
| πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
| , τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως | ||
| τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο |
| τοῦ ὑπὸ τῶν ΒΑΓ πρὸς τὸ ὑπὸ τῶν ΒΔ , ΑΓ λόγος ἐστὶ δοθείς . τοῦ δὲ ὑπὸ τῶν ΑΓ | ||
| δευτέρα ἐστὶν ἡ ΑΒ διῃρημένη κατὰ τὸ Γ , αἱ ΑΓ , ΓΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι μέσον |
| , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς αβ , οὕτω καὶ ἐπὶ τῆς ἀνισότητος τῆς | ||
| ΑΒΓ ἄλλο τρίγωνον συστήσασθαι τὴν ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἴσην ἑκατέρᾳ τῷ ΔΕ , ΔΑ καὶ |
| νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
| διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
| σημεῖα τὰ Γ Δ : ὅτι , ἐὰν τὸ ἀπὸ ΑΔ καὶ τὸ λόγον ἔχον πρὸς τὸ ἀπὸ ΔΒ τὸν | ||
| γωνίαν τὴν ὑπὸ τῶν ΕΑΔ , θέσει ἄρα ἐστὶν ἡ ΑΔ . . . Ἄλλως . Εἰλήφθω ἐπὶ τῆς ΒΓ |
| τοῦ ἀνθρώπου , εἰ μὲν ἐς ζῶιον ἡ λῆξις αὐτὸν μεταγάγοι , λέοντα γίνεσθαι : εἰ δὲ ἐς φυτόν , | ||
| ' ὅπως ἄν τις ἀπὸ τῆς ἑτέρας ἐπὶ τὴν ἑτέραν μεταγάγοι τὴν ὄψιν ἀποσπάσας : οὐ γὰρ ἐθέλει ἀφίστασθαι ῥᾳδίως |
| σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
| τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
| γωνίας τῆς ὑπὸ ΔΗΖ τῆς οὔσης ἴσης τῇ ὑπὸ ΔΖΗ διῆχθαι τὴν ΕΗ εὐθεῖαν , ὑφ ' ἧς ἡ ὑπὸ | ||
| φασί , πόλεών τε γὰρ εὖ ἔχειν καὶ νομῶν καὶ διῆχθαι τὸν ποταμὸν ἐς τὰ ἄστη πάντα , γεωργίας τε |
| παράκειται παρὰ τὴν ΑΗ τρίτην ἀνάλογον πλάτος ἔχον τὴν ΑΖ ἐλλεῖπον εἴδει τῷ ὑπὸ ΗΚΘ ὁμοίῳ τῷ ὑπὸ ΗΑΒ . | ||
| παρὰ τὴν ζ καὶ τὴν γ παραλληλόγραμμον οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ |
| κύλινδρος ἐπιπέδῳ συμπίπτοντι τῷ τῆς βάσεως ἐπιπέδῳ κατ ' εὐθεῖαν ὀρθὴν πρὸς ΓΑ ἐκβληθεῖσαν , καὶ ἔστω ἡ γενομένη τομὴ | ||
| γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν : λέγω , ὅτι |
| καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
| τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
| τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ | ||
| ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ |
| ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ | ||
| καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ |
| εὖ ἀκρότητος . οἱ δὲ ἀποροῦντες πρὸς τὸ τὰς ἀρετὰς μεσότητας εἶναι καὶ λέγοντες , εἰ μήτε ἡ ὑπερβολὴ μήθ | ||
| τούτων , τὸ μὲν συμπληροῦν τὰ διαστήματα καὶ παρεντάττειν τὰς μεσότητας , εἰ καὶ μηδεὶς ἐτύγχανε πεποιηκὼς πρότερον , ὑμῖν |
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς | ||
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς |
| τῶν ἀρχόντων ; ἢ τίνες τούτοις , ὧν δυνατὸν ἡμῖν ἀπεικάζουσι τυγχάνειν μείζοσιν ἐλάττονας ; πότερον ἡνίοχοί τινες ἂν εἶεν | ||
| ' ἣν αἰτίαν οἱ Αἰγύπτιοι βασιλεῖ μὲν καὶ δεξιῷ ὀφθαλμῷ ἀπεικάζουσι τὸν ἥλιον , βασιλίσσῃ δὲ καὶ ἀριστερῷ ὀφθαλμῷ τὴν |
| μὲν δοθὲν εὐθύγραμμον τὸ ΑΒΓΔ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Ε : δεῖ δὴ τῷ ΑΒΓΔ εὐθυγράμμῳ ἴσον | ||
| μὲν δοθὲν τρίγωνον τὸ ΑΒΓ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Δ : δεῖ δὴ τῷ ΑΒΓ τριγώνῳ ἴσον |
| Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ | ||
| οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ |
| ταῦτ ' ἄρα κρόκην μὲν τὰ νηθέντα , τὴν δὲ ἐπιτεταγμένην αὐτοῖς εἶναι τέχνην τὴν κροκονητικὴν φῶμεν . Ὀρθότατα . | ||
| πρώτην ἐκείνην πρὸς τὴν νέαν δὴ καὶ τοῖς νῦν σώμασιν ἐπιτεταγμένην , σκοποῖ τὸ ἐν ἑκατέρᾳ βέλτιον καὶ χεῖρον ; |
| ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ | ||
| κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ |
| Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν | ||
| ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ |
| ριδ ι , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΔΗ περιφέρεια τοιούτων ριδ ι οἵων ἐστὶν ὁ περὶ τὸ | ||
| παράκειται πλάτος ποιοῦν τὴν ΔΗ : ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει . πάλιν , ἐπεὶ |
| τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
| Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
| ἄρα ΑΒ , ΓΔ ἐκβαλλόμεναι εἰς ἄπειρον συμπεσοῦνται : οὐ συμπίπτουσι δὲ διὰ τὸ παραλλήλους αὐτὰς ὑποκεῖσθαι : οὐκ ἄρα | ||
| πρὸς ἀλλήλας αἱ ἑκατέρωθεν ἀκταί : προϊοῦσαι δὲ πλέον τελέως συμπίπτουσι κατὰ τὸ Ῥίον καὶ τὸ Ἀντίρριον , ὅσον δὴ |
| Λέγω δή , ὅτι παρὰ τὰ εἰρημένα πέντε σχήματα οὐ συσταθήσεται ἕτερον σχῆμα περιεχόμενον ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων ἴσων | ||
| ἐπὶ τῆς αὐτῆς εὐθείας δύο τμήματα κύκλων ὅμοια καὶ ἄνισα συσταθήσεται ἐπὶ τὰ αὐτὰ μέρη : ὅπερ ἔδει δεῖξαι . |
| ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
| Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
| καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
| κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
| ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων | ||
| ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ |
| ΒΑ πρὸς τὴν ΑΔ . μείζων δὲ ἡ ΔΒ τῆς ΒΑ : μείζων ἄρα καὶ ἡ ΒΑ τῆς ΑΔ . | ||
| ὀξεῖα ἄρα ἡ ὑπὸ ΞΑΗ γωνία . καὶ ἐπεὶ ἡ ΒΑ τῆς ΑΓ οὔκ ἐστιν ἐλάττων , καὶ ἡ ὑπὸ |
| ΑΔΓ μετὰ τοῦ δὶς ὑπὸ ΑΕΓ καὶ δὶς τῶν ἀπὸ ΒΔ ΒΕ τετραγώνων . Τοῦτο δὲ φανερόν : τὸ μὲν | ||
| , ἀφ ' ἧς ἐπὶ τὴν ΑΓ βάσιν ἤχθω ἡ ΒΔ . λέγω , ὅτι ἡ ΒΔ πρὸς ΔΓ μείζονα |
| ἄρασα . συμβαίνει γὰρ ὥσπερ πλάστιγγος ἐπὶ θάτερα κουφισθείσης τὴν ἰσορροπίαν τοῦ ζυγοῦ μὴ διαμένειν . ὁ μὲν οὖν τραγικὸς | ||
| ἂν τὸ προσθεῖναι τῷ ἀναφερομένῳ εἰς τὴν πρὸς τὸ βαρῦνον ἰσορροπίαν . τὰ δ ' ὀνομαζόμενα σταθμία ἐστὶ σταθμά , |
| καὶ τὸ μὲν αἴτιον ἁπάντων , τὸ δὲ ἀναίτιον πάσης πάθης : ὥστε τά γε δὴ κατ ' οὐρανὸν ὑπ | ||
| σκιδνάμενον : εἰ μέντοι χρὴ αὐτὸ ἀπηλλάχθαι τῆς τῶν σωμάτων πάθης , ἵνα κἀκείνοις κεκυκημένοις τὴν φθορὰν ἀμύνειν δύνηται καὶ |
| ἀπὸ τῶν Δ καὶ Ν σημείων - ἐπὶ τὴν ΑΘ ἐκβληθεῖσαν αἱ ΔΦ καὶ ΝΧ . ἐπεὶ τοίνυν ἡ ΞΕ | ||
| ἐσχατιὰς τῆς Ἀττικῆς . Ἀριστοφάνης Γήρᾳ ἔδει δέ γ ' ἐκβληθεῖσαν εἰς Ἁλμυρίδας τῇ θυγατρὶ τῇδε μὴ παρέχειν σε πράγματα |
| ἡ μὲν ΔΗ ἔσται δ μζ , ἡ δὲ ὑπὸ ΔΑΗ γωνία τῆς μεγίστης κατὰ πλάτος παραχωρήσεως , οἵων μέν | ||
| ΔΖ ἔσται κα α . πάλιν , ἐπεὶ ἡ ὑπὸ ΔΑΗ γωνία τοιούτων ὑπόκειται ε , οἵων εἰσὶν αἱ β |
| ' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
| αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
| αὐτῶν οὕτως . ὁρίσαι γὰρ χρὴ τὸν μὲν τὸ πρᾶγμα καταγγέλλοντα Σελήνης ἀπόρροιαν εἶναι , τὸ δὲ πρᾶγμα αὐτὴν τὴν | ||
| εἶναι τελεσφόρον ὄντως τὸν ἕβδομον ἀριθμόν , ἀμφοτέρας τὰς ἰσότητας καταγγέλλοντα τήν τ ' ἐπίπεδον διὰ τετραγώνου κατὰ τὴν πρὸς |
| καὶ τὸ μηδένα μοι παρεῖναι τό τε πρᾶγμ ' ἄφνω προσπεπτωκέναι , ἵνα τούτῳ τ ' ἐξουσία γένοιθ ' ὁπόσα | ||
| τὸ τὸ Η σημεῖον κέντρον εἶναι τῆς σφαίρας , καὶ προσπεπτωκέναι ἀπ ' αὐτοῦ πρὸς τῇ ἐπιφανείᾳ τῆς σφαίρας τὰς |
| ] ! ΟΤΙΠΑ ? ? ! φυσε [ ] ! ΙΕ [ ! ] ΕΙΑ ? [ ] ΤΑΥ ! | ||
| ἢ καταπαυομένοις ἢ τὸ ποθεινότατον ; ΑΘΗΝΑΙΟΥ ΝΑΥΚΡΑΤΙΤΟΥ ΔΕΙΠΝΟΣΟΦΙΣΤΩΝ ⋮ ΙΕ ⋮ Δωρίδος ἐκ μητρὸς Φοίβου κοινώμασι βλαστών . χαῖρε |
| ἀπὸ ΖΝ ΝΒ ὑπεροχῇ . ἀλλὰ ἡ τῶν ἀπὸ ΖΔ ΔΒ ὑπεροχή ἐστιν τὸ ὑπὸ ΑΒΔ : καὶ ἡ τῶν | ||
| ΑΓ , ΓΒ ἔλαττον τοῦ δὶς ὑπὸ τῶν ΑΔ , ΔΒ , λείπεται τὰ ἀπὸ τῶν ΑΓ , ΓΒ τετράγωνα |
| Ἐὰν ἄρα τριγώνου ἡ γωνία δίχα τμηθῇ , ἡ δὲ τέμνουσα τὴν γωνίαν εὐθεῖα τέμνῃ καὶ τὴν βάσιν , τὰ | ||
| μηχανήματος . διάμετρος δὲ , ἡ ἐν τῷ κύκλῳ κέντρον τέμνουσα μέσον γραμμή . διαβήτης , σταφύλη : ὅπερ ἐστὶν |
| ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ ٣ ٣٦ ٣٥ ٢٠ ὑπὸ ῥητῆς . , ] ταύτης δηλονότι | ||
| ٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ ٣٦ ἡ ΖΗ ٤ τὸ ΕΓ ٣٢ ٣٢ ٩ ٥٢ |
| μὴ ῥαγῇ τὰ πῦα ἐς τὰ στήθεα , αὐτὸς ἑωυτὸν θεραπευέτω ἡσυχίην ἔχων τῷ σώματι ὡς μάλιστα καὶ τὰ ξύμφορα | ||
| φυγὴν προτρεπόντων ἀκινδύνως ἐλθεῖν . Πρὸ τῶν κινδύνων ὁ στρατηγὸς θεραπευέτω τὸ θεῖον : θαῤῥῶν γὰρ ἐν τοῖς κινδύνοις ὡς |
| ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
| εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
| δέδοται καὶ οὐχὶ ἡ ΕΖ καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς | ||
| τὰ τρίγωνα , καὶ ἡγούμενα μὲν εἶναι τὰ ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ , |
| ἀντὶ ὑμνηθήσεται [ ] πόλις [ αὕτη ] μία τῆς πενταπόλεως τῆς [ Κέω ] [ ! ! ! ] | ||
| θεωρίας καὶ τῶν ἐν αὐτῷ . μίαν οὖν ὥσπερ ἐκ πενταπόλεως τῶν πέντε αἰσθήσεων τὴν ὅρασιν ἐξαιρέτου γέρως τυχεῖν ἁρμόττον |
| ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
| ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
| Δ , Ε , ὥστε ἴσας εἶναι τὰς ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ περιφερείας : καὶ | ||
| τῆς ΒΠ πολλῷ μείζους εἰσίν . ἀλλὰ ἡ ΒΠ τῆς ΒΓ μείζων : αἱ ἄρα ΒΞ , ΞΟ , ΟΠ |
| τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
| Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
| ἂν αἵρεσιν τὴν Σκεπτικὴν καλοῖμεν . εἰ δὲ αἵρεσιν νοοῖμεν πρόσκλισιν δόγμασιν ἀκολουθίαν ἔχουσιν , οὐκέτ ' ἂν προσαγορεύοιτο αἵρεσις | ||
| ὁ σκεπτικός . εἰ μὲν γάρ τις αἵρεσιν εἶναι λέγει πρόσκλισιν δόγμασι πολλοῖς ἀκολουθίαν ἔχουσι πρὸς ἄλληλά τε καὶ τὰ |
| δολιχόσκιον ἔγχος , καὶ βάλεν Ἀτρεΐδαο κατ ' ἀσπίδα πάντοσε ἴσην , οὐδ ' ἔρρηξεν χαλκός , ἀνεγνάμφθη δέ οἱ | ||
| [ . εἶναι τὴν σελήνην ] . , Π . ἴσην τῶι ἡλίωι [ . εἶναι τὴν σελήνην ] : |
| , ὧν διάμετρος ἡ ΑΒ , καὶ τετμήσθω δίχα ἡ ΑΒ κατὰ τὸ Γ , καὶ διὰ τοῦ Γ ἤχθω | ||
| ὁ κύκλος οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ ὑπὸ ΑΒ ΚΛ , διὰ τὸ ἴσην εἶναι πάλιν τὴν ΔΟ |
| τοῦτον ἂν ζῆν τὸν βίον ἢ τὴν Σελεύκου τοῦ βασιλέως ὑπεροχήν . ῥοφεῖν φακῆν ἐσθ ' ἡδὺ μὴ δεδοικότα , | ||
| Μο ε . καί εἰσιν ὧν τὸ ὑπὸ ποιεῖ τὴν ὑπεροχήν , ὃς μὲν ʂ α Μο α , ὃς |
| μὲν γὰρ ὁ Λοκρὸς οὐκ ἐμονομάχησεν , ὁ δὲ Σαλαμίνιος ἐμονομάχησεν . μὴ συνωνύμως , ἵνα μὴ εἴπω ἄνθρωπος βαδίζει | ||
| γὰρ ἀμφοτέρας ἀληθεύειν , οἷον ἔστω ὁμώνυμον τὸ ὑποκείμενον Αἴας ἐμονομάχησεν Ἕκτορι Αἴας οὐκ ἐμονομάχησεν Ἕκτορι , καὶ ἐγχωρεῖ τὰς |
| καὶ Δήμητρος καὶ Ἑστίας καὶ Ἥρας : τὴν δὲ τοῦ δωδεκαγώνου Διός : τὴν δ ' ἑκκαιπεντηκονταγώνου Τυφῶνος , ὡς | ||
| ἐὰν δὲ ἀπολάβωμεν ἑκατέ - ραν τῶν ΓΗ ΓΘ περιφερειῶν δωδεκαγώνου , καὶ ἐπιζεύξωμεν τὴν ΗΘ καὶ τὰς ΕΗ ΕΘ |
| Κρόνου μὲν οὖν ἐναντιουμένου καταψύξεις , Ἄρεως δὲ ῥιψοκινδυνίας . Ἐκκείσθω πάλιν τὰ παρὰ Δωροθέῳ τοιαῦτα οὕτω περὶ κλήρου στρατιᾶς | ||
| ἀδίκως δίκην εἰσάγοντι , ὁ δὲ δικαίως ἐγκαλῶν νικήσει . Ἐκκείσθω δὲ καὶ τὰ ἐκ τῶν ἐπῶν τοῦ Δωροθέου μεταφρασθέντα |
| τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
| . εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
| ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν | ||
| τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ |
| ΖΗ κύκλος γεγράφθω ὁ ΗΚΛ : θέσει ἄρα ἐστὶν ὁ ΗΚΛ : θέσει δὲ καὶ ὁ ΔΘΚ κύκλος : δοθὲν | ||
| κέντρῳ τῷ Δ καὶ διαστήματι τῷ ΔΗ κύκλος γεγράφθω ὁ ΗΚΛ . Ἐπεὶ οὖν τὸ Β σημεῖον κέν - τρον |
| ἐπιπέδων , δίχα τμηθήσεται τὸ στερεὸν ὑπὸ τοῦ ἐπιπέδου . Στερεὸν γὰρ παραλληλεπίπεδον τὸ ΑΒ ἐπιπέδῳ τῷ ΓΔΕΖ τετμήσθω κατὰ | ||
| τὴν βάσιν , οὕτως τὸ στερεὸν πρὸς τὸ στερεόν . Στερεὸν γὰρ παραλληλεπίπεδον τὸ ΑΒΓΔ ἐπιπέδῳ τῷ ΖΗ τετμήσθω παραλλήλῳ |
| αὐτῶν , τὴν ὅλην οἰκουμένην μηδὲν εἰκόνος δεηθέντα τῷ νῷ περιαθρῆσαι . Ἔστι τοίνυν κατὰ τὸ κεφαλαιῶδες ἐν μὲν τῇ | ||
| ἔσται εἰς ἅπασαν τὴν γῆν ἐνιδεῖν ; πότε τὴν ὅλην περιαθρῆσαι ; πότε σμικρὰν ὑπολαβεῖν σὺν τῇ θαλάττῃ τριῶν ἢ |
| μέρη τί βούλεται ἐνδείκνυσθαι ; Ῥητέον οὖν ὡς ὅτι τὴν δωδεκάδα ταύτην διεῖλε διχῇ , εἴς τε μονάδα καὶ ἑνδεκάδα | ||
| Ζεὺς δὲ τὴν δεκάδα καὶ ἑνδεκάδα , καὶ Ἀφροδίτη τὴν δωδεκάδα . ἄγει δὲ τὸ θέμα ἔτος λαʹ : εὑρίσκονται |
| καὶ διὰ τοῦτο ἴση ἐστὶν ἡ ὑπὸ ΛΖΘ τῇ ὑπὸ ΛΓΘ . καὶ ἐπεὶ μείζων ἐστὶν ἑκατέρα τῶν ΑΕ , | ||
| ἡ δὲ ἐφεξῆς ἡ ὑπὸ ΛΖΘ μείζων ἐστὶ τῆς ὑπὸ ΛΓΘ . οὐκ ἐλάσσων ἄρα ἡ ὑπὸ ΛΖΘ τῆς ὑπὸ |
| ΗΑ πρὸς ΑΘ , ἔλαττον ἄρα ἐστὶ τὸ ΑΕΖ τοῦ ΗΑΘ . ὁμοίως δὲ δείκνυται , ὅτι καὶ πάντων τῶν | ||
| ἡ ΕΖ : ἡ ΕΖ ἄρα ὀρθή ἐστι πρὸς τὸν ΗΑΘ : ὥστε καὶ πρὸς τὰς ΑΒ ΗΘ ἡ ΕΖ |
| τοῦ μέσου ἐκκέντρου ὑποτείνουσι μὴ δεδομένας , ἐὰν δ ' ἐπιζεύξωμεν τὰς ΝΣΕ καὶ ΝΤΖ καὶ ΝΗΥ , πάλιν τὰς | ||
| Κ . Φανερὸν οὖν , ὅτι . , ] ἐὰν ἐπιζεύξωμεν ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐπὶ τὸ |
| ποιεῖ τὸν κύβον , εἰ δὲ ἐλάττων , ποιεῖ τὴν πλινθίδα . καὶ γὰρ αἱ πλίνθοι , τὰ μὲν κάτω | ||
| ἐννεάδας , καὶ μένουσι γʹ . ἐλθὲ οὖν ἐπὶ τὴν πλινθίδα , καὶ εὑρήσεις τὴν μίαν νικῶσαν τὰς γʹ . |
| ΕΖ ἄρα ἴσον ἀπέχουσαι τοῦ τε ἰσημερινοῦ καὶ τῶν τροπικῶν συναφῶν ἐν ἴσῳ χρόνῳ ἀνατέλλουσιν : ἀλλ ' ἐν ᾧ | ||
| τὰ φῶτα ἀλλήλων καὶ τῆς ὥρας ἀλλοτριωθῇ τῷ σχήματι τῶν συναφῶν πρὸς κακοποιοὺς γινομένων καὶ τῶν κέντρων ἢ τῶν ἐπαναφορῶν |
| ἡ ΨΟ : λοιπὴ ἄρα ἡ ͵ΑΨ ἴση ἐστὶν τῇ ΟΡ . Διπλῆ δὲ ἡ ΟΡ τῆς ΩΨ : διπλῆ | ||
| ἐπεί ἐστιν ὡς ἡ ΝΟ πρὸς τὴν ΟΡ , ἡ ΟΡ πρὸς τὴν ΡΝ , καὶ τὰ διπλάσια : τὰ |
| καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα | ||
| καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση |
| μή , τοὐναντίον . Εὐήνωρ δὲ καὶ Εὐρυφῶν ἐπὶ δίφρου μαιωτικοῦ καθίσαντες τοῖς αὐτοῖς ὑπεθυμίασαν . ἅπερ ψευδῆ : καὶ | ||
| μὲν οὖν δύναιτο ἡ γυνὴ καθῆσθαι , καθίσαντες αὐτὴν ἐπὶ μαιωτικοῦ δίφρου , περιστείλαντες ἰσχυρῶς ἱματίοις , ὥστε μηδὲν ἄλλο |
| ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις : ὅπερ ἔδει | ||
| δὲ κατὰ τὸ α , γίνεται τὸ ὑπό τε τῆς ἀτμήτου τῆς βα καὶ ἑκάστου τῶν τμημάτων τῶν δα , |
| ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ | ||
| μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως |
| Ζ ἐπὶ τὸ Ε ἐπιζεύξαντες τὴν ΖΓΕ , ἕξομεν τὴν ΓΒ μέσην τῶν ΑΒ ΒΗ . καὶ ἡ ἀπόδειξις φανερά | ||
| , ὅτι καὶ λοιπὸν τὸ ΑΒ πρὸς τὸ αὐτὸ τὸ ΓΒ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ . μετὰ γὰρ |
| ἰσογώνιόν ἐστιν ἢ οὔ . ἔστω πρότερον ἰσογώνιον , καὶ παραβεβλήσθω παρὰ τὴν ΓΒ εὐθεῖαν τῷ ΕΗ παραλληλογράμμῳ ἴσον παραλληλόγραμμον | ||
| καὶ τῷ μὲν ἀπὸ τῆς Α ἴσον παρὰ τὴν ΓΔ παραβεβλήσθω τὸ ΓΕ πλάτος ποιοῦν τὴν ΓΖ : ἀποτομὴ ἄρα |
| ἡμεῖς ἐτηροῦμεν , ποτὲ μὲν σύμφωνοι κατελαμβάνοντο τοῖς κατὰ τὴν ἐκκειμένην ὑπόθεσιν ἐπιλογισμοῖς , ποτὲ δὲ διάφωνοι καὶ διάφοροι , | ||
| ἐπεῖχεν τοῦ Καρκίνου μοίρας ια γʹ , κατὰ δὲ τὴν ἐκκειμένην τήρησιν δηλονότι μοίρας ζ λγ , ἐπειδὴ πάλιν τοῖς |
| , καὶ τῆς ἀπολαμβανομένης ἐκτὸς ὑπὸ τῆς καθέτου πρὸς τῇ ἀμβλείᾳ γωνίᾳ . Ἔστω ἀμβλυγώνιον τρίγωνον τὸ ΑΒΓ ἀμβλεῖαν ἔχον | ||
| , καὶ τῆς ἀπολαμβανομένης ἐκτὸς ὑπὸ τῆς καθέτου πρὸς τῇ ἀμβλείᾳ γωνίᾳ : ὅπερ ἔδει δεῖξαι . Ἐν τοῖς ὀξυγωνίοις |
| αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι | ||
| , κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ |
| πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
| ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
| ἐκεῖνα κατὰ τὸ ἓν αὐτὸ τὸ πρὸ πάντων , τοῦ κρυφίου καλουμένου κόσμου κόσμος οὗτος ἀπορρητότερος , ὅς γε οὐδὲ | ||
| πεπληθυσμένων ἑκάστων , καὶ αὐτοῦ τοῦ πρώτου πάντων , καὶ κρυφίου διὰ τοῦτο καλουμένου , τοῦ πάντη κρυφίου , ὡς |
| γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ : ἴση ἄρα διὰ τὸ πρὸ τούτου | ||
| γωνία τὴν ἡμίσειαν αὐτῆς ὑποτείνουσα δεδομένη ἔσται καὶ ὅλον τὸ ΑΔΖ τρίγωνον , δῆλον : ἐπεὶ δὲ τῆς ΑΓ εὐθείας |