πρὸς τοὺς λοιποὺς τρεῖς τὴν σύγκρισιν ἕξει . ἀπὸ δὲ τοηʹ , ὅσπερ ἦν τῆς πρώτης συζυγίας ἀριθμός , ἂν | ||
Ζεὺς δὲ δι ' ἡμερῶν τϘηʹ , Κρόνος δὲ διὰ τοηʹ . Καὶ περὶ μὲν τούτων ἐπὶ τοσοῦτον πρός γε |
παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν ψκθʹ . Ἐὰν οὖν τις λέγῃ ὅτι Οἱ ρʹ πήχεις | ||
προσαυξηθέντες ἑπτὰ ἀριθμοὶ ποιοῦσι τὸν δεύτερον τετράγωνον καὶ κύβον τὸν ψκθʹ , αʹ γʹ θʹ κζʹ παʹ σμγʹ ψκθʹ . |
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν | ||
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια |
τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ | ||
θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν |
τροχαϊκῆς βάσεως . ὁ δὲ νεʹ ἐξ ἰαμβικοῦ πενθημιμεροῦς καὶ ἀναπαιστικῆς βάσεως . ἐπὶ τῷ τέλει κορωνὶς ἐξιόντων τῶν ὑποκριτῶν | ||
ἐν ἐπεισθέσει , ὧν τὸ πρῶτον ἐκ τροχαϊκῆς βάσεως καὶ ἀναπαιστικῆς , καὶ ἑφθημιμερὲς ἢ Ἰωνικόν , ἀπὸ μὲν τριμέτρου |
] κοινή . + ὁ παρὼν χορὸς συνέστηκεν ἐκ κώλων ρκζʹ , ὧν τὰ μὲν ρʹ εἰσὶ χοριαμβικὰ δίμετρα ἀκατάληκτα | ||
Ἐπίνοιά ἐστιν ἐναποκειμένη νόησις , νόησις δὲ λογικὴ φαντασία . ρκζʹ . Ὕπνος ἐστὶν ἄνεσις ψυχῆς κατὰ φύσιν ἀπὸ τῶν |
ἀνάπαιστος ὡς καὶ ἐνταῦθα τὸ πρύμνῃ πόλεως , ἀλλὰ καὶ χορεῖος . οἴακα νωμῶν : κυβερνήτης ὢν τῶν τῆς πόλεως | ||
ἕκτῃ ἢ τροχαῖος ἢ σπονδεῖος ἢ δάκτυλος ἢ ἀνάπαιστος ἢ χορεῖος , ἐν δὲ τῇ πρώτῃ καὶ τρίτῃ καὶ πέμπτῃ |
Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
στίχοι εἰσὶν ἰαμβικοὶ τρίμετροι ἀκατάληκτοι ρλγʹ . μετὰ δὲ τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ | ||
τελευταῖος : ἕπου μάραινε δευτέροις διώγμασι . μετὰ δὲ τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ |
ιεʹ , ὁλκὰϲ ριβʹ ʂ . Ἡ λίτρα ἔχει ὁλκὰϲ Ϙʹ . Τὸ δὲ δηνάριον ἔχει γράμματα δʹ . Τὸ | ||
ᾗ ὅρμος ναυσὶ , στάδιοι σʹ , μίλια κϚʹ , Ϙʹ Ϛʹ . Ὀδησσὸν κτίζουσι Μιλήσιοι , ὅτε Ἀστυάγης ἦρχε |
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
τὰ ἑξῆς . . . . : καὶ περιέχει ὁ δωδέκατος λόγος περί τε Ἀκώριος τοῦ Αἰγυπτίων βασιλέως ὡς πρός | ||
: οἵ τε λοιποὶ δύο ὅ τε ἕκτος καὶ ὁ δωδέκατος κάκιστοι . Πρὸς τὸν Ἄρεα τρίγωνος ὢν ὁ Κρόνος |
ἐλάσσων ἄρα ἡ ΕΥ τῆς ΞΨ , ὅπερ : ∼ ιθʹ . Δεδειγμένων δὴ τούτων ἑξῆς ἀποδείξομεν εἰς ὃ ταῦτα | ||
, ἐπὶ ηʹ ὥρᾳ τῆς νυκτός , Ὑδροχόος . Φευρουαρίου ιθʹ , ἐπὶ κʹ ὥρᾳ τῆς νυκτός , Ἰχθύες . |
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
, ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
στάδιοι ιβʹ : ἀπὸ δὲ Πύδνης ἐπὶ τὸν Ψυχέα στάδιοι τνʹ : λιμὴν θερινός : καὶ ὕδωρ ἔχει . Ἀπὸ | ||
τὸν Δυσωπὸν στάδιοι ρνʹ . Ἀπὸ Δυσωποῦ ἐπὶ Ἀσπίδα στάδιοι τνʹ . Ἀπὸ Ἀσπίδος εἰς Ταριχείας στάδιοι τνʹ Ἀπὸ Ταριχειῶν |
. Γαϲτρὸϲ κράϲεωϲ γνωρίϲματα . ξεʹ . Πνεύμονοϲ διάγνωϲιϲ . ξϚʹ . Καρδίαϲ γνωρίϲματα . ξζʹ . Ἥπατοϲ κράϲεωϲ διάγνωϲιϲ | ||
καʹ , κϚʹ , λϚʹ , μγʹ , μϚʹ , ξϚʹ , πδʹ , Ϙβʹ . ὁ δὲ τὸν γʹ |
συζυγίας τροχαϊκῆς ἤτοι ἐπιτρίτου βʹ , τῆς δὲ βʹ Ἰωνικῆς καταληκτικῆς . Τὸ ιϚʹ , ὡς ἐμοὶ δοκεῖ , ἀναπαιστικόν | ||
τὸ γʹ περίοδος καταληκτική , ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς . τὸ δʹ χοριαμβικὸν καθαρὸν ἡμιόλιον . τὸ εʹ |
Αἴτνην ὁμώνυμον τῷ ὄρει . συνέβη δὲ νικήσαντα αὐτὸν τὴν οηʹ Ὀλυμπιάδα ἐν ταύτῃ τελευτῆσαι . τὸ δὲ ὄνομα τοῦ | ||
τοῦ δὲ τοῦ Ἑρμοῦ ἡμέρας μὲν ξϚʹ , νυκτὸς δὲ οηʹ . γίνεται τὸ πᾶν τξʹ . τούτων μὲν οὖν |
καλῶς ἐδεσμεύθη . διπλῆ καὶ ἕπεται δυὰς ὁμοία ἐκ στίχων ἑφθημιμερῶν τῇ πρώτῃ . Γ μέλλω γέ τοι θερίδδειν : | ||
ἐξευρήματι καινῷ συμπτύκτοις ἀναπαίστοις . Καὶ τὸ ἐκ τῶν ἰαμβικῶν ἑφθημιμερῶν δικατάληκτον Καλλίμαχος Δήμητρι τῇ πυλαίῃ τῇ τοῦτον οὑκ / |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
μδʹ ρκαʹ , πάλιν δὲ ἐκ τῆς ἐπιτετραμεροῦς ἢ τετράκις ἐπιπέμπτου τῆς κεʹ μεʹ παʹ γεννᾶται ἡ διπλασιεπιτετραμερὴς πέμπτων ἐν | ||
διπλάσιος , ὡς προδέδεικται , ἐξ ἐπιτρίτου καὶ ἐπιτετάρτου καὶ ἐπιπέμπτου , λαμβάνω πάλιν ἀντὶ μὲν ἐπιτρίτου μονάδα μίαν καὶ |
. πζʹ . Περὶ ἥλων καὶ μυρμηκίων καὶ ἀκροχορδόνων . πηʹ . Περὶ βελῶν ἐξαιρέϲεωϲ . πθʹ . Περὶ καταγμάτων | ||
ἥμισυ , ἀπὸ δὲ ταύτης τῆς ἰσημερίας ἄχρι χειμερινῆς τροπῆς πηʹ , ἀπὸ δὲ χειμερινῆς τροπῆς ἐπὶ ἐαρινὴν ἰσημερίαν Ϙʹ |
Ὅτι δὲ περιλέλειπται τῶν ἀναλόγων δύο , ἅπερ ἐστὶ τῆς ἑκατοντάδος , τοσαυτάκις αὐξήσομεν τὸν εἰρημένον ἀριθμόν , ὥστε εἶναι | ||
ὁ μὲν Α ὑποκείσθω ἐλάσσων μὲν χιλιάδος μετρούμενος δὲ ὑπὸ ἑκατοντάδος , οἷον μονάδες φʹ , ὁ δὲ Β ἐλάσσων |
ἐν ἐκθέσει ἐστὶ τὸ ἔθιμον , 〚 διπλῆ 〛 δίστιχος ἀνάπαιστος τετράμετρος καταληκτικός : ὑφ ' ὃ διπλῆ καὶ ἑξῆς | ||
μόνον βακχεῖος ἐν τῷ διμέτρῳ χοριαμβικῷ κώλῳ , ἀλλὰ καὶ ἀνάπαιστος , πλὴν ἴστωσαν ὡς ἐπειδὴ οὐ μόνον θεμιτὸς εὕρηται |
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
ἀναδεχομένη καὶ ὑπομένουσα τὴν περίθεσιν , ἄνευ δὲ αὐτῆς οὐ φύσονται ἑτερομήκεις : εἴτε κατὰ τὸν αὐτὸν δίαυλον οἱ ἐφεξῆς | ||
ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί τε καὶ ἐπίτριτοι , |
οὕτως : τὰ ιβʹ τοῦ μήκους ἐφ ' ἑαυτὰ γίνονται ρμδʹ : καὶ τὰ εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ | ||
διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ σπθʹ πρὸς ρμδʹ . καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς |
. , ὁ τροχαῖος τροχαλὸν ποιεῖ τὸν λόγον , διὸ τροχαῖος καλεῖται ὁ τῶν τρεχόντων ῥυθμός , ὥς φησιν Λογγῖνος | ||
ποὺς ἁπλοῦς . τὸ βʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : αʹ τροχαῖος τοῦ αʹ ποδὸς λελυμένου : εἶτα ἰωνικὸς ἀπὸ μείζονος |
, πενταπλάσιος δὲ ὁ τῶν ἄκρων . κἂν τετραπλάσιος , ἐπιτριμερὴς τετάρτων , ἑπταπλάσιος δὲ ὁ τῶν ἄκρων καὶ ἑξῆς | ||
μετὰ δὲ τοῦτον ὁ τρία πρὸς τῷ ὅλῳ ἔχων κληθήσεται ἐπιτριμερὴς εἰδικῶς , καὶ μετὰ τοῦτον ἐπιτετραμερής , εἶτα ἐπιπενταμερής |
νίτρου . . . . . . . δραχ . ϘϚʹ θείου . . . . . . . δραχ | ||
. ρϘβʹ στυπτηρίας ὑγρᾶς . . . . δραχ . ϘϚʹ νίτρου . . . . . . . δραχ |
ἐλλείπει διαστολὴν μίαν ἢ καὶ δύο ἢ καὶ πλείους . σκθʹ . Παρεμπίπτων σφυγμός ἐστιν ὅταν μεταξὺ δυοῖν πληγῶν κατὰ | ||
. ὁμοίως ἐπεὶ τρίτης συζυγίας ἐστὶ τὰ τνʹ , ἀφέλω σκθʹ , λείπω ρκαʹ καὶ ἴσχω τὸν τέταρτον . ὁμοῦ |
μὲν δοχμιακά , ὧν τὸ μὲν συντίθεται ἐξ ἰάμβου καὶ παίωνος διαγυίου , τὸ δὲ δεύτερον ἐξ ἰάμβου καὶ δακτύλου | ||
γʹ ὅμοιον τῷ αʹ : τὸ δʹ ὅμοιον ἡμιόλιον ἐκ παίωνος : τὸ εʹ δίμετρον ἐκ παλιμβακχείων : τὸ Ϛʹ |
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
ποιῆσαι πρίν με τὰς πληγὰς λαβεῖν . ὁ ξʹ μέντοι ἰαμβικὸς ἑφθημιμερής . εἶτα κῶλον ἀντισπαστικὸν ἐξ ἐπιτρίτου πρώτου ἡμιόλιον | ||
τοῦ τέλους τῆς ἐπῳδοῦ τὰ σημεῖα , ὡς εἴρηται . ἰαμβικὸς τρίμετρος . τάδ ' αὐτόδηλα : αὐτὰ δὲ ταῦτα |
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ | ||
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ |
, τὸν στέφανον τοῖς στέρνοις προσαγαγοῦσα καινῷ μοιχῷ συμπλακῆναι . καʹ . Οὖσα ξανθὴ τί ῥόδα ζητεῖς ; καὶ μὴν | ||
' στιν ” μονόμετρον ἐξ ἀναπαίστου καὶ σπονδείου : τὸ καʹ “ παρὰ τοῖσι θεοῖς ” μονόμετρον ἐκ βʹ ἀναπαίστων |
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
καὶ τρίτον κατ ' ἀρετήν , τὸν δὲ τῆς δευτέρας τετραρχίας τετράρχην εὐώνυμον εἶναι καὶ τέταρτον κατ ' ἀρετήν . | ||
; οὐχὶ τὰς πολιτείας καὶ τὰς πόλεις αὐτῶν παρῄρηται καὶ τετραρχίας κατέστησεν , ἵνα μὴ μόνον κατὰ πόλεις ἀλλὰ καὶ |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
τρίτης συζυγίας ἐστὶ τὰ τνʹ , ἀφέλω σκθʹ , λείπω ρκαʹ καὶ ἴσχω τὸν τέταρτον . ὁμοῦ οὖν τῶν τεσσάρων | ||
παρὰ τὰ ͵βφμα , γίνονται Ϙη δʹ ιαʹ λγʹ μδʹ ρκαʹ τξγʹ . Ἔτεμον σφαῖραν εἰς μέρη τέσσαρα καὶ εὑρέθη |
εἰ δὲ βούλει , ἰαμβικὸν τρίμετρον βραχυκατάληκτον τοῦ δευτέρου ποδὸς χορείου , τοῦ δὲ τρίτου δακτύλου . τὸ ναʹ ἀντισπαστικὸν | ||
ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον καταληκτικόν , ἐξ ἰωνικοῦ καὶ χορείου ἢ ἀναπαίστου διὰ τὴν ἀδιάφορον : τὸ εʹ ὅμοιον |
τρίτου καὶ σπονδείου . τὸ μβʹ ὅμοιον δίμετρον ὑπερκατάληκτον ἐξ ἐπιτρίτου πρώτου , διιάμβου καὶ συλλαβῆς . τὸ μγʹ ὅμοιον | ||
: τὸ Ϙʹ δίμετρον [ καταληκτικὸν ] ἤτοι ἑφθημιμερὲς ἐξ ἐπιτρίτου γʹ ἢ δισπονδείου καὶ βακχείου . προυσχόμην ] περιεποιούμην |
Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας | ||
ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον . |
ἢ δακτύλων σύγκειται τοῦτο τὸ μέτρον , ἐνταῦθα δὲ ἐκ σπονδείων , πλὴν τῆς τελευταίας : οἰκεῖοι δὲ καὶ οἱ | ||
, σπονδείου καὶ βʹ ἀναπαίστων : τὸ ιθʹ ἐκ βʹ σπονδείων : τὸ κʹ ἐξ ἀναπαίστου καὶ σπονδείου : τὸ |
ἕξ : κρητικός , ὃς συνέστηκεν ἐκ τροχαίου θέσεως καὶ τροχαίου ἄρσεως : δάκτυλος κατ ' ἴαμβον , ὃς σύγκειται | ||
προσοδιακὸν τρίμετρον ἀκατάληκτον : ἡ αʹ συζυγία τροχαϊκὴ τοῦ αʹ τροχαίου διαλελυμένου εἰς τρίβραχυν , εἶτα Ἰωνικὸς ἀπὸ μείζονος , |
θέλουσιν , οἷον Ἁλίζων Ἁλίζωνος , Ε ἀρχὸν Ἁλιζώνων , Ὀδίον μέγαν , ἔκβαλε δίφρου : Ὀνάσων Ὀνάσωνος , Τελέσων | ||
ἕκαστος ἡγεμόνων : πρῶτος δὲ ἄναξ ἀνδρῶν Ἀγαμέμνων ἀρχὸν Ἁλιζώνων Ὀδίον μέγαν ἔκβαλε δίφρου : πρώτῳ γὰρ στρεφθέντι μεταφρένῳ ἐν |
Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |
ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι . | ||
τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ , |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
καταληκτικόν : τὸ Ϙʹ δίμετρον ἐξ ἀμφιμάκρου , βακχείου , ἰάμβου καὶ ἀμφιμάκρου : τὸ ζʹ ἀναπαιστικὸν δίμετρον ἀκατάληκτον : | ||
, τῶν ἑξῆς χοριάμβου γινομένων . διὰ τοῦτο καὶ ἀπὸ ἰάμβου ἄρχονται ἐν τῷ ἀναπαιστικῷ , ὥσπερ Ἀρχίλοχος ἐν τῷ |
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
ἁπασῶν τελευταίας συλλαβὰς εἰς μακρὰν ποιήσει τις , ὁ Ἱππώνακτος ἴαμβος ἔσται . ὅτι ἐν τῷ βυρσηναίων καλουμένῳ χορῷ ἕκαστον | ||
ἔχειν αἱμάτων ἄγος ἐπαίροντα . στροφὴ ἑτέρα κώλων εʹ . ἴαμβος . μάντι ] ὦ . αὐτὸς ἑαυτὸν καλέσας ἐπὶ |
τὸ δʹ ἰωνικὸν ἡμιόλιον , ἐκ τροχαϊκῆς συζυγίας ἤτοι ἐπιτρίτου βτέρου καὶ ἰάμβου . τὸ εʹ ὅμοιον καθαρόν , ἐξ | ||
ἀκατάληκτον ὅμοιον τῷ γʹ , ἐκ παίωνος γʹ καὶ ἐπιτρίτου βτέρου ἤτοι τροχαϊκῆς συζυγίας : εἰ δὲ βούλει , ἰαμβικὸν |
ὀβολοὺς μηʹ , θέρμους οβʹ , κεράτια ρμδʹ , χαλκοῦς τπδʹ , νομίσματα Ϛʹ . καλεῖται δὲ ἡ # τετρασάριον | ||
καυθέντων καὶ σβεσθέντων ὕδατι καὶ διηθηθέντος τοῦ ὕδατος , ⋖ τπδʹ , τοῦτ ' ἔστι λι δʹ , κηροῦ ⋖ |
ἀκατάληκτος . τὸ δʹ περίοδος καταληκτικὴ ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς : εἰ δὲ βούλει , χοριαμβικὸν δίμετρον καταληκτικὸν | ||
Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ τροχαϊκῆς συζυγίας , χοριάμβου καὶ Ἰωνικῆς καταληκτικῆς , ἤτοι ἀναπαίστου |
γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ | ||
τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ |
' ὧν τὰ Β στερεὸς ἴσος ἐστὶν τῷ διὰ τῶν ἑκατοντάδων στερεῷ ἐπὶ τὸν ἐκ τῶν πυθμένων στερεόν , τουτέστιν | ||
καὶ τεσσαράκοντα γίνονται ἑκατόν , ὁμοίως δὲ καὶ χιλιάδα ἐξ ἑκατοντάδων καὶ μυριάδα ἐκ χιλιάδων , μονὰς δὲ καὶ δεκὰς |
φημι συντίθεσθαι τὸν δεκάσημον . πάλιν ποιῶ τὸν αὐτὸν ἐκ τετρασήμου καὶ ἑξασήμου : συνέστη λόγος ῥυθμικὸς ἡμιόλιος . πάλιν | ||
ἄρσεως , σπονδεῖος μείζων , ὁ καὶ διπλοῦς , ἐκ τετρασήμου θέσεως καὶ τετρασήμου ἄρσεως : κατὰ δὲ συζυγίαν γίνονται |
. Ὁ ποὺς ὁ Πτολομαϊκὸς ἔχει εὐθυμετρικοὺς δακτύλους ιϚʹ , ἐμβαδομετρικοὺς σνϚʹ , στερεοὺς δὲ ͵δϘϚʹ . Ὁ δὲ Ῥωμαϊκὸς | ||
σνʹʹ . Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ |
καὶ λαμβάνει τὴν ψυχήν , τὸ ἕβδομον παρασκευάζεται , τὸ ἔννατον ἀνοίγονται τὰ κλεῖθρα τοῦ πυλῶνος τῆς γυναικὸς καὶ γεννᾶται | ||
γʹ μονόμετρον , τὰ ἑξῆς πέντε δίμετρα ἀκατάληκτα , τὸ ἔννατον μονόμετρον , τὸ δὲ ιʹ δίμετρον καταληκτικόν , ἤτοι |
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
δαφνίδων ἐπίθεμα πθʹ . Περὶ ἀποστήματος ἐν μήτρᾳ , Ἀρχιγένους ρʹ . Ὅπως δεῖ ἐνεργεῖν περὶ τὸ στόμιον τῆς μήτρας | ||
μάρπω , τὸ καταλαμβάνω γίνεται μαρπεῖν , καὶ ἀποβολῇ τοῦ ρʹ μαπέειν κατ ' ἐπέκτασιν . Καὶ τὸ ΒΑΙΝΟΥΣΕΩΝ δὲ |
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
σκευασία πολυτελὴς ρλβʹ . Φουλιάτου σκευασία ρλγʹ . Σπεκάτου σκευασία ρλδʹ . Οἰνανθαρίου σκευασία ρλεʹ . Ἀψινθάτου ἤτοι ῥοδαψινθάτου ὑγιεινοῦ | ||
οὕτως ἐμὲ λαμβάνει : τουτέστι τὴν τοῦ πείθειν δύναμιν . ρλδʹ Τόδε δ ' οὖν μέγα λέγω Τὸ δὲ μέγα |
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
λγʹ , μβʹ , νζʹ , ξαʹ , ογʹ , πδʹ , Ϙθʹ . ὁ δὲ τὸν γʹ ἔσται ἐν | ||
δʹ ἡμερῶν , λοιπαὶ πδʹ ὧραι ιβʹ : τὰς οὖν πδʹ ἐὰν προσθῶμεν τῇ τοῦ Μεσορὶ Ϛʹ , ἔσται Φαωφὶ |
υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
ἄλλο τι τῶν συμφώνων , ὁ πρῶτος φθόγγος πρὸς τὸν ἕβδομον οὐ ποιήσει τὸ διὰ πασῶν . εἴτε δὴ μὴ | ||
παράθεσις καὶ ἐπὶ τῶν εἰς ΩΝ ληγόντων . Τὸ δὲ ἕβδομον ἀπὸ τῶν εἰς ΜΟΣ μέχρι τῶν εἰς ΠΟΣ . |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
, ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ μὲν αʹ , βʹ , | ||
τοῦ μακροῦ καὶ τῆς ἐκθέσεως τούτου παράγραφος . κώλων δέκα διμέτρων πλὴν τοῦ τελευταίου καταληκτικῶν . ἐπὶ πᾶσι παράγραφος . |
πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς | ||
ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν |
τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει | ||
χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν |
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
, ἔχων καὶ κλιμακτῆρας πρὸς ἔτος ἕκτον , ἔννατον , ἑνδέκατον τοῦ βίου , δίπλωσον τοῦτον , νὰ σωθῇς , | ||
τοῦτ ' ἔχων . Κεχαρισμένως δὲ καὶ τοῦτον ἀποδεξάμενος τὸν ἑνδέκατον ἐπηρώτα διὰ τὸ δύο πλεονάζειν τῶν ἑβδομήκοντα : Πῶς |
, ἤτοι ἑφθημιμερῆ καὶ μονόμετρα . τὰ δὲ ἑξῆς ρκαʹ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικά , ἤτοι ἑφθημιμερῆ καὶ πενθημιμερῆ | ||
εἴτε ἐπιτρίτου τετάρτου , καὶ διιάμβου : τὰ ἑξῆς δύο χοριαμβικὰ δίμετρα βραχυκατάληκτα : τὸ τρισκαιδέκατον ἐκ χοριάμβου καὶ σπονδείου |
γπλ . τῆς ὑπεροχῆς καὶ τῶν δοθεισῶν Μο ι . Τετάχθω ἡ μὲν ὑπεροχὴ αὐτῶν Μο β , ὁ δὲ | ||
συγκείμενος ἐκ τῶν ἀπ ' αὐτῶν τετραγώνων ποιῇ τετράγωνον . Τετάχθω δὴ τῶν ζητουμένων ὁ μὲν ΔΥ α , ὁ |
τὴν δὲ κεʹ ἕκτην ⌈ φθίνοντος , ⌈ τὴν δὲ κϘʹ πέμπτην , ⌈ καὶ ἐφεξῆς μέχρι τῶν τριάκοντα , | ||
περισσοτέρως . . κακῶς ] ἀδίκως . ἰαμβικοὶ τρίμετροι ἀκατάληκτοι κϘʹ , ὧν τελευταῖος πολλῷ γε μᾶλλον , κἂν πάρωσι |
μθʹ , νβʹ , ξγʹ , ξθʹ , οβʹ , πϚʹ . μὴ λαθέτω δὲ ἡμᾶς ὡς εἰκότως εἰς φυλακτήριον | ||
μθʹ , νβʹ , ξγʹ , ξθʹ , οβʹ , πϚʹ . μὴ λαθέτω δὲ ὡς εἰκότως εἰς φυλακτήριον τοῦ |
δὲ κεʹ : καὶ τὸν τρίτον δὲ ἐκ βιβλίων μὲν χʹ , συγγραφέων δὲ κϚʹ : τὸν μέντοι τέταρτον ἐκ | ||
Ἀπὸ δὲ Ἀγρίσης πόλεως ἐπὶ Ὄμμανα ἐμπόριον τῶν ἐπισήμων στάδιοι χʹ . Ἀπὸ δὲ Ὀμμάνων ἐπὶ Ῥόγανα στάδιοι ρνʹ . |
ἔπη † ἐπὶ † τὸ θέατρον παραβῆναι . Θεοπόμπου δράματα ιζʹ . Στράττιδος δράματα ιϚʹ . Φερεκράτους δράματα ιηʹ . | ||
διεδέξατο Βαλεάζωρος , βιώσας ἔτη μγʹ , ὃς ἐβασίλευσεν ἔτη ιζʹ . μετὰ τοῦτον Ἀβδάστρατος , ὃς βιώσας ἔτη κθʹ |
πορθεῖσθαι ἀπὸ τῶν σῶν παίδων , ἁλωθήσεται δὲ ὑπὸ τῶν τετάρτων ἀπὸ σοῦ : ἔστι δὲ ὁ Πύρρος . ἅμα | ||
πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ διπλασιεπιτετραμεροῦς πέμπτων ἐν ἐννάτῳ |
τε τῶν χμʹ καὶ ὁ τῶν χμηʹ καὶ ὁ τῶν χλʹ . ὡς ἔχουσιν αἱ καταγραφαί . Ὅτι δὲ οὐ | ||
στάδια ͵ατʹ : Κῶ περίμετρος στάδια φνʹ : Σάμου στάδια χλʹ . Ἰκαρία δὲ ἐστὶ μακρὰ , τραχεῖα , μῆκος |
μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς | ||
, μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι |
τῆς σελήνης τοὺς τῶν ἀστέρων , τὴν μὲν ἐν τῷ λβʹ ἔτει φησὶ γεγονέναι τοῦ Μεχὶρ κζʹ πρωίας , τὴν | ||
δραχ . κʹ κόμμεως . . . . δραχ . λβʹ τοῦ φαρμάκου . . . δραχ . λϚʹ ὕδωρ |
παραδιδόναι . . καὶ μὴν περὶ τοῦ γε ἔτους τοῦ ἑβδόμου ῥᾴδιον ὡσαύτως λέγειν , οὐ μὴν ταὐτὸν ἴσως . | ||
. ἀπέθανε δὲ βασιλεύσας ἔτη τε ἓξ καὶ ἐκ τοῦ ἑβδόμου μῆνας ἐπιλαβὼν οὐ πολλούς . τοῖς δὲ Μεσσηνίοις ἀπεγνωκέναι |
Ἀντωνίνου Φαωφὶ ιʹ : εἰσὶ σμγʹ , καὶ γίνονται ὁμοῦ υλβʹ . ἀφαιρῶ τὰς τξʹ , λοιπαὶ οβʹ : ταύτας | ||
. . . . . . . . . τπδʹ υλβʹ υπϚʹ φιβʹ φοϚʹ χμηʹ ψκθʹ λεῖμμα βπλάσιον τοῦ αʹ |
, τοῦ δὲ Δ ἐπόγδοος ὁ Ε , τοῦ Ε ἐπόγδοος ὁ Ζ , τοῦ Ζ ἐπόγδοος ὁ Η : | ||
δυνατοῦ δεῖξαι τὸ προκείμενον , ὅς ἐστι μονάδων ͵αφλϚʹ , ἐπόγδοος μὲν αὐτοῦ γίνεται ὁ τῶν ͵αψκηʹ , τούτου δὲ |
ὁμοίου . ὁ πέμπτος ὅμοιος τῷ γʹ . ὁ Ϛʹ ἀναπαιστικὸς δίμετρος βραχυκατάληκτος . ὁ ζʹ ἀσυνάρτητος ἐξ ἀναπαιστικῆς βάσεως | ||
ποιητοῦ δὲ ὁ λόγος . κορωνίς : ὁ δὲ στίχος ἀναπαιστικὸς τετράμετρος καταληκτικός . κεκώλισται ἐκ τῶν Ἡλιοδώρου , παραγέγραπται |
τὴν ἀτέλειαν τοὺς ἔχοντας : ἢ τὰς δύο προτάσεις ἐκλαβὼν συντίθημι ἐν μὲν γὰρ τῷ γράψαι μηδένα εἶναι ἀτελῆ καὶ | ||
ἐπιστέλλω , καὶ συντάσσεται δοτικῇ . γράφω καὶ τὸ γράμματα συντίθημι , καὶ τὸ ζωγραφῶ , καὶ συντάσσεται αἰτιατικῇ . |
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ | ||
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ ' |
λγʹ , λεʹ , μʹ , νβʹ , ξζʹ , οδʹ , πηʹ , Ϙζʹ . τὸ δὲ μεταξὺ Κριοῦ | ||
κβʹ , λαʹ , μγʹ , νϚʹ , ξαʹ , οδʹ , πδʹ , Ϙαʹ . οἱ δὲ ἔχοντες τὸν |
εἶναι . ὁ δὲ ὡς τόπος φωνῆς , ὅταν λέγωμεν δώριον ἢ φρύγιον ἢ λύδιον ἢ τῶν ἄλλων τινά . | ||
. ἁπλῶς γὰρ τοὺς τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν |
ἕξ : ὑπερλύδιον , ὑπεριάστιον , λύδιον , φρύγιον , ὑπολύδιον , ὑποφρύγιον . οἱ δὲ κιθαρῳδοὶ τέτρασι τούτοις ἁρμόζονται | ||
διὰ πασῶν ἐν τῷ λυδίῳ , εἶτα τετράχορδον ὑποβαίνοντες τὸ ὑπολύδιον καὶ ἑξῆς ὁμοίως τετράχορδον ἀναβαίνοντες τὸν ὑπερλύδιον . Κεχυμέναι |
τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν | ||
τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου |