εἰς μονάδα καὶ δυάδα καὶ τριάδα καὶ τετράδα καὶ τὸν θʹ καὶ ηʹ καὶ κζʹ ἀριθμόν , ὧν ἐφεξῆς μὲν | ||
, τὸ ηʹ περὶ ἀγοραίου ἢ πανηγύρεώς τινος , τὸ θʹ περὶ προσόδων ἢ κόσμου καὶ δικαίου τινὸς πράγματος ἢ |
σελιδίου , γίνεται # νϚ ιζ . πάλιν τὰ τοῦ ηʹ σελιδίου ἑξηκοστῶν μγ κδ ἐπὶ τὰ τοῦ ἕκτου σελιδίου | ||
δʹ Ϛʹ , Ϛʹ καὶ Ϛʹ ιβʹ , ιβʹ καὶ ηʹ κʹ , κʹ καὶ ιʹ λʹ : ὥστε εἶεν |
τῆς στροφῆς . Τὸ εʹ τροχαϊκὸν δίμετρον ἀκατάληκτον . Τὸ Ϛʹ Ἰωνικὸν δίμετρον καταληκτικὸν ἀπ ' ἐλάττονος ἐκ τροχαϊκῆς συζυγίας | ||
τὸ ἀνάπαλιν : ἐκ μονάδος καὶ δυάδος καὶ ἑαυτῆς τὸν Ϛʹ ποιεῖ κατὰ σύνθεσιν , ὅς ἐστι κυρίως πρῶτος τέλειος |
σημείῳ τοῦ κέντρου τῆς σελήνης ὄντος ὑπόκειται τὸ ἥμισυ καὶ ιβʹ ἐκλείπουσα ἡ σελήνη τῆς ἰδίας διαμέτρου , δῆλον ὅτι | ||
κατὰ τὰ αὐτὰ τριχῶς : τά τε τοῦ ὅλου κύκλου ιβʹ πρὸς τὰ θʹ τῆς ΑΒΔ περιφερείας , καὶ τὰ |
κατὰ τὸ γʹ , ἄστρον τι τῶν ἀπλανῶν ἀνατελλέτω τὸ δʹ : τοῦ ἄρα δʹ ἄστρου ἐστὶν ἡ ἑσπερία ἀληθινὴ | ||
, τουτέστιν τοῦ Ε [ τοῦ δοθέντος ] χωρίου . δʹ . Ἐὰν ᾖ τρίγωνον τὸ ΑΒΓ , καὶ διαχθῇ |
διάμετρον τῇ δὲ διαμέτρῳ δύο πλευράς , ἔσται ζʹ καὶ εʹ , καὶ γίνεται τὸ ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον | ||
. τὸ δʹ ἰωνικὸν ἀπὸ μείζονος δίμετρον ἀκατάληκτον . τὸ εʹ προσοδιακὸν δίμετρον ἀπὸ χοριάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος |
τῷ γʹ : τὸ θʹ ὅμοιον τῷ δʹ : τὸ ιʹ ὅμοιον τῷ γʹ : τὸ ιαʹ τροχαικὸν μονόμετρον : | ||
πέντε δίμετρα ἀκατάληκτα , τὸ ἔννατον μονόμετρον , τὸ δὲ ιʹ δίμετρον καταληκτικόν , ἤτοι ἑφθημιμερές , ὃ καλεῖται παροιμιακόν |
μοίρας αʹ ἕως τρίτης ἄκρα , ἀπὸ δὲ δʹ ἕως ζʹ κεφαλή , ἀπὸ δὲ ηʹ ἕως ιʹ κοιλία , | ||
παρανατέλλει δὲ τούτῳ λαμπρὸς ἀστὴρ ὁ ἐπὶ τοῦ Ἀετοῦ μοίρας ζʹ , λεπτῶν μʹ , βόρειος , μεγέθους αʹ , |
τὸ . ἤγουν οἱ δυσκαταγώνιστοι Πέρσαι . στροφὴ ἑτέρα κώλων ιαʹ . τί δ ' οὔ ] πεπλήγμεθα . τάλας | ||
. οἱ δὲ κλιμακτῆρες αὐτοῦ ἔτος Ϛʹ , θʹ , ιαʹ , κβʹ , λαʹ , μαʹ , νγʹ , |
πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως | ||
ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου |
- χαϊκὸν τρίμετρον καταληκτικὸν , εἰς ἴαμβον καταλῆγον . τὸ γʹ Ἀρχιλόχειον , ὅμοιον τῷ Ἐρασμονίδη Χαρίλαε . τὸ δʹ | ||
ἰχθυοτροφικόν . βʹ . ἰχθῦς εἰς ἕνα τόπον συναγαγεῖν . γʹ . ποταμίους θηρᾶσαι ἰχθύας . δʹ . ἰχθῦς εἰς |
τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει | ||
χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν |
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
καὶ ὁμοίως κατὰ τὴν προκειμένην ἔφοδον , ἐὰν ἀφέλῃς τὰς κεʹ τοῦ Ὑδροχόου καὶ τῶν λοιπῶν τὸ τρίτον λάβῃς , | ||
δὲ ἀπὸ τῶν βάσεων , τό τε ηʹ καὶ τὸ κεʹ . δεῖ οὖν τούτοις τοῖς τέσσαρσι τῷ δʹ καὶ |
ἐκ πολέμου . καὶ τὸ ἅμα κόνει γινόμενον . βροτός βʹ : ἄνθρωπος . καὶ φθαρτός . βωμός βʹ : | ||
ἑψήματος . . . . . . . ξεστ . βʹ ἀγαρικοῦ . . . . . . . οὐγ |
Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |
κεʹ πεντάμοιρα τῆς κατὰ μοῖραν ἐπιδιαιρέσεως ἀρκεθησομένης ἐπὶ μόνων τῶν ιδʹ πενταμοιριῶν τῶν περιεξουσῶν τὰς μεταξὺ τῶν ἄκρων φθόγγων μοίρας | ||
δὲ Μοῖσαι . τῶν γὰρ ἄλλων στροφῶν καὶ ἀντιστροφῶν ἀνὰ ιδʹ ἐχουσῶν κῶλα αὕτη μόνη εἶχεν , ὅπερ ἦν ἄτοπον |
, τὸν στέφανον τοῖς στέρνοις προσαγαγοῦσα καινῷ μοιχῷ συμπλακῆναι . καʹ . Οὖσα ξανθὴ τί ῥόδα ζητεῖς ; καὶ μὴν | ||
' στιν ” μονόμετρον ἐξ ἀναπαίστου καὶ σπονδείου : τὸ καʹ “ παρὰ τοῖσι θεοῖς ” μονόμετρον ἐκ βʹ ἀναπαίστων |
ξʹ , πλευρὰς δὲ ρνʹ . Ταῦτα μὲν οὖν τὰ ιγʹ σχήματα [ ἤτοι ἀνομοιογώνια ὄντα ἢ ] ὑπὸ ἀνίσων | ||
ιζʹ : ιβʹ ♎ ιζʹ ιβʹ , κλῆρος πατρὸς Ϛʹ ιγʹ , ☿ Ϛʹ κβʹ . Ὁ Ἥλιος καὶ ὁ |
ἑῷος δύνει . Ἱππάρχῳ νότος ἢ βορέας , χειμάζει . κʹ . Αἰγυπτίοις χειμῶνος ἀήρ . καʹ . ὡρῶν ιδ | ||
συγκαταδύνει μὲν αὐτοῖς ὁ ζῳδιακὸς ἀπὸ Ὑδροχόου μοίρας γʹ καὶ κʹ ἕως Κριοῦ μοίρας εʹ : μεσουρανεῖ δὲ ἀπὸ Ταύρου |
ΒΓ . ἄλογον ἄρα διὰ τὸν ὅρον . Διὰ τὸ κζʹ τοῦ ιʹ δυνατόν ἐστι πορίσασθαι τὸ δεδομένον τῆς προτάσεως | ||
καὶ οὐκ εἰς τὰ προηγούμενα , σελήνη μὲν ἐν ἡμέραις κζʹ καὶ τρίτῳ μάλιστα ἡμέρας καὶ νυκτὸς διέρχεται : ὁ |
τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ | ||
θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν |
τῆς σελήνης τοὺς τῶν ἀστέρων , τὴν μὲν ἐν τῷ λβʹ ἔτει φησὶ γεγονέναι τοῦ Μεχὶρ κζʹ πρωίας , τὴν | ||
δραχ . κʹ κόμμεως . . . . δραχ . λβʹ τοῦ φαρμάκου . . . δραχ . λϚʹ ὕδωρ |
ἔπη † ἐπὶ † τὸ θέατρον παραβῆναι . Θεοπόμπου δράματα ιζʹ . Στράττιδος δράματα ιϚʹ . Φερεκράτους δράματα ιηʹ . | ||
διεδέξατο Βαλεάζωρος , βιώσας ἔτη μγʹ , ὃς ἐβασίλευσεν ἔτη ιζʹ . μετὰ τοῦτον Ἀβδάστρατος , ὃς βιώσας ἔτη κθʹ |
ἐλάσσων ἄρα ἡ ΕΥ τῆς ΞΨ , ὅπερ : ∼ ιθʹ . Δεδειγμένων δὴ τούτων ἑξῆς ἀποδείξομεν εἰς ὃ ταῦτα | ||
, ἐπὶ ηʹ ὥρᾳ τῆς νυκτός , Ὑδροχόος . Φευρουαρίου ιθʹ , ἐπὶ κʹ ὥρᾳ τῆς νυκτός , Ἰχθύες . |
ιβʹ , ιαʹ καὶ λοιπὰ Ϛʹ : ταῦτα δωδεκάκις γίνονται οβʹ , καὶ ἑκάστου ἐκκρουσθέντος κύκλου ἀνὰ αʹ , γίνονται | ||
' ἑαυτά , καὶ γίνεται παʹ : ηʹ θʹ ξδʹ οβʹ παʹ : εἶτα πάλιν τούτων ἕκαστον ληφθήτω τρίς , |
Περὶ ἐμφυϲήματοϲ . κθʹ . Περὶ ϲτρεμμάτων καὶ θλαϲμάτων . λʹ . Περὶ ϲαρκοθλαϲμάτων καὶ ἐκχυμωμάτων . λαʹ . Περὶ | ||
* ἡδύλογος . * ἀγαθοῦ : ὑπῆρξε τοῖς Ὀλιγαιθίδαις : λʹ γὰρ ἐν ἑκατέρῳ ἀγῶνι ἐνίκησε τῶν Ὀλιγαιθιδῶν . ἔργα |
δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ δʹ , μονόμετρα κϚʹ , ὧν τὸ κεʹ μονόμετρον , παρατελευταῖον ὀνομαζόμενον , | ||
οζʹ Ἄρεως ἑνδέκατος , δύσκολος καὶ θανατηφόρος . οηʹ Κρόνου κϚʹ , Σελήνης ἕκτος , χαλεπός . πʹ Ἀφροδίτης ιϚʹ |
πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς | ||
ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν |
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
δίμετρον ἀκατάληκτον παίωνα ἔχον ἀντὶ ἰωνικοῦ : τὸ δʹ δακτυλικὸν πενθημιμερές : τὸ αὐτὸ δὲ καὶ χοριαμβικὸν δύναται εἶναι δίμετρον | ||
τῆς ἀμφήκης . λάμπων πρόβολος ἐμός ] τὸ ηʹ ἀναπαιστικὸν πενθημιμερές . πρόβολος ] τεῖχος , ἀσφαλὴς προστάτης . πρόβολος |
τὸν ρκʹ , τὸν ρκβʹ κώλου τμήματα δʹ , ἃ μονόμετρά ἐστι βραχυκατάληκτα . μετὰ δὲ τὸν ρκδʹ ἕτερα βʹ | ||
ἰώ , ἢ τὸ φεῦ φεῦ ἰώ : ταῦτα γὰρ μονόμετρά ἐστιν ἀκατάληκτα διὰ τὸ ἀπηρτισμένους ἔχειν τοὺς πόδας καὶ |
Ἄλπεσι Σεγούσιον κηʹ ∠ ʹʹ μγʹ ∠ ʹʹγʹʹ ιβʹʹ Βριγάντιον κθʹ μδʹ ιβʹʹ Νερουσίων ἐν Παραλίοις Ἄλπεσιν Οὐίντιον κηʹ ∠ | ||
αʹ . Ἄλλη . Ἀντωνίνου ἔτος καʹ Ἀθὺρ κηʹ εἰς κθʹ ὥρα νυκτερινὴ γʹ . Ἥλιος Τοξότῃ Ϛʹ , Σελήνη |
γύναια . οἱ δὲ κλιμακτῆρες ἔτος ζʹ , ιγʹ , κγʹ , μγʹ , νβʹ , ξϚʹ , οδʹ , | ||
ὡρῶν ιε : Προκύων ἑῷος δύνει . Ἱππάρχῳ νότος . κγʹ . ὡρῶν ιδ ∠ ʹ : ὁ ἐν τῷ |
ταύταις παράκειται κατὰ τὸ δʹ κλίμα τῷ μὲν πρώτῳ ὅρῳ κβʹ λγʹ , τῷ δὲ βʹ ὅρῳ μβʹ κζʹ , | ||
Ἁδριανὸς ἔτη κʹ μῆνας ιʹ ἡμέρας κηʹ . Ἀντωνῖνος ἔτη κβʹ μῆνας ζʹ ἡμέρας κϚʹ . Οὐῆρος ἔτη ιθʹ ἡμέρας |
Τὸ ηʹ ὅμοιον τῷ αʹ τῆς στροφῆς . Τὸ θʹ Στησιχόρειον ἐξ ἐπιτρίτων Στησιχόρου εὑρόντος αὐτό : δεύτεροι δὲ οἱ | ||
συλλαβῇ τοῦ Ἀρχιλοχείου ἢ τοῦ Ἐρασμονίδη Χαρίλαε . τὸ ιαʹ Στησιχόρειον . Γέγραφε τὴν ᾠδὴν Ἡροδότῳ τῷ Θηβαίῳ , τινὲς |
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
ἰαμβέλεγος πλεονάζων συλλαβῇ . τὸ δʹ ἐπιχοριαμβικὸν Πινδαρικὸν , ἢ ἰαμβέλεγος . τὸ εʹ προσοδιακὸν δίμετρον ὑπερκατάληκτον . τὸ Ϛʹ | ||
πενθημιμερές . τὸ Ϛʹ τροχαϊκὸν ἢ ἐπίτριτος . τὸ ζʹ ἰαμβέλεγος . τὸ ηʹ ἰαμβικὸν πενθημιμερές . τὸ θʹ ὅμοιον |
δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ | ||
τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος |
ἰαμβικήν . Τὸ δʹ ἀντισπαστικὸν δίμετρον ἀκατάληκτον , ὃ καλεῖται Γλυκώνειον , ἐκ διτροχαίου ἢ ἐπιτρίτου . Τὸ εʹ ἰαμβικὸν | ||
τὸ ιγʹ ἐξ ἀντισπάστου καὶ ἰαμβικοῦ ἑφθημιμεροῦς . τὸ ιδʹ Γλυκώνειον . τὸ ιεʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . τὸ ιϚʹ |
” : τὸ δυοκαιδέκατον ἀντισπαστικὸν δίμετρον καταληκτικόν , τὸ καλούμενον φερεκράτειον , ἑφθημιμερὲς ἐξ ἐπιτρίτου τετάρτου καὶ βακχείου , ὡς | ||
φερεκρατείου . συνῆπται δὲ τῇ λέξει καὶ μόνον διακέκριται τὸ φερεκράτειον . παράγραφοι δὲ ἁπλαῖ μὲν πέντε , ἡ δὲ |
, ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν ἐπὶ πλέον δὲ αὐξάνωνται | ||
καὶ Ἱππόβοτος καὶ Νεάνθης οἱ τὰ κατὰ τὸν ἄνδρα ἀναγράψαντες σιϚʹ ἔτεσι τὰς μετεμψυχώσεις τὰς αὐτῷ συμβεβηκυίας ἔφασαν γεγονέναι . |
, τοῦ δὲ Δ ἐπόγδοος ὁ Ε , τοῦ Ε ἐπόγδοος ὁ Ζ , τοῦ Ζ ἐπόγδοος ὁ Η : | ||
δυνατοῦ δεῖξαι τὸ προκείμενον , ὅς ἐστι μονάδων ͵αφλϚʹ , ἐπόγδοος μὲν αὐτοῦ γίνεται ὁ τῶν ͵αψκηʹ , τούτου δὲ |
χοριαμβικὰ ὅμοια ιβʹ . ἆρα φρονοῦσι ] τὰ κῶλα ταῦτα ἀναπαιστικά ἐστι δίμετρα καὶ μονόμετρα ηʹ . χαίρετ ' ἐν | ||
τοῦ χοροῦ κῶλα χοριαμβικὰ , τὰ δὲ τοῦ ἑτέρου προσώπου ἀναπαιστικά . εἰσὶ δὲ τὰ τῆς πρώτης ταύτης στροφῆς κῶλα |
πέμπτα πενθημιμερῆ . τὰ δεύτερα καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια . | ||
δὲ ζʹ ἑφθημιμερές . πάρεστι δ ' εἰπεῖν ] ὅμοια ἑφθημιμερῆ εʹ . ὁμόσποροι δῆτα ] ἀντισπαστικοὶ θʹ ἡμιόλιοι . |
ἐννέα , καὶ ἡ ἐπῳδὸς κώλων ἐννέα . τὸ αʹ ἐγκωμιολογικὸν δίμετρον καταληκτικόν . τὸ βʹ προσοδιακὸν δίμετρον ἀκατάληκτον ἐκ | ||
ἡ στροφὴ καὶ ἀντίστροφος κώλων ὀκτώ . τὸ αʹ Πινδαρικὸν ἐγκωμιολογικὸν , τὴν τελευταίαν συλλαβὴν μεταθὲν εἰς τὴν πρώτην . |
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
ἐπιθυμίας . λγʹ . πρὸς τὸ ἀνανήφειν τοὺς μεθύοντας . λδʹ . ὅτι οὐ μόνον ὁ οἶνος ἀλλὰ καὶ ἕτερά | ||
φαίνεται τὸ ὁρώμενον τοῦ κώνου ἤπερ πρὸς τῷ Σ . λδʹ . Ἐν κύκλῳ ἐὰν ἀπὸ τοῦ κέντρου πρὸς ὀρθάς |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
οἶμαί γε τῶν νεωτέρων τὰς καρδίας ” στίχος τρίμετρος ἰαμβικὸς ἀκατάληκτος : τὸ βʹ “ πηδᾶν ὅ τι λέξει ” | ||
δʹ κῶλα . μεθ ' ὃ ἐν εἰσθέσει ἰαμβικὸς τρίμετρος ἀκατάληκτος . τῆς βʹ περιόδου κῶλα Ϛʹ , ὧν ὁ |
Αἴγυπτον . λδʹ . Ἀπόστασις Πασιφίλου στρατηγοῦ ἀπὸ Ἀγαθοκλέους . λεʹ . Ὡς Καρχηδόνιοι συνέθεντο τὴν εἰρήνην πρὸς Ἀγαθοκλέα . | ||
ὑπὸ ΑΒΓ γωνία , ἡ προειρημένη τετραγωνίζουσα γραμμὴ γίνεται . λεʹ . Ὥσπερ ἐν ἐπιπέδῳ νοεῖται γινομένη τις ἕλιξ φερομένου |
, Ἀφροδίτη κβʹ ὥρας ιηʹ , Ζεὺς λδʹ , Σελήνη οʹ ὥρας ιηʹ , Ἄρης μβʹ ὥρας ιβʹ . Ἄλλη | ||
ἐστιν ἀπέχον τῆς θαλάσσης . Ἀπὸ Βιένου εἰς Λέβηναν στάδιοι οʹ : ἐκεῖ παράκειται νησίον , ὃ καλεῖται Ὀξεῖα : |
τῆς ΚΒ εὐθείας , ἴσον ἀεὶ φανεῖται τὸ ὁρώμενον . λγʹ . Ἴσον δὲ ἀεὶ τοῦ ὄμματος ἀπὸ τοῦ κώνου | ||
τούτου ἔτος δʹ , ζʹ , ιαʹ , κβʹ , λγʹ , μϚʹ , νβʹ , ξγʹ , οβʹ : |
, ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ μὲν αʹ , βʹ , | ||
τοῦ μακροῦ καὶ τῆς ἐκθέσεως τούτου παράγραφος . κώλων δέκα διμέτρων πλὴν τοῦ τελευταίου καταληκτικῶν . ἐπὶ πᾶσι παράγραφος . |
, τὰ δὲ πέρατα ἐπὶ μασχάλην ἀπαθῆ . Κεφ . οθʹ . Ἡ μεσότης ὑπὸ μασχάλην βραχίονος πεπονθότος αἱ ἀρχαὶ | ||
τῶν ρηʹ ἐτῶν νδʹ καὶ τὰς ἐλαχίστας κεʹ : γίνονται οθʹ . τῷ δὲ Ἄρει τῆς αὐτῆς αἱρέσεως ὄντι ἡ |
. ὁ ἕκτος καὶ ἕβδομος τροχαϊκοὶ τρίμετροι ἀκατάληκτοι . τὸ ὄγδοον ὅμοιον τῷ τετάρτῳ . εἰσὶ δὲ καὶ ταῦτα τὰ | ||
δίς , οὕτως ἡμισάκις ἥμισυ ἡμισάκις , ὀκτώ τε καὶ ὄγδοον : καὶ ὡς δὶς τρία ἕξ , οὕτως ἡμισάκις |
Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας | ||
ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον . |
† : . , : . , ἰαμβικοὶ τρίμετροι βʹ ἀντισπαστικὰ κῶλα δʹ ὅμοια τοῖς πρὸ αὐτῶν : ἔοικε δὲ | ||
τὸ τίμιον ἔδαφος . ἑτέρα ἀντιστροφή . τὰ δὲ κῶλα ἀντισπαστικὰ τρίμετρα ὅμοια τοῖς ἄνω βʹ . τὸ δὲ γʹ |
παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν ψκθʹ . Ἐὰν οὖν τις λέγῃ ὅτι Οἱ ρʹ πήχεις | ||
προσαυξηθέντες ἑπτὰ ἀριθμοὶ ποιοῦσι τὸν δεύτερον τετράγωνον καὶ κύβον τὸν ψκθʹ , αʹ γʹ θʹ κζʹ παʹ σμγʹ ψκθʹ . |
ἐπέχουσι διάστημα , αἱ δὲ Ϙʹ τριῶν , αἱ δὲ ξʹ δύο , ὧν ὁ γʹ κείμενος μέσος πρὸς μὲν | ||
. νθʹ . Πῶϲ ἄν τιϲ ἰάϲαιτο κατιϲχνωθέντα μόρια . ξʹ . Διάγνωϲιϲ ἀρίϲτηϲ κράϲεωϲ . ξαʹ . Διάγνωϲιϲ τῶν |
ἐκ μυῶν τένοντες : τὰ δὲ ἐξ ὀστῶν σύνδεσμοι . οζʹ . Νεῦρα τὰ ἀπ ' ἐγκεφάλου καὶ μηνίγγων ἐκπεφυ | ||
ἥμισυ διπλασιασθέντων οἵων τὸ τετράγωνον Ϟηʹ , τοιούτων ὁ κύκλος οζʹ : τούτων δὲ ἐν ἐλαχίστοις καὶ πρώτοις ἀριθμοῖς λόγος |
κἀνάρμοστος ” δίμετρον ἐκ δακτύλου , σπονδείου , ἰάμβου καὶ σπονδείου : τὸ κζʹ “ καταπύγων εἶ κἀναίσχυντος ” δίμετρον | ||
: τὸ ξθʹ ἐξ ἀναπαίστου , σπονδείου , δακτύλου καὶ σπονδείου : τὸ οʹ ἐκ βʹ ἀναπαίστων καὶ βʹ σπονδείων |
. εἰσὶ δὲ τὰ μὲν δίμετρα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ βραχυκατάληκτα καὶ ἀκατάληκτα . νῦν δ ' ὤρθωσας | ||
] ἐπὶ δακτυλικοῦ Μῶς ' ἄγε Καλλιόπα θύγατερ Διός , καταληκτικὰ δέ , ὅσα μεμειωμένον ἔχει τὸν τελευταῖον πόδα , |
] νέα γὰρ ἦν . κῶλα ιβʹ . τὰ πρῶτα ἰαμβικὴ βάσις , τὰ δὲ δεύτερα τροχαϊκὰ ἑφθημιμερῆ . + | ||
ξένων βέλτιστε : διπλῆ καὶ ἄλλη περίοδος τοῦ χοροῦ , ἰαμβικὴ καὶ αὕτη , ἐκ τριῶν μὲν διμέτρων ἀκαταλήκτων καὶ |
καὶ λαμβάνει τὴν ψυχήν , τὸ ἕβδομον παρασκευάζεται , τὸ ἔννατον ἀνοίγονται τὰ κλεῖθρα τοῦ πυλῶνος τῆς γυναικὸς καὶ γεννᾶται | ||
γʹ μονόμετρον , τὰ ἑξῆς πέντε δίμετρα ἀκατάληκτα , τὸ ἔννατον μονόμετρον , τὸ δὲ ιʹ δίμετρον καταληκτικόν , ἤτοι |
δίμετρον καταληκτικὸν ἐκ διτροχαίου καὶ παλιμβακχείου , καὶ ἔστιν [ ἑφθημιμερὲς ] φερεκράτειον : τὸ βʹ “ δι ' ἡμᾶς | ||
τὸ Ϙʹ “ πρᾶγμ ' , ὃ τοῦτον ποιήσει ” ἑφθημιμερὲς [ ἐξ ] ἐπιτρίτου βʹ – ˘ – – |
λόγος πρὸς τὸν χορόν . . 〚 χωρεῖτε νῦν : Εἴσθεσις ἑτέρου μέλους προῳδικὴ διαιρεθέντος αὖθις τοῦ χοροῦ , καὶ | ||
ἐκφυγεῖν πως τὸ παρὸν κακόν . [ ἰὼ ἰώ : Εἴσθεσις χοροῦ ἑτέρα ἀντίστροφος τῆς ἤδη ῥηθείσης στροφῆς , ἐκ |
καταληκτικοῦ , ὃς γίνεται δάκτυλος . Τὸ γʹ ἀντισπαστικὸν διπλοῦν Φερεκράτειον : σύγκειται γὰρ ἐκ βʹ κώλων Φερεκρατείων , ὧν | ||
τὸ ζʹ τροχαικὸν δίμετρον ὅμοιον τῷ εʹ . τὸ ηʹ Φερεκράτειον λεῖπον μιᾷ συλλαβῇ . τὸ θʹ ἰαμβικὸν δίμετρον ὑπερκατάληκτον |
ʹʹγʹʹ Σεμνόνων μεσόγειοι Σούασα λεʹ ∠ ʹʹ μγʹ γοʹʹ Ὄστρα λϚʹ μγʹ ∠ ʹʹ Πικηνῶν μεσόγειοι Τραΐανα λϚʹ ∠ ʹʹ | ||
θερινὰ μέρη τοῦ ἀνταρκτικοῦ ιβʹ : αἱ πᾶσαι γὰρ ἦσαν λϚʹ : ὧν ἀφέλωμεν κδʹ : λοιπαὶ ιβʹ . αἷς |
ιβʹ . τὸ αʹ τὸ βτερον καὶ τὸ γʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , ἃ καλεῖται Ἀνακρεόντεια ὡς κατακόρως τούτοις τοῦ | ||
τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ χοριαμβικὰ εἰς βακχεῖον περαιούμενα δίμετρα : τὸ ιεʹ ἀναπαιστικὸν δίμετρον βραχυκατάληκτον : τὰ ιζʹ |
† ἥκω δολιχῆς : σύστημα ἕτερον κατὰ περικοπὴν κώλων ὁμοίων ἀναπαιστικῶν ιδʹ , ὧν τὸ θʹ μονόμετρον , τὰ λοιπὰ | ||
ὃ καλεῖται παροιμιακόν : τούτῳ γὰρ ἐν ταῖς ἀποθέσεσι τῶν ἀναπαιστικῶν χρῶνται . τὸ ζʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ |
, παραβατικώτεραι δὲ πρὸς τοὺς κριτάς , στίχοι τροχαϊκοὶ τετράμετροι καταληκτικοί . τοὺς κριτὰς ἃ κερδανοῦσιν : αἰτιατικὴ ἀντὶ εὐθείας | ||
λαβόντας εἰς ἀγρόν , οἱ δὲ ἑξῆς ιηʹ τροχαϊκοὶ τετράμετροι καταληκτικοί , ὧν τελευταῖος καὶ τριαινοῦν τῇ δικέλλῃ διὰ χρόνου |
, καὶ ἀντισπαστικὰ πενθημιμερῆ καὶ ἑφθημιμερῆ καὶ ἡμιόλια καὶ δίμετρα ἀκατάληκτα καὶ τρίμετρα βραχυκατάληκτα , ὧν τελευταῖον “ μνήστορες ἐστέ | ||
τῷ αʹ : τὸ ιʹ καὶ τὸ ιαʹ τροχαϊκὰ δίμετρα ἀκατάληκτα : τὸ ιβʹ καὶ ιγʹ , τὸ τῆς γυναικὸς |
αὕτη ἀμοιβαία τοῦ ὕμνου εἴσθεσις ἐκ στίχων ἐστὶν ἀναπαιστικῶν τετραμέτρων καταληκτικῶν ιβʹ , ὧν τελευταῖος ἐπακούσατε δεξάμεναι θυσίαν καὶ τοῖς | ||
δὲ παραβάσεως τὸ μὲν κομμάτιόν ἐστι στίχων δύο ἀναπαίστων τετραμέτρων καταληκτικῶν , αὐτὴ δὲ ἡ παράβασις ἐξ ὁμοίων στίχων τριάκοντα |
ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι . | ||
τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ , |
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
καὶ πρέπον ἥρωσιν , ἡ κωμῳδία δὲ συνέσταλται εἰς τὸ τρίμετρον ἡ νέα . Τὰ πολλὰ οὖν κώλοις † τριμέτροις | ||
, ὅ ἐστι Φερεκράτειον παρὰ συλλαβήν . τὸ ζʹ ἐπιωνικὸν τρίμετρον καταληκτικόν . ἡ αʹ συζυγία ἰωνική : ἡ βʹ |
χοροῦ προῳδικὴ , διὰ τὸ προτίθεσθαι τῆς κορωνίδος , ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις ηʹ . ὧν τὰ | ||
] λέγω . Αὐλίδος ] τῆς Εὐρίπου . στροφὴ ἑτέρα κώλων ιβʹ . μολοῦσαι ] ἐρχόμεναι . κακόσχολοι ] ἐπὶ |
τὸ ἰαμβικὸν μέτρον καὶ ἄριστά γε εἰδέναι τί ἐστι τὸ ἰαμβικόν , οὕτως ἔχει καὶ ἐπὶ τῶν μελῳδουμένωνοὐ γὰρ ἀναγκαῖόν | ||
. Καὶ ἀπορήσεις ἐντεῦθεν , πῶς ἐπεὶ καὶ τὸ Δημοσθένης ἰαμβικόν ἐστιν ὄνομα , ἅτε τὴν παραλήγουσαν βραχεῖαν ἔχων , |
ἑφθημιμερῆ ζʹ † : . , † : . , μονόμετρον † : . , † : . , ἰαμβικὸν | ||
. τὸ Ϛʹ ἀντισπαστικὸν τρίμετρον καταληκτικόν . τὸ ζʹ ἰωνικὸν μονόμετρον καταληκτικὸν δύο συλλαβῶν . τὸ ηʹ δακτυλικὸν τετράμετρον παρὰ |
σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων | ||
ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ |
τὰ τροχαικά : τὸ βʹ ὅμοιον δίμετρον καταληκτικὸν ἤτοι ἑφθημιμερὲς Εὐριπίδειον : τὸ γʹ ὅμοιον τὸν τρίτον ἔχον πόδα ἴαμβον | ||
τούτου λέγουσιν , οὔ μοι δοκεῖ εὔλογα . Τὸ ζʹ Εὐριπίδειον ἢ ληκύθιον : τροχαϊκὸν γάρ ἐστιν ἑφθημιμερές . Τὸ |
κατὰ τὸ ἰαμβικόν . τὸ δὲ δʹ ὅμοιον τοῖς πρώτοις χοριαμβικὸν δίμετρον ἀκατάληκτον , τὸ εʹ χοριαμβικὸν καθαρόν , τὸ | ||
βραχυκατάληκτον . τὸ δʹ ἰαμβικὸν δίμετρον καταληκτικόν . τὸ εʹ χοριαμβικὸν δίμετρον βραχυκατάληκτον . τὸ Ϛʹ ἀναπαιστικὸν δίμετρον ὑπερκατάληκτον . |
καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
καταντήσει τὸ ἔτος εἰς τὸν ἕκτον τόπον εἴτε εἰς τὸν δωδέκατον εἴτε εἰς τὸν δʹ εἴτε εἰς τὸν ζʹ εἴτε | ||
τοῦτο ἔρρευσε χρόνῳ : ἐν τοσούτῳ γὰρ ἔλεγον καὶ τὸ δωδέκατον μέρος ἀνεληλυθέναι τοῦ κύκλου , καὶ τοῦτον ἔχειν τὸν |
οὕτως : τὰ ιβʹ τοῦ μήκους ἐφ ' ἑαυτὰ γίνονται ρμδʹ : καὶ τὰ εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ | ||
διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ σπθʹ πρὸς ρμδʹ . καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς |
: Πούπουλον πόλις λʹ ∠ ʹʹγʹʹ λεʹ γοʹʹ Σόλκοι πόλις λαʹ Ϛʹʹ λεʹ ∠ ʹʹγʹʹ Σόλκοι λιμήν λαʹ δʹʹ λεʹ | ||
∠ ʹʹδʹʹ καθ ' ὃ ἐκτρέπεται ἐπὶ τὴν Βαίνακον λίμνην λαʹ ∠ ʹʹδʹ μγʹ ∠ ʹʹ αὐτῆς τῆς λίμνης θέσις |
κύκλον ἐν τοῖς αὐτοῖς δώδεκα ζωδίοις πληροῦσθαι ἐν ἰσαρίθμοις μοίραις τξʹ . Ὅθεν συνέβη τὰς βασιλείας τῶν παρ ' αὐτοῖς | ||
τι παντάπασιν ὁρᾶται , τὸ πᾶν περὶ μίαν μοῖραν τῶν τξʹ : ἡ δὲ σελήνη , καθὰ οἱ ἀρχαῖοί φασι |
δίμετρα ἀκατάληκτα ἃ καλεῖται κρητικὰ δίρρυθμα . τὸ δὲ δʹ τροχαϊκὸν ἑφθημιμερὲς ὃ καλεῖται Εὐριπίδειον ἢ ληκύθιον , ὁ εʹ | ||
ἑξῆς δʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , τὸ δὲ εʹ , τροχαϊκὸν ἑφθημιμερές . ὁ κζʹ ἰαμβικὸς στίχος τρίμετρος ἀκατάληκτος . |
ὅσα πρὸς τῷ τελείῳ προσέλαβε μέρος ποδός , οἷον ἐπὶ ἰαμβικοῦ εἶμ ' ὧτε πυσσάκω λυθεῖσα : τοῦτο μὲν οὖν | ||
μιᾶς λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ , |
ἕξ : κρητικός , ὃς συνέστηκεν ἐκ τροχαίου θέσεως καὶ τροχαίου ἄρσεως : δάκτυλος κατ ' ἴαμβον , ὃς σύγκειται | ||
προσοδιακὸν τρίμετρον ἀκατάληκτον : ἡ αʹ συζυγία τροχαϊκὴ τοῦ αʹ τροχαίου διαλελυμένου εἰς τρίβραχυν , εἶτα Ἰωνικὸς ἀπὸ μείζονος , |
βάξις ] φήμη τοῦ πυρός . ἐτητύμως ] ἀληθῶς . ἴαμβοι . θεῖον ] ἐκ θεοῦ . ἐστὶ ] τοῦτο | ||
αἵματι . θ ἰαμβικοὶ στίχοι γʹ . + κατὰ περικοπὴν ἴαμβοι γʹ , εἶτα παράγραφος . πως ] παρέλκον . |
νίτρου . . . . . . . δραχ . ϘϚʹ θείου . . . . . . . δραχ | ||
. ρϘβʹ στυπτηρίας ὑγρᾶς . . . . δραχ . ϘϚʹ νίτρου . . . . . . . δραχ |
ἄρα εἰσὶ διὰ τὸ ἀντίστροφον τοῦ θεωρήματος τοῦ ιβʹ τῶν Στοιχείων : ἴση ἄρα ἐστὶν ἡ ΑΗ τῇ ΚΘ . | ||
λεγόμενα ὀλίγα τινὰ προστιθεὶς εἰς σαφήνειαν ἀπὸ τῆς τῶν Εὐκλείδου Στοιχείων ἀναμνήσεως διὰ τὸν ὑπομνηματικὸν τρόπον τοῦ Εὐδήμου κατὰ τὸ |
ἐστιν ὁμοῦ πέντε , τετράκις ποιῶ τὰ ρκʹ , γίνεται υπʹ , μερίζω παρὰ τὸν εʹ καὶ ἔχω μέρος ἓν | ||
. Σικύου ἀγρίου ῥίζης ⋖ φοϚʹ , σκίλλης καθαρᾶς ⋖ υπʹ , ἀσφοδέλου ῥίζης ⋖ ρμδʹ , ἐλαίου ῥαφανίνου ⋖ |
υπʹ , νομίσματα ζʹ ʂ . Τὸ τάλαντον ἄγει λίτρας ρκεʹ , νομίσματα ͵θ . Ἔστι δὲ ὁ κύαθος # | ||
[ ἐκ στίχων ] ἀναπαιστικῶν τετραμέτρων καταληκτικῶν ⌈ καὶ ἀκαταλήκτων ρκεʹ , ὧν τελευταῖος διὰ τοὺς ἵππους τοὺς κοππατίας καὶ |
ποιῆσαι πρίν με τὰς πληγὰς λαβεῖν . ὁ ξʹ μέντοι ἰαμβικὸς ἑφθημιμερής . εἶτα κῶλον ἀντισπαστικὸν ἐξ ἐπιτρίτου πρώτου ἡμιόλιον | ||
τοῦ τέλους τῆς ἐπῳδοῦ τὰ σημεῖα , ὡς εἴρηται . ἰαμβικὸς τρίμετρος . τάδ ' αὐτόδηλα : αὐτὰ δὲ ταῦτα |
ὅμοιον εἴη τῷ τῆς ἀντιστροφῆς ἤτοι δίμετρον : τὸ Ϙʹ ἀντισπαστικὸν ἐξ ἀντισπάστου καὶ κρητικοῦ ἤτοι ἀμφιμάκρου : τὸ ζʹ | ||
καταληκτικόν . τὸ ηʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ τὸ αὐτό . τὸ |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |