ΟΝΖΚΜ πεντάπλευρον : λοιπὸν ἄρα τὸ ΟΜΗ τρίγωνον λοιπῷ τῷ ΝΞΟ ἐστιν ἴσον . καί ἐστι παράλληλος ἡ ΜΗ τῇ
κοινὸν προσκείσθω τὸ ΓΜ : ὅλον ἄρα τὸ ΑΜ τῷ ΝΞΟ γνώμονί ἐστιν ἴσον . ἀλλὰ τὸ ΑΜ ἐστι τὸ
6876575 ΟΚ
ΔΟ τοῦ ὑπὸ τῶν ΘΟΚ , ἀνάλογον ἡ Λ πρὸς ΟΚ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΘΟ πρὸς ΟΔ .
περιφέρεια πρὸς τὴν ΞΟΠ . Καταληφθήσεται δὲ καὶ ἡ μὲν ΟΚ τοῦ μεσημβρινοῦ διάστασις , τουτέστιν ἡ ἀπὸ τοῦ διὰ
6875010 ΓΣ
τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση
τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς
6861858 ΟΛ
ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν
ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ
6840585 ΚΧ
τῷ ἀπὸ ΓΧ : ἐὰν γὰρ ἀπὸ τοῦ Ε τῇ ΚΧ παράλληλον ἄγωμεν , τὸ ὑπὸ τῆς ΤΧ καὶ τῆς
καὶ ἡ ΣΧ τῇ ΟΦ , ἡ δὲ ΒΦ τῇ ΚΧ . παράλληλος ἄρα . , ] ἐὰν γὰρ δύο
6833220 ΨΚ
λοιπὸν ἄρα τὸ ἀπὸ τῆς ΒΨ λοιπῷ τῷ ἀπὸ τῆς ΨΚ ἴσον ἐστίν : ἴση ἄρα ἡ ΒΨ τῇ ΨΚ
ἄρα τὸ ἀπὸ τῆς ΚΒ τῶν ἀπὸ τῶν ΒΨ , ΨΚ . ἴση δὲ ἡ ΒΨ τῇ ΨΚ : ὥστε
6822560 ΓΟ
τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν
τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ
6821077 ΛΔ
δέ εἰσιν ἄνισοι , ὥς φησιν , αἱ ΑΔ , ΛΔ . τὸ γὰρ ἀπὸ ΑΛ , τῶν # λ
ἄρα οὐκ ἐφάπτεται τοῦ ΕΖΗΘ κύκλου : πολλῷ ἄρα αἱ ΛΔ , ΔΝ οὐκ ἐφάπτονται τοῦ ΕΖΗΘ κύκλου . ἐὰν
6630620 ΣΡ
ΤΡΧ , τουτέστιν τῷ τοῦ ἀπὸ ΕΣ πρὸς τὸ ἀπὸ ΣΡ . ἔχει δὲ σύγκρισιν . ἐπεὶ οὖν τὸ ἀπὸ
τὸ ΝΘ : καὶ ὡς ἄρα τὸ ΜΖ πρὸς τὸ ΣΡ , οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ . τὸ
6620495 ΜΗ
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ
6560430 ΒΚΑ
ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ
τῶν ΒΘΑ : ἡμίσους ἄρα ἐστὶν καὶ ἡ ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ :
6540196 ΨΣ
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ
6526040 Κροβυζων
τῇ τε κατὰ μῆκος τῶν τόπων παρεκτάσει : ἀπὸ γὰρ Κροβύζων τῶν τε Ποντικῶν ὅρων ἄχρι τῶν Ἀδριατικῶν διεκβάλλει τόπων
Αὔρας καὶ Τίβισις : διὰ δὲ Θρηίκης καὶ Θρηίκων τῶν Κροβύζων ῥέοντες Ἄθρυς καὶ Νόης καὶ Ἀρτάνης ἐκδιδοῦσι ἐς τὸν
6519545 ΗΞ
παράλληλος ἤχθω ἡ ΧΨ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΗΞ τῇ ΦΧ , ἴσον ἄρα καὶ τὸ ἀπὸ τῆς
ἀπὸ τῆς ΔΓ τῷ ΑΠ , τὸ δὲ ἀπὸ τῆς ΗΞ τῷ ΑΟ . καὶ ἐπεί ἐστιν , ὡς ἡ
6506715 ΒΘΑ
ὁ τοῦ ↑ ΦϘ ἄρα πόλος μεταξὺ τῶν ΕΖ , ΒΘΑ ἐστίν . Ὁ ἄρα ἕτερος αὐτοῦ πόλος μεταξὺ τῶν
τὸ ΑΒΘΚ τετράπλευρον : ἴση ἄρα ἐστὶν ἡ ὑπὸ τῶν ΒΘΑ γωνία τῇ ὑπὸ τῶν ΒΚΑ . ἡμίσους δέ ἐστιν
6504891 ΞΜ
ΖΡΜ , ὡς δὲ τὸ ἀπὸ ΘΣ πρὸς τὸ ἀπὸ ΞΜ , τὸ ΔΘΣ τρίγωνον πρὸς τὸ ΞΜΔ : καὶ
πρὸς τῷ Β γωνίας . ἀλλ ' ἡ ΞΖ τῇ ΞΜ ἴση ἐστὶ διὰ τὸ ἀπὸ μέσου τοῦ Ξ φέρεσθαι
6503363 καταγωνισθεις
. , : Ἔνιοι φασὶν , ὅτι ὁ ἀπὸ Ἡρακλέους καταγωνισθεὶς Ἀνταῖος , Ἰρασσεὺς ἦν , ἀπὸ Ἰράσσων τῶν ἐν
. Ἴρασσαν πρὸς πόλιν Ἀνταίου : ὅτι ὁ ὑπὸ Ἡρακλέους καταγωνισθεὶς Ἀνταῖος Ἰρασσεὺς ἦν ἀπὸ Ἰρασσῶν τῶν ἐν τῇ Τριτωνίδι
6459924 ναρκισσινῳ
ἀποχέας δύο κοτύλας , ξυμμίξαι μέλι καὶ ἔλαιον ἄνθινον σὺν ναρκισσίνῳ , καὶ κλύσαι . Κλυσμοὶ καθαρτήριοι : ὄλυνθοι χειμερινοὶ
δὲ τρεῖς ἡμέρας , τὴν κυκλάμινον καὶ τὸ ξὺν τῷ ναρκισσίνῳ . Ἢν δὲ ταῦτα μὴ καθήρῃ , κατανοῶν πολὺ
6425415 ΦΨ
μέσου ἡμέρας ὁ τοῦ ἡλίου κύκλος θέσιν ἕξει ὡς τὴν ΦΨ . Γεγράφθω διὰ τοῦ Φ μέγιστος κύκλος ὁ ↑
περιφέρεια εἰς ἄνισα κατὰ τὸ Φ σημεῖον , καὶ ἡ ΦΨ ἐλάσσων ἐστὶν ἢ ἡμίσεια τοῦ ἐφεστῶτος τμήματος : ἡ
6424590 Δεκελειᾳ
μὲν καὶ οἱ μετ ' αὐτοῦ κατὰ χώραν ἐν τῇ Δεκελείᾳ ἔμενον , τοὺς δ ' ἐπελθόντας ὀλίγας τινὰς ἡμέρας
συνεχῶς ὁ Ἆγις στρατιᾷ καὶ ἐπετείχισε φρούριον Ἀθηναίοις τὸ ἐν Δεκελείᾳ : καταλυθέντος δὲ ἐν Αἰγὸς ποταμοῖς τοῦ Ἀθηναίων ναυτικοῦ
6424260 ΜΠ
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ ,
6389455 τιμωρω
τοῦ εἰ τῷ Πατρόκλῳ ἐκδίκησιν τοῦ φόνου παράσχῃς . τὸ τιμωρῶ δὲ σημειωτέον ὅτι δοτικῇ συντάσσεται ὅτε ἀντὶ τοῦ βοηθῶ
ἐρι τοῦ σημαίνοντος τὸ ἄγαν , καὶ τοῦ νύσσω τὸ τιμωρῶ : ἢ καὶ ἀπὸ τοῦ ἐν τῇ ἔρᾳ ναίειν
6349201 ΩΨ
διπλῆ ἡ ΦΧ : πενταπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΩΨ τοῦ ἀπὸ τῆς ΧΦ . καὶ ἐπεὶ τετραπλῆ ἐστιν
δὲ ΣΟ τῇ ΨΥ ἴση , καὶ τὰ ἀπὸ τῶν ΩΨ , ΨΥ τριπλάσιά εἰσι τοῦ ἀπὸ τῆς ΟΝ .
6345178 ʹιβ
γιεʹ : καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥραις γ ∠ ʹιβ : ἡ δὲ Οὐολουβιλὶς ἔχει τὴν μεγίστην ἡμέραν ὡρῶν
. . . . . ογ ∠ ʹ κη ∠ ʹιβ Φαράθα . . . . . . . .
6332824 ΜΓ
χρόνω δύνουσιν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ΜΓ , ΑΗ περιφέρειαι ἐν ἴσῳ χρόνῳ δύνουσιν . καὶ
τοῦ ζῳδιακοῦ κύκλου ] . δεῖ δὲ τὴν ἴσην τῇ ΜΓ ἀνατέλλουσαν μεταξὺ πάλιν εἶναι τῶν αὐτῶν παραλλήλων , διότι
6323342 ΦΝ
τὸ ἀπὸ τῆς ΕΗ διαμέτρου , οὕτως τὸ ὑπὸ τῶν ΦΝ , ΝΖ πρὸς τὸ ἀπὸ τῆς ΜΝ : ὃ
τῇ ἀνατολῇ τμήματα ὅμοια εἶναι : ὁμοία ἄρα ἔσται ἡ ΦΝ τῇ ͵ΑΟ . Ἀλλ ' ἡ ΦΝ τῇ ΨΡ
6307813 ΟΓ
ἐστὶν τῇ ΜΒ περιφερείᾳ . καὶ βέβηκεν ἐπὶ μὲν τῆς ΟΓ περιφερείας γωνία ἡ ὑπὸ ΔΑΟ , ἐπὶ δὲ τῆς
ἀπὸ τῆς ΟΓ τετραγώνῳ . ἀλλὰ τῷ μὲν ἀπὸ τῆς ΟΓ ἴσον ἐστὶ τὸ ὑπὸ τῶν ΔΓΦ , τῷ δὲ
6301091 ΘΖΛ
ὅτι τὸ ἀπὸ τῆς ΚΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΘΖΛ . ἤχθω γὰρ διὰ τοῦ Λ τῇ ΒΓ παράλληλος
ΛΖΑ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ
6290842 ΖΟ
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ
6286812 ΑΕΓ
καὶ ἤχθωσαν αὐτῆς δύο συζυγεῖς διάμετροι , ὀρθία μὲν ἡ ΑΕΓ , πλαγία δὲ ἡ ΒΕΔ , καὶ παρὰ τὰς
ὁ ΑΒΓΔ περὶ κέντρον τὸ Ε καὶ διάμετρος αὐτοῦ ἡ ΑΕΓ ἐκβεβλημένη ἐπὶ τὸ Ζ κέντρον τοῦ διὰ μέσων τῶν
6276879 κεχαρισμενου
ἀγαπητὸν οὐδ ' ἀμουσότερόν τε καὶ ἀσοφώτερον τοῦ πάλαι δὴ κεχαρισμένου , ἀλλὰ προκάθηται μὲν ἀνήρ , εἰ μὴ λέληθα
πῶς ἂν οὖν οὕτω διατεθεὶς ὑπὸ τῆς μεταβολῆς τοῦ τηλικαῦτα κεχαρισμένου κατεφρόνουν ; κείσθω γὰρ τὸ ῥῆμα τὸ σὸν ὡς
6275878 δευω
. εἰσκεκρουσμένους τοὺς πύνδακας πτίττω , καταλῶ , βράττω , δεύω , μάττω , πέττω . χωρεῖ ἄκλητος ἀεὶ δειπνήσων
τοῦ ε εἰς α , δαύω : ἵνα μὴ τὸ δεύω τούτου ἐπὶ τὸ χρήζω συμπέσῃ . Δῖος , ὁ
6274431 ΑΛ
τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ
τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ
6273013 ΨΥ
ΒΑ ἐστί . Καὶ γεγραμμέναι εἰσὶν μεγίστων κύκλων περιφέρειαι αἱ ΨΥ , ΥΡ : μείζων ἄρα ἡ ΨΥ , τουτέστιν
ΡΥ , καὶ συμπεπληρώσθω ἥ τε ΡΧ βάσις καὶ τὸ ΨΥ στερεόν . καὶ ἐπεὶ δύο αἱ ΤΡ , ΡΥ
6270646 ἐγκανθιδων
μὴ ἐκ τῆς περιττοτέρας ἀποκοπῆς ὡς ἐκ τῆς βαθυτέρας τῶν ἐγκανθίδων ἐκτομῆς ῥοιὰς ἐπακολουθεῖν . Μετὰ δὲ τὴν χειρουργίαν οἴνῳ
ιϚʹ περὶ πτώσεως . ιζʹ περὶ παραλύσεως . ιηʹ περὶ ἐγκανθίδων . ιθʹ περὶ ῥυάδων . κʹ περὶ πτερυγίου .
6260843 χειροτονητας
πολλοὺς κακῶς εἶπεν . ἐκωμῴδησε γὰρ τάς τε κληρωτὰς καὶ χειροτονητὰς ἀρχὰς καὶ Κλέωνα , παρόντων τῶν ξένων . καθῆκε
ἀρχὰς καὶ τὰς πολλὰς κληρωτὰς ποιεῖν , τὰς δὲ μεγίστας χειροτονητὰς ἀπὸ τοῦ πλήθους . οὕτω γὰρ ὁ μὲν δῆμος
6248701 ΛΗ
ΑΔ τῇ ΗΓ , λοιπὴ ἄρα ἡ ΔΛ λοιπῇ τῇ ΛΗ ἐστὶν ἴση . καὶ εἰσὶ τρεῖς παράλληλοι αἱ ΔΕ
ἴση , ἡ δὲ ΑΛ τῇ ΔΕ , ἡ δὲ ΛΗ , τουτέστιν ἡ ΛΜ , τῇ ΕΖ , ὡς
6245838 κανονισθηναι
διδασκαλίᾳ : οὐδὲ γὰρ δύναται ἀπὸ τῆς εὐθείας τῶν ἑνικῶν κανονισθῆναι , ἐπειδὴ οὐκ ἔστι μετὰ μακρᾶς : τὸ γὰρ
τῶν ἑνικῶν : ἐπὶ οὖν τῶν εἰς ευς ἐπειδὴ δύναται κανονισθῆναι ἡ δοτικὴ τῶν πληθυντικῶν ἀπὸ τῆς εὐθείας τῶν ἑνικῶν
6242092 ΔΓΒ
ΚΔΓ ἢ διπλῆ τῆς ὑπὸ ΓΔΕ . τῆς δὲ ὑπὸ ΔΓΒ ἐλάσσων ἢ διπλῆ ἡ αὐτὴ ἡ ὑπὸ ΚΔΓ :
ὑπὸ ΔΒΕ τῇ ἐν τῷ ἐναλλὰξ τοῦ κύκλου τμήματι τῷ ΔΓΒ τῇ ὑπὸ ΔΓΒ γωνίᾳ ἐστὶν ἴση . Ἐὰν ἄρα
6228652 ΖΒΗ
ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ
καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ
6218555 ΓΕΔ
Ξ τῇ πρὸς τῷ Ε , περιεχομένῃ δὲ ὑπὸ τῶν ΓΕΔ , ἐλάσσων ἄρα φανήσεται ἡ ΓΔ τῆς ΗΘ .
τῇ ὑπὸ ΔΗΓ , καὶ συναμφότεραι ἄρα ἥ τε ὑπὸ ΓΕΔ καὶ ἡ ὑπὸ ΓΗΒ ἴσαι εἰσὶν τῇ ὑπὸ ΔΕΖ
6214003 ΠΘ
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα
6206531 ΣΒ
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ
6202614 ΕΗΔ
ἡμικυκλίου . ἀλλ ' ὑπὸ τῶν Β , Γ τὸ ΕΗΔ βλέπεται . μεῖζον ἄρα ἢ τὸ ἥμισυ ὀφθήσεται τοῦ
αἱ πρὸ τῆς Ν ἀνατολῆς μείζονές εἰσιν τῶν ἐν τῷ ΕΗΔ ἡμικυκλίῳ ἡμερῶν τῶν μετὰ τὴν Π δύσιν , νύκτες
6196991 ΑΕΖ
δὴ δείξομεν , ὅτι ἴση ἐστὶν ἡ ΑΔΖ περιφέρεια τῇ ΑΕΖ περιφερείᾳ . καὶ τετμήσθω ἡ ΑΖ περιφέρεια δίχα κατὰ
καὶ ἐν ταῖς αὐταῖς παραλλήλοις : τὸ δὲ ΗΕΖ τῷ ΑΕΖ ἴσον : τὸ ἄρα ΑΓΔ τοῦ ΑΕΖ μεῖζόν ἐστιν
6173806 Ἱπποδρομος
ἐπαίνους τοῦ Ἡρακλείδου πέρα ἀχθηδόνος : ἰδὼν οὖν αὐτὸν ὁ Ἱππόδρομος ἐν τῇ ἀκροάσει „ ὁ νεανίας οὗτος ” ἔφη
. ὄνομα δὲ τῇ ἀτορᾷ τὸ ἐφ ' ἡμῶν ἐστιν Ἱππόδρομος , καὶ οἱ ἐπιχώριοι τοὺς ἵππους παιδεύουσιν ἐνταῦθα .
6171746 ἐκπεϲουϲηϲ
ὅταν μελανθῇ τὸ δέρμα , πάλιν ἀποπλύναϲ τοῖϲ ἀπεϲχαρωτικοῖϲ : ἐκπεϲούϲηϲ δὲ τῆϲ ἐϲχάραϲ τὰ ϲηπτὰ παραλαμβανέϲθω . ϲηπτὴ ἱκανῶϲ
καύϲεωϲ γενομένηϲ τῇ φακῇ ἑφθῇ ϲὺν τῷ μέλιτι χρώμεθα . ἐκπεϲούϲηϲ δὲ τῆϲ ἐϲχάραϲ καὶ καθαρθέντοϲ ποϲῶϲ τοῦ ἕλκουϲ ,
6171217 ΖΞ
ΕΘ εὐθεῖα ε ιη , τοιούτων ἐστὶ καὶ ἡ μὲν ΖΞ ἐκ τοῦ κέντρου τοῦ ἐκκέντρου ξ , ἡ δὲ
τὸ τοῦ διὰ μέσων ἐπίπεδον αἱ ΔΜ καὶ ΕΝ καὶ ΖΞ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΜ καὶ ΚΝ καὶ
6170421 Ἀγαριστης
τὸν Ἱπποκλείδην φανερῶς εἰπόντος , ὅτι ἀπώρχηται τὸν γάμον τὸν Ἀγαρίστης , ὑποτυχὼν ἔφη : οὐ φροντὶς Ἱπποκλείδῃ . ὀψ
ἀποπλέων ἐπὶ τὴν μνηστείαν τῆς Κλεισθένους τοῦ Σικυωνίων τυράννου θυγατρὸς Ἀγαρίστης , φησίν ἀπὸ μὲν Ἰταλίης Σμινδυρίδης ὁ Ἱπποκράτεος Συβαρίτης
6167700 καταγορευει
. ἀληλιμμένων δὲ αὐτῶν καὶ ὄντων ἤδη περὶ τὰς πύλας καταγορεύει τις ξυνειδὼς τοῖς ἑτέροις τὸ ἐπιβούλευμα . καὶ οἳ
δ ' ἄρα ἐλάνθανεν οὐκ ἀποθανοῦσα . τοῦτό τις αὐτῷ καταγορεύει καὶ ὡς ἐνταῦθα εἴη παρά τινι τῶν ἡμετέρων ἐπιτρόπων
6166744 κοπετος
ὑπὸ τῆς παρθένου καὶ τῶν περὶ αὐτὴν γυναικῶν ἐγίνετο καὶ κοπετός , πολλὴ δὲ κραυγὴ καὶ ἀγανάκτησις ἐκ τοῦ περιεστηκότος
προσηγορικὰ ἢ ἐπιθετικὰ ὀξύνεται , εἰ μὴ παρωνύμως τετύπωται : κοπετός πυρετός τοκετός συρφετός ἀφυσγετός . τὸ μέντοι ἄσχετος ἄσπετος
6164561 ΥΜ
ὀρθὰς ἤχθω ἡ ΥΞΧ , καὶ ἐπεζεύχθωσαν αἱ ΝΥ , ΥΜ , καὶ τετμήσθω δίχα ἡ ΜΝ κατὰ τὸ Τ
ἡ ΥΜ περιφέρεια τῇ ΩΞ περιφερείᾳ . Ἀλλ ' ἡ ΥΜ τῇ ΣΟ ἐστὶν ὁμοία : καὶ ἡ ΣΟ ἄρα
6163868 ἀχαλινωτον
ὄνου καταπεσὼν , ἐν τοῖς Νόμοις : Καὶ μὴ καθάπερ ἀχαλίνωτον στόμα βίᾳ ὑπὸ τοῦ λόγου φερόμενον . Ἄπληστος πίθος
βιαστικῶς καὶ συναρπάζει αὐτὸν τὸν δίφρον ἄνευ χαλινῶν , ἤτοι ἀχαλίνωτον γενόμενον , καὶ τὸν ζυγὸν συνθλᾷ . πίπτει δὲ
6155493 ΒΟ
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν
6144822 ΟΥΚ
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις .
6143864 ΝΛ
. πέντε δὲ τὰ ἀπὸ ΒΔ ιεʹ ἐστιν τὰ ἀπὸ ΝΛ , ὡς ἔστιν ἐν τῷ ιγʹ τῶν στοιχείων :
ὅτι οὐδὲ ἐλάσσων : μείζων ἄρα ἐστὶν ἡ ΡΟ τῆς ΝΛ . ιʹ . Πάλιν ἐπὶ μεγίστου κύκλου περιφερείας ὁ
6143148 ΚΜ
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς
6141291 πληθεοϲ
καὶ ἀναιϲθηϲίηϲ ἀμφιϲχούϲηϲ τὸν ἄνθρωπον , ὑποκλύζειν ἐϲ κένωϲιν τοῦ πλήθεοϲ τῶν ἐν τοῖϲι ἐντέροιϲι καὶ ἐϲ τὴν ἀντίϲπαϲιν τῶν
μοῦνον , ἀλλὰ καὶ πνιγί : ἢν δ ' ὑπὸ πλήθεοϲ γίγνηται ϲυγκοπὴ καὶ φλεγμαϲίη τιϲ ὑποχονδρίου ἢ ἥπατοϲ μέγα
6139242 ٢٢
τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١١ ١٠ ٥٠ ٢٢ ٥٦ ἡ ΘΜ ἤτοι τὸ πλάτος ٢ ٤٧ ٤٢
٥٠ ٣١ ٢١ ἡ ΓΔ ٤ ἡ ΖΘ ١٤ ٣٩ ٢٢ ٥ ١٤ Τοῦ ρζʹ . ἡ ΑΒ ٢ ٢٥
6138455 ΛΠ
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία ,
6135917 ΗΛ
πρὸς τὴν ΗΛ . καί ἐστι παράλληλος ἡ ΕΘ τῇ ΗΛ : εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ ,
τοῦ κύκλου ἐπιπέδῳ τῇ ΓΔ πρὸς ὀρθὰς αἱ ΚΒ , ΗΛ , καὶ ἐπεζεύχθω ἡ ΒΛ . ἐπεὶ οὖν δύο
6131443 ٤٨
١٣ ٤٣ ἡ ΑΗ ٥ ١٣ ١١ ἡ ΓΚ ٢ ٤٨ ٤٠ ٥٧ ἡ ΚΜ ١ ١٤ ٣٠ ٢ ١٢
١ ١١ ١٦ τὸ ὑπὸ τῶν ΒΑ , ΑΖ ٢ ٤٨ ١٠ ٤ ٤٥ Ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΖ
6129940 ΒΚ
ΔΜ , πέμπτον δὲ τὸ ΓΛ , ἕκτον δὲ τὸ ΒΚ , ἕβδομον δὲ τὸ ΑΘ , μόνα δὲ καὶ
ταῦτα γὰρ ἡμῖν πάντα προαποδέδεικται : τοιούτων καὶ ἑκατέρα τῶν ΒΚ καὶ ΚΘ ἔσται ιε νε . πάλιν , ἐπεὶ
6129560 ΘΧ
Ψ͵Δ . καὶ ἐπεὶ αἱ ΖΤ ΤΥ ΥΗ ΗΦ ΦΘ ΘΧ ΧΨ ΨΚ περιφέρειαι ἴσαι ἀλλήλαις εἰσίν , αἱ ἄρα
πλευρά . ἐπεὶ οὖν , ὡς ἡ ΘΗ πρὸς τὴν ΘΧ , οὕτως τὸ ὑπὸ τῶν ΗΦ , ΦΘ πρὸς
6128639 Τεκτοσαγες
πλευρὸν αὐτοῦ μέχρι τῶν ἀκρωτηρίων οἰκοῦσι τῶν τε Ὀυολκῶν οἱ Τεκτόσαγες καλούμενοι καὶ ἄλλοι τινές . περὶ μὲν οὖν τῶν
, τὸ τρίτον δ ' ἀπὸ τοῦ ἐν Κελτικῇ ἔθνους Τεκτόσαγες . κατέσχον δὲ τὴν χώραν ταύτην οἱ Γαλάται πλανηθέντες
6123741 Σκιρῳ
Προξένου . σκιράφια ἔλεγον τὰ κυβευτήρια , ἐπειδὴ διέτριβον ἐν Σκίρῳ οἱ κυβεύοντες , ὡς Θεόπομπος ἐν τῇ νʹ ὑποσημαίνει
διατριβόντων . Σκίρα δὲ κέκληται , τινὲς μὲν ὅτι ἐπὶ Σκίρῳ Ἀθηνᾷ θύεται , ἄλλοι δὲ ἀπὸ τῶν γινομένων ἱερῶν
6119628 ΚΓ
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ
6115574 ΒΨ
τὰ Ο , Σ ἐπιζευγνύμεναι εὐθεῖαι ἴσαι εἰσὶν ἑκατέρᾳ τῶν ΒΨ , ΨΚ . ὁ ἄρα κέντρῳ τῷ Ψ καὶ
ΟΣ , καὶ ἐκ τοῦ κέντρου τοῦ κύκλου ἐστὶν ἡ ΒΨ , τὸ ἄρα ἀπὸ τῆς ΚΒ τοῦ ἀπὸ τῆς
6111236 ΠΕ
τίς ἄρα ἡ ΤΠ τῇ ΠΕ ; ἀλλ ' ἡ ΠΕ τῇ ΠΗ ἴση : ἔχει δὴ σύγκρισιν : ἔστιν
πρὸς ὀρθάς ἐστιν , παράλληλος ἄρα ἐστὶν ἡ ΦΧ τῇ ΠΕ . εἰσὶ δὲ καὶ ἴσαι : καὶ αἱ ΕΦ
6109704 ΚΣ
ἑκατέρᾳ τῶν ΚΣ , ΒΟ : καὶ ἑκατέρα ἄρα τῶν ΚΣ , ΒΟ τῆς ΣΟ μείζων ἐστίν . καὶ ἐπεὶ
μία ἄρα τῶν ΘΚ , ΚΛ ἑκατέρας τῶν ΨΚ , ΚΣ μείζων ἐστίν . καὶ ἐπεὶ παράλληλός ἐστιν ὁ ΒΖΓ
6109637 λεμματων
πεπονθότι κενοῦν . καταπλάττειν οὖν τῷ δι ' ἀειζώου καὶ λεμμάτων ῥοιᾶϲ ἑφθῶν ἐν οἴνῳ κηροῦ τε καὶ ἀλφίτων ϲυγκειμένων
, κριθαὶ μᾶλλον τοῦ ἀλεύρου τῶν κυάμων τοῦ χωρὶς τῶν λεμμάτων , κρόκος , λιβανωτός , μάραθρον , οἶνος γλευκίνης
6099026 εἰργασμενῳ
γύψῳ ἢ πηλῷ κεραμικῷ . ποιεῖ δὲ πράσου χυλὸς ἐρίῳ εἰργασμένῳ ἢ μοτῷ ἀναλαμβανόμενος καὶ ἐντιθέμενος τοῖς μυκτῆρσι καὶ μάννα
κρίσει προσέχοντες τὸν νοῦν , ἀξίαν δίκην τοῦ πάθους τῷ εἰργασμένῳ ἐπιθέντες , ἅπασαν τὴν πόλιν καθαρὰν τοῦ μιάσματος καταστήσετε
6097954 ὑββαλλειν
τοῦ ὑποβάλλειν . οἱ δὲ περὶ τὸν Σιδώνιον ἐκ τοῦ ὑββάλλειν τὸ ὑποκρούειν ἀκούουσιν . ἡ δὲ διάνοια οὕτως :
ὑπὸ τῶν θορυβούντων ; καί φησιν ὁ Σιδώνιος ὅτι τῷ ὑββάλλειν ὅμοιόν ἐστι τοῦτο , “ τὸν δ ' ἂρ
6095465 ΓΡ
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν
6094007 ΑΛΒ
παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν
πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα
6087200 ΑΚΜ
τὸ ΑΓΔ ἔλαττόν ἐστι τοῦ ΑΚΜ : μεῖζον ἄρα τὸ ΑΚΜ τοῦ ΑΓΔ . τὸ αὐτὸ δὴ δείκνυται καὶ ἐπὶ
καὶ διήχθω τὸ ἐπίπεδον . λέγω δή , ὅτι τὸ ΑΚΜ τρίγωνον μεῖζόν ἐστιν ἑκατέρου τῶν ΑΓΔ , ΑΕΖ .
6073403 ὀπισθομηρῳ
# νο α ∠ ʹ εʹ ὁ ἐν τῷ δεξιῷ ὀπισθομήρῳ . . . . . . . . .
Ὑδροχόου ια γʹ νο ε δʹ ὁ ἐν τῷ ἀριστερῷ ὀπισθομήρῳ . . . . . . . . .
6061881 Κερκωπιζειν
Εἰς κόλπους πτύειν : ὅμοιον τῷ : οὐ μεγαλοῤῥημονεῖν . Κερκωπίζειν : ἀντὶ τοῦ δολιεύεσθαι καὶ ἀπατᾶν . μετενήνεκται δὲ
τῶν ῥᾳδίως τι ποιούντων . Καθ ' ἑαυτοῦ Βελλεροφόντης . Κερκωπίζειν : ἀντὶ τοῦ δουλεύεσθαι καὶ ἀπατᾶν : μετενήνεκται δὲ
6059121 Εὐκαταφρονητος
τἀγαθά . Ἀγαθὸς ἂν εἴη χὠ φέρων καλῶς κακά . Εὐκαταφρόνητός ἐστι πενία , Δερκύλε . Ἐπὶ τοῖς παροῦσι τὸν
φίλους . Ἐχθροῦ παρ ' ἀνδρὸς οὐδέν ἐστι χρήσιμον . Εὐκαταφρόνητός ἐστι σιγηρὸς τρόπος . Εἷς ἐστι δοῦλος οἰκίας ὁ
6056959 ΧΩ
ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ
καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα
6055508 ٣٩
٤٩ ٤٢ ἡ Β ٧ ٤٩ ٢٤ ἡ ΓΖ ٣ ٣٩ ٥٠ ٣١ ٢١ ἡ ΓΔ ٤ ἡ ΖΘ ١٤
τὴν ἁρμόζουσαν λαμβάνειν καὶ προστιθέναι . Ἡ ΛΝ ٨ ٥٢ ٣٩ ἡ ΑΓ δ ἡ ΑΔ ٢٠ τὸ ΑΒ χωρίον
6052578 ΘΗΖ
ΘΗ , ΖΗ πρὸς τὴν ΗΑ . ἔστω τῷ ὑπὸ ΘΗΖ ἴσον τὸ ὑπὸ ΗΑ , Κ . καὶ ἐπεί
τῇ ὑπὸ τῶν ΘΖΓ ἐστὶν ἴση : καὶ ἡ ὑπὸ ΘΗΖ ἄρα τῇ ὑπὸ ΘΖΗ ἐστὶν ἴση . καὶ κάθετος
6045634 ΚΒ
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ
6044753 ΑΒΘ
ἡ ΑΒ τῇ ΓΔ , ἀλλὰ καὶ γωνία ἡ ὑπὸ ΑΒΘ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση . καὶ περιφέρεια ἄρα
καὶ ἔστω ὡς ὁ ΒΑΘ : μέγιστος ἄρα ἐστὶν ὁ ΑΒΘ κύκλος : ἡ γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση
6032005 ΚΞ
ἐστιν , ἔστιν ἄρα , ὡς ἡ ΕΚ πρὸς τὴν ΚΞ , οὕτως ἡ ΕΑ πρὸς τὴν ΑΖ . ἐπεὶ
ΡΤ . ἐπεὶ δὲ ζητῶ τίς περιφέρεια ἡ ΕΚ τῇ ΚΞ , ζητήσω ἄρα τίς γωνία ἡ ὑπὸ ΕΟΚ τῇ
6028277 ΒΠ
ΕΠ δυνάμεων νδ : περιέχεται γὰρ ὑπὸ τῶν ΕΒ , ΒΠ οὔσης τῆς ΕΒ θ , τῆς δὲ ΒΠ Ϛ
ἡ μὲν ΒΛ τῇ ΛΔ ἐστιν ἴση , ἡ δὲ ΒΠ τῇ ΠΔ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ΑΕΚ
6027713 μαλακιᾳ
μηκέτ ' αἰτιῶ θεόν , ἤδη δὲ τῇ σαυτοῦ ζυγομάχει μαλακίᾳ . οὐδείς μ ' ἀρέσκει περιπατῶν ἔξω θεὸς μετὰ
οὗτος ὁ Παύσων ζωγράφος πένης σκωπτολόγος . Λυσίστρατος : ἐπὶ μαλακίᾳ διεβάλλετο . ἐν ἐνίοις δὲ καὶ πένης ὁ αὐτὸς
6024532 ΛΞ
, ἐκεῖνον τὸν λόγον ἔδει ἔχειν καὶ τὴν ΑΓ πρὸς ΛΞ , καὶ τὰ λοιπὰ ὁμοίως κατασκευάζειν . [ καὶ
, ἐπεὶ μέσον ἐστὶ τὸ ΔΘ καί ἐστιν ἴσον τῷ ΛΞ , μέσον ἄρα ἐστὶ καὶ τὸ ΛΞ . ἐπεὶ
6018132 Μαλαβαθρου
, ὁ δὲ καίεται μετ ' εὐωδίαϲ ὡϲ λίβανοϲ . Μαλαβάθρου φύλλον καλόν ἐϲτι τὸ πρόϲφατον καὶ ὑπόλευκον ἐν τῷ
μετ ' εὐωδίας . καίεται δ ' ὡς λιβανωτός . Μαλαβάθρου φύλλον καλόν ἐστι τὸ πρόσφατον καὶ ὑπόλευκον ἐν τῷ
6014300 ΑΘ
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ
6010893 ΓΧ
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς
6007738 ΚΔ
, οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ :
ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ
6007657 ΡΛ
τὰ κέντρα τὰ Ρ , Σ , καὶ ἐπεζεύχθωσαν αἱ ΡΛ , ΡΜ , ΡΚ , ΡΝ , ΣΚ ,
καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , καὶ ἡ ΟΚ πρὸς ΛΞ , τῶν ΑΓ
6007169 ΗΖ
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ
6006560 ΦΖ
, Ζ μέρη , ὁμοία ἐστὶν ἡ ΠΩ περιφέρεια τῇ ΦΖ περιφερείᾳ . ἀλλὰ ἡ ΠΩ τῇ ΨΣ ἐστιν ὁμοία
αἱ ΕΚ , ΜΛ , ἐκβληθεισῶν δὲ τῶν ΥΖ , ΦΖ ἐπὶ τὰ Ψ , Χ , κείσθω ἑκατέρα τῶν
6005912 ΖΜ
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν
6005629 ΗΝ
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ .
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ :
6003216 ΠΕΡΙ
ἡ ἐνεργοῦσα καὶ διαρθρουμένη καὶ οὐχ ἡ περόνη . [ ΠΕΡΙ ΜΗΡΟΥ ] , , . = , , .
ΙϚʹ . Περὶ μανδάτων διδομένων τοῖς εἰς ἐνέδραν ἐπερχομένοις . ΠΕΡΙ ΕΝΕΔΡΑΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΕΤΑΡΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ ἐνέδρας
5996265 προσεδριᾳ
καὶ τραυμάτων οὐδὲ σωροῖς νεκρῶν ἀδιηγήτων , ἀλλὰ μόνῃ τῇ προσεδρίᾳ καὶ τῇ καρτερίᾳ . Ἦν τις ἐπὶ τῶν προγόνων
μηδὲν ἰσχύειν ὑπὸ τῶν κακῶν : ὡς ἄσχολός γε συγγόνου προσεδρίᾳ : οὕτως σοι πείσομαι ὡς ἀσχολουμένη περὶ τὴν προσεδρίαν
5993952 ΛΕ
σελήνη κατὰ τὸ Λ σημεῖον , καὶ ἐπεζεύχθωσαν μὲν αἱ ΛΕ καὶ ΛΒ , κάθετοι δ ' ἤχθωσαν ἐπὶ τὴν
καὶ ἀφῄρηται ἀπ ' αὐτῶν δεδομένα μεγέθη τὰ ΘΑ , ΛΕ . τὰ ΑΒ , ΕΖ ἄρα ἤτοι πρὸς ἄλληλα
5993209 ΛΓ
, ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ
ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα

Back