τι βεβαρυτόνηται , τοῦτο πάθος ἔχει ἐξ ἐντελεστέρου τοῦ εἰς ΛΩ λήγοντος καθαρεύοντος : ἁπλῶ διπλῶ τριπλῶ πιμπλῶ κυκλῶ ἀντλῶ
: καὶ τὸ μεταλλῶ , ὅτι μέταλλος . Τὰ εἰς ΛΩ παραληγόμενα τῇ ΟΥ διφθόγγῳ σπάνιά εἰσι : βούλω βαρύνεται
6645989 ἐπιπλοκης
' ἑαυτὸν καὶ παντάπασιν ἀπηλλαγμένου τῆς πρὸς τὸν περισσὸν κἀνταῦθα ἐπιπλοκῆς τὸ μέν ἐστιν ὑπερτελὲς τὸ δὲ ἐλλιπὲς ἐναντία ἀλλήλοις
: παλαιστρίς αὐληστρίς ἐπακτρίς . Τὰ εἰς ΡΙΣ μετ ' ἐπιπλοκῆς μέσου ἢ δασέος ἢ τοῦ Π βαρύνεται : εἰ
6507936 ΗΟ
ὅτι παράλληλός ἐστιν ἡ ΘΗ τῇ ΧΕ , αἱ δὲ ΗΟ , ΕΞ συζυγεῖς εἰσι διάμετροι . ἤχθωσαν γὰρ τεταγμένως
τὸ παρὰ τὴν ΕΞ εἶδος . αἱ ἄρα ΕΞ , ΗΟ συζυγεῖς εἰσι διάμετροι τῶν Α , Β , Γ
6491495 ΦΝ
τὸ ἀπὸ τῆς ΕΗ διαμέτρου , οὕτως τὸ ὑπὸ τῶν ΦΝ , ΝΖ πρὸς τὸ ἀπὸ τῆς ΜΝ : ὃ
τῇ ἀνατολῇ τμήματα ὅμοια εἶναι : ὁμοία ἄρα ἔσται ἡ ΦΝ τῇ ͵ΑΟ . Ἀλλ ' ἡ ΦΝ τῇ ΨΡ
6367074 ΕΞ
Αἰγόκερω μοίραις γ ι λοξώσεως . ἔστιν δὲ καὶ ἡ ΕΞ τῶν τοῦ ἐξάρματος ἐν Ἀλεξανδρείᾳ μοιρῶν λ νη .
ΓΘ πρὸς τὴν ΕΞ : παραλλήλου οὔσης τῆς ΓΘ τῇ ΕΞ εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ Ξ Ζ
6344743 ΗΝ
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ .
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ :
6331952 ἐπιπεμπτου
μδʹ ρκαʹ , πάλιν δὲ ἐκ τῆς ἐπιτετραμεροῦς ἢ τετράκις ἐπιπέμπτου τῆς κεʹ μεʹ παʹ γεννᾶται ἡ διπλασιεπιτετραμερὴς πέμπτων ἐν
διπλάσιος , ὡς προδέδεικται , ἐξ ἐπιτρίτου καὶ ἐπιτετάρτου καὶ ἐπιπέμπτου , λαμβάνω πάλιν ἀντὶ μὲν ἐπιτρίτου μονάδα μίαν καὶ
6229906 ΝΗ
ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ
, τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα
6226119 ΕΙΣ
ὁ ἄφενος ἀρσενικῶς , καὶ τὸ ἄφενος οὐδετέρως . . ΕΙΣ ΑΦΕΝΟΝ . Τὸν πλοῦτον ἄφενον καλοῦσι , τὸν ἀπὸ
ΚΡΗΤΙΚΗΙ ΛΕΞΕΙ ΔΙΑ ΤΙ ΓΑΡ ΟΥΚ ΑΝ Η ΔΥΟ ΙΑΜΒΙΚΟΙΣ ΕΙΣ [ ΤΗΝ ? ΠΝΩΜΕΝΗΝ [ ! ] ! [
6203352 ΡΩ
] [ ] ΗΤ ? ? [ ] [ ] ΡΩ [ ] [ ] ΑΡΚ [ ] [ ]
[ ] ! ϹΑ ! [ ] [ ] ! ΡΩ ! [ ] [ ] ΜΕΝ ? ? !
6175646 λειποθυμουνταϲ
γινομένου , καὶ τοῦ φαρμάκου τὸν ἐπιϲωρευμὸν εὐμαρέϲτερον φέρουϲιν . λειποθυμοῦνταϲ δὲ αὐτοὺϲ ὀϲφραντοῖϲ τε καὶ τοῖϲ παραπληϲίοιϲ ἀνακτᾶϲθαι καὶ
τοὺϲ τιτθοὺϲ ἐπιθήϲομεν . Πρὸϲ τοὺϲ δι ' ἀτονίαν ϲτομάχου λειποθυμοῦνταϲ . δι ' ἀτονίαν δὲ ϲτομάχου λειποθυμίαϲ γιγνομένηϲ καταπλάϲμαϲι
6155112 ΗΜ
παρὰ τὴν ΗΘ εὐθεῖαν τῷ ΔΒΓ τριγώνῳ ἴσον παραλληλόγραμμον τὸ ΗΜ ἐν τῇ ὑπὸ ΗΘΜ γωνίᾳ , ἥ ἐστιν ἴση
συγκείμενον ἔχει λόγον ἐκ τοῦ ὃν ἔχει ἡ ΘΗ πρὸς ΗΜ καὶ ἐκ τοῦ ὃν ἔχει ἡ ΖΗ πρὸς ΗΛ
6131151 ΖΜ
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν
6113369 ΘΗ
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε
6097142 ὑδατωδουϲ
. τὸ ὑδροκέφαλον πάθοϲ προϲαγορεύεται ἀπὸ τοῦ ἐν τῇ κεφαλῇ ὑδατώδουϲ ὑγροῦ ϲυλλεγομένου : κατὰ τὸ πλεῖϲτον μὲν οὖν τὸ
ἔχει καὶ τὴν ἐν τῇ γεύϲει πικρότητα , καί τινοϲ ὑδατώδουϲ εὐκράτου , ὅθεν καὶ τὸ ἐξ αὐτοῦ ἔλαιον ἀδήκτου
6073180 ΣΥ
συνημμένον ἔχει λόγον ἐξ οὗ ὃν ἔχει ἡ ΤΣ πρὸς ΣΥ καὶ ἡ ΤΣ πρὸς ΣΡ καὶ ἐξ οὗ ὃν
στερεόν . τὸ ΕΜ ἄρα πρὸς ἑκάτερον τῶν ΗΝ , ΣΥ τὸν αὐτὸν ἔχει λόγον . ἴσον ἄρα ἐστὶ τὸ
6060564 ΜΑ
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ
6055021 ΝΤ
ἴσας γωνίας τέμνουσιν ἥ τε ΟΞ τὴν ΦΨ καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ ,
μὴ τόπου ἢ ὄρους ὄνομα ὑπάρχοι , ἢ διὰ τοῦ ΝΤ κλίνοιτο , καὶ φυλάττει τὸ Ω τῆς εὐθείας ,
6052797 ΖΘ
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν
6050019 ΩΝ
] [ ] ΠΑ ? [ ] [ ] ! ΩΝ ? [ ] [ ] ! Η ! [
τόνον , οἷον : βαθυλείμων ἀχίτων αὐτόχθων . Αἱ εἰς ΩΝ λήγουσαι μετοχαὶ δισύλλαβοι ὀξυτονούμεναι ὡς ὀνόματα κλινόμενα μετατιθέασι τὸν
6042574 ΘΑ
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ
6039355 ξθ
ἀγωγόν ξϚ Κονδίτον ξανθοχόλοιϲ ξζ Κονδίτον φλεγμαγωγόν ξη Κονδίτον μελαγχολικοῖϲ ξθ Ἀψινθάτου ϲκευαϲία ἐκκοπρωτικοῦ ο Ἀψινθάτον ξανθῆϲ χολῆϲ ἀγωγόν οα
ἑκατέρας τῶν ΑΖ καὶ ΑΓ ὑποτεινουσῶν ἡ μὲν ΘΖ γίνεται ξθ ιγ λα , ἡ δὲ ΘΓ ὁμοίως ριγ ιϚ
6021395 γεωδουϲ
καὶ ϲυμμέτρου θερμότητοϲ : ὁ δὲ ἄωροϲ ὑπὸ ψυχρᾶϲ οὐϲίαϲ γεώδουϲ ἐπικρατεῖται καὶ διὰ τοῦτο ϲφοδρῶϲ ξηραντικόϲ ἐϲτι . ξηρανθεὶϲ
βραχείαϲ καὶ δριμύτητοϲ ἐλαχίϲτηϲ μετέχει . τὸ δὲ πλεῖϲτον αὐτοῦ γεώδουϲ οὐϲίαϲ ἐϲτὶ καὶ ἀερώδουϲ , εὐκράτων κατὰ θερμότητα καὶ
6008006 ΒΣΓ
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ
6004128 Ϙγ
. . . . . . . . . . Ϙγ γοʹ λζ δʹ Τιβρακάνα . . . . .
πη θ πθ οβ Ϙ ιγ Ϙα πα Ϙβ ιβ Ϙγ νζ Ϙδ κθ Ϙε κε ϘϚ πθ Ϙζ οζ
5993420 ΦΘ
ΥΑΦ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΧΗ συναμφοτέρου τῆς ΦΘ ΥΚ μείζων ἐστίν . ἴση δὲ ἡ ΦΘ τῇ
να . πάλιν δ ' , ἐπεὶ καὶ ἡ μὲν ΦΘ τῇ ΦΧ ἴση ἐστίν , ἡ δὲ ΝΧ τῆς
5990194 ΠΕ
τίς ἄρα ἡ ΤΠ τῇ ΠΕ ; ἀλλ ' ἡ ΠΕ τῇ ΠΗ ἴση : ἔχει δὴ σύγκρισιν : ἔστιν
πρὸς ὀρθάς ἐστιν , παράλληλος ἄρα ἐστὶν ἡ ΦΧ τῇ ΠΕ . εἰσὶ δὲ καὶ ἴσαι : καὶ αἱ ΕΦ
5985401 ρη
ιε , ἑκάτερον δὲ τῶν ἑκατέρωθεν τοῦ μετοπωρινοῦ σημείου χρόνοις ρη με . καὶ λοιπὸν μὲν ἄρα τό τε τῶν
! ! ! ] ! ! ω ? [ ] ρη πωϲ τοῦτο . τη [ ] ϲί . ποῖοϲ
5981195 ΜΗ
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ
5973943 υμα
τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται . Αἱ
! ! [ [ ] εσα ? [ [ ] υμα ! [ [ ] δ ! [ . .
5973211 ΤΣ
ἀπὸ τοῦ Υ ἐπὶ τὸ Ψ ἴσας περιφερείας ἀπολαμβάνουσαι τὰς ΤΣ , ΣΨ : ἴση ἄρα ἐστὶν ἡ ἀπὸ τοῦ
πρὸς τῷ Ο ἴσαι εἰσίν . ἡ ἄρα ΗΘ τῇ ΤΣ ἴση φανήσεται . ἔστω ἐλάττων ἡ ἀπὸ τοῦ ὄμματος
5962486 ὠφελουμαι
] τεθέαται πάλαι ] ἐξ ἀρχῆς τάδε ] ὅτι οὐδὲν ὠφελοῦμαι ἐκ λόγων τὰς παρούσας πημονὰς ] † ἤγουν ἀφ
ὕπερον ἀμφοτέραις καὶ ὅσῳ βαρύτερός ἐστιν ἐκεῖνος , τοσούτῳ μᾶλλον ὠφελοῦμαι ἐγώ : εἰ δέ τις πρὸς ἀοργησίαν με γυμνάζει
5961739 ΘΦ
ΣΠ τῇ ΥΘ ἐστιν ἴση , ἡ δὲ ΠΞ τῇ ΘΦ : καὶ ἡ ΥΘ ἄρα τῆς ΘΦ ἐστι μείζων
ἐποίησεν ἐν τῷ αὐτῷ λόγῳ καὶ τὴν ΤΘ πρὸς τὴν ΘΦ . πᾶσα δὲ ἀνάγκη μήτ ' ἐκεῖνον εὑρίσκειν τὸ
5960799 ρδ
τέσσαρα . γίνονται οὖν τῶν δύο τετραγώνων αἱ μονάδες . ρδ ἡ δὲ ΑΓ ιϚ : τετράκις γὰρ δ ιϚ
δ ' ἐπὶ τῆς ΕΘ τῶν λοιπῶν εἰς τὸ ἡμικύκλιον ρδ ιζ . καὶ τῶν ὑπ ' αὐτὰς ἄρα εὐθειῶν
5953563 συλλαβα
, δι ' ὀξειᾶν δὲ τρία ἐπόγδοα καὶ δίεσις , συλλαβὰ δὲ δύ ' ἐπόγδοα καὶ δίεσις . . .
' ἐν μέσῳ τρίτας καὶ μέσας ἐπόγδοον , ἁ δὲ συλλαβὰ ἐπίτριτον , τὸ δὲ δι ' ὀξειᾶν ἁμιόλιον ,
5946703 ΝΩ
χαυνῶ κοινῶ οἰνῶ , χωρὶς τοῦ ἐλαύνω . Τὰ εἰς ΝΩ ὑπερδισύλλαβα παραληγόμενα τῇ ΕΙ διφθόγγῳ ἢ μακρῷ τῷ Ι
ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν τῷ ἐπιπέδῳ κατὰ τὰ
5938671 ΒΩ
[ τῶν ] ΔΩ , ΩΒ , ἀναγραφομένου ἀπὸ τῆς ΒΩ τετραγώνου καὶ συμπληρουμένου τοῦ ἐπὶ τῆς ΩΔ παραλληλογράμμου καὶ
Ω ἀρξάμενον ἀπὸ τοῦ Ξ τὴν ΞΩ διέρχεται , ἡ ΒΩ δύνει : ἐν ᾧ δὲ τὸ Ψ τὴν ΟΨ
5935461 πδ
τεταρτημορίου μοιρῶν Ϙ . καὶ οἵων ἄρα ἡ ΒΓ εὐθεῖα πδ να ι τοιούτων ἡ ΕΒ α κγ ιϚ ∠
. . . . . . . . . . πδ λϚ ἀπὸ δὲ ἀνατολῶν Μηδίας μέρει παρὰ τὴν ἐπιζευγνύουσαν
5933912 κραϲεωϲ
λειώϲαϲ καλῶϲ δίδου τοῖϲ εὐτονοῦϲι ⋖ α μεθ ' ὑδρομέλιτοϲ κράϲεωϲ μεγάληϲ νήϲτεϲι , τοῖϲ δὲ ἀϲθενοῦϲι κεράτια θ :
λαμβάνωνται . Φακὸϲ ὁ ἐπὶ τῶν τελμάτων ὑγρᾶϲ καὶ ψυχρᾶϲ κράϲεωϲ , ἐκ τῆϲ δευτέραϲ τάξεώϲ ἐϲτι . Περὶ φαϲήλων
5931157 ρε
. . . . . . . . . . ρε λγ Ζιμύρα . . . . . . .
ἄμετρον κένωϲιν λειποθυμίαϲ ρδ Περὶ τῆϲ ἐπὶ πλήθει χυμῶν λειποθυμίαϲ ρε Περὶ τῆϲ ἐξ ὑϲτέραϲ λειποθυμίαϲ ρϚ Περὶ τῶν δι
5927229 ΗΣ
Κύης περιττοσύλλαβα . γύης δὲ οὐ κύριον . Τὰ εἰς ΗΣ κύρια ἀπὸ ἐντελεστέρου περισπᾶται : Ἑρμῆς Θαλῆς Πυλῆς Ποδῆς
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι αἱ ΑΒ , ΗΣ , Τ , Ξ , ὧν κέντρον τὸ Θ
5920446 ΕΜ
ἴση ἄρα καὶ ἡ ΒΜ τῇ ΜΘ . ὧν ἡ ΕΜ τῇ ΜΚ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ
ἐπικύκλων εὐθεῖαι , ἐπὶ μὲν τὰ ἀπόγεια αἱ ΕΗ καὶ ΕΜ , ἐπὶ δὲ τὰ περίγεια αἱ ΕΚ καὶ ΕΞ
5920395 οδ
, Δάφνα , Σάφα . . . . . . οδ δʹ λ ∠ ʹ Σῶρα . . . .
. . . . . . . . . . οδ ∠ ʹγ μβ ∠ ʹ Δαράνισσα . . .
5908095 ΝΖ
δείξομεν οὕτως : ἐπεὶ γὰρ μείζων ἐστὶν ἡ ΒΝ τῆς ΝΖ , τὸ ἄρα ὑπὸ τῶν ΖΒΝ μεῖζόν ἐστι τοῦ
ΤΛ πρὸς τὴν ΛΒ , οὕτως ἡ ΟΝ πρὸς τὴν ΝΖ . τῶν ΛΤΒ , ΝΟΖ ἄρα τριγώνων ἀνάλογόν εἰσιν
5902870 ἀνακλασθησεται
προσπέσῃ ὄψις ἴσας ποιοῦσα γωνίας , αὐτὴ δι ' ἑαυτῆς ἀνακλασθήσεται . ἔστω ἔνοπτρον ἐπίπεδον τὸ ΑΓ , ὄμμα δὲ
παράλληλος ἤχθω ἡ ΖΗ . λέγω , ὅτι ἡ ΖΗ ἀνακλασθήσεται πρὸς ἴσην γωνίαν μεταξὺ τῶν Ε , Θ .
5900862 λζ
ἴσην τῇ εἰρημένῃ πάροδον , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις λζ πρὸς Αἰγυπτιακοῖς ἔτεσιν ρμδ ἀποκαταστάσεις ποιεῖσθαι τὰς πρὸς τὴν
λϚ Τί δηλοῖ τὸ παχὺ οὐρούμενον καὶ μετὰ ταῦτα καθιϲτάμενον λζ Τί δηλοῖ τὸ λευκὸν καὶ λεπτὸν οὐρούμενον καὶ μένον
5891976 ΤΩΙ
ΝΟΝ ΕΙΔΟΣ ΚΑΤΑ ΔΕ ΤΑ ΤΗΣ ΡΥΘΜΟΠΟΙΙΑΣ ΣΧΗΜΑΤΑ ΠΑΡΑΛΛΑΤΤΕΙ ΕΝ ΤΩΙ ΦΙΛΟΝ ΩΡΑΙΣΙΝ ΑΓΑΠΗΜΑ ΘΝΑΤΟΙΣΙΝ ΑΝΑΠΑΥΜΑ ΜΟΧΘΩΝ ΕΣΤΙ ΔΕ ΠΟΥ
ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ [ [ ΩΣΤΕ ] ΤΗΝ ΜΕΝ ΠΡΩΤΗΝ ΞΥΛΛΑΒΗΝ ΕΝ ΤΩΙ [ ] ΜΕΓΙΣΤΩΙ ΧΡΟΝΩΙ ΚΕΙΣΘΑΙ [ ΤΗΝ ΔΕ ΔΕΥΤΕΡΑΝ
5885302 ΠΘ
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα
5883041 ἀχθεισης
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν
5878923 ΑΚ
ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ .
ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί
5869166 ΘΖ
ἐπεὶ ἡ ὑπὸ τῶν ΑΒ , ΒΓ τῇ ὑπὸ τῶν ΘΖ , ΖΗ , ὁμόλογος δὲ ἔστω ἡ ΒΓ τῇ
καὶ λοιπὴ ἡ ΝΛ πρὸς ΖΑ . ὁ ἄρα τῆς ΘΖ πρὸς ΖΑ λόγος σύγκειται ἐκ τοῦ τῆς ΜΛ πρὸς
5868010 ξη
. . . . . . . . . . ξη λϚ ∠ ʹ Πυράμου ποταμοῦ ἐκβολαί . . ξη
. . . . . . . . . . ξη λα δʹ καὶ μέρει τῆς Πετραίας Ἀραβίας παρὰ τὴν
5863338 ροθ
. . . . . . . . . . ροθ ∠ ʹγ νότ . β Σάρατα . . .
ροϚ Περὶ καράβου ροζ Κάϲτοροϲ ὄρχιϲ ροη Κυνὸϲ ποταμίου ὄρχιϲ ροθ Κυνὸϲ χερσαίου ϲκύλαξ ρπ Κύκνου νεοττόϲ ρπα Κηρύκων ὄϲτρακα
5858269 ΕΝ
Ἠγείρετο δὲ πολὺς κτύπος τούτων μαχομένων . . . ΙΔΕΙ ΕΝ ΑΙΝΟΤΑΤΩι . Τὸν καιρὸν λέγει τῆς μάχης . Ἴδει
, ] πῶς ἔλασσον τὸ Ξ στερεὸν τῆς ἐν τῷ ΕΝ κώνῳ πυραμίδος ; δείξομεν οὕτως : ἐπεὶ ὁ ΕΝ
5853448 δυϲκραϲιων
: ὥρα τοίνυν ἐπὶ τὴν διόρθωϲιν τῶν τοῦ ὅλου ϲώματοϲ δυϲκραϲιῶν τρέψαι τὸν λόγον . Ἐπειδὴ ταῖϲ θερμαῖϲ δυϲκραϲίαιϲ πλεονάζει
, καὶ μᾶλλον ὀρέγονται τῶν ϲιτίων . τούτων δὲ τῶν δυϲκραϲιῶν ὁποία ἂν εἴη , τῆϲ μὲν ξηρᾶϲ αὐτῇ ϲυμπλεκομένηϲ
5851416 ριϚ
ἐκκειμένην μετοπωρινὴν ἰσημερίαν ἀποχῆς ἀπὸ τοῦ ἀπογείου τοῦ ἐκκέντρου μοίραις ριϚ μ προσθῶμεν ἑνὸς κύκλου μοίρας τξ καὶ ἀπὸ τῶν
. . . . . . . . . . ριϚ ιϚ ∠ ʹδ . Τῶν δὲ ἀνδρῶν Πειρατῶν μεσόγειοι
5848028 ΟΥΚ
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις .
5846656 ΤΩ
ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν
ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι
5845960 ἰϲου
ἀμυδρῶϲ , τὸ ἀνάπαλιν , εἰ δὲ ϲυμμέτρωϲ , ἐξ ἴϲου . τὸ δὲ νᾶπυ πρὸ τῆϲ τρίψεωϲ ὄξει ἀποβρεχόμενον
α νήϲτει . Ἔλιγμα ἄλλο : βούτυρον νεαρὸν μετ ' ἴϲου μέλιτοϲ ἑψήϲαϲ δίδου κοχλιάρια β . ἐπὶ δὲ τῶν
5845869 Ϙε
τῶν προχείρων , τὰ αὐτά ἐστιν : καὶ περὶ τὰς Ϙε καὶ σξε τῆς ἀνωμαλίας μοίρας , μεγίστην ἔχει τὴν
δὲ ἡ ϲκευαϲία τοῦ ὀροῦ ἐν τῷ δευτέρῳ λόγῳ κεφαλαίου Ϙε . εἰ δὲ οὔκ ἐϲτιν ὁ καιρὸϲ τοῦ γάλακτοϲ
5832407 ΑΝ
τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς
ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου ,
5831773 Ϙβ
ἀνασκευάσαι τὰ εἰρημένα . τὰ πάντα δὲ ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ αὐτοῦ δράματα ξζ καὶ γ πρὸς
τρίτος ἐγένετο . τὰ πάντα δ ' ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ οη : τούτων νοθεύεται τρία ,
5824096 ΑΜ
ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ
ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ
5822092 ὁμοιοσχημονων
ὀνόματος συνάγειν τὴν ἀντίφασιν , ὡς ἐπὶ τῶν ὁμωνύμων καὶ ὁμοιοσχημόνων καὶ ἀμφιβόλων καὶ τῶν παρὰ προσῳδίαν , ὅ τε
, οἱ ἔχοντες τὴν ἀναγκαίαν καταφατικήν : ἢ γὰρ ἐξ ὁμοιοσχημόνων ἢ ἐξ ἀνομοιοσχημόνων , καὶ τούτων ἑκάτερον διχῶς παρὰ
5819636 Ϙθ
καὶ ἡ ὑπὸ ΑΕΒ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων Ϙθ νε , οἵων εἰσὶν αἱ β ὀρθαὶ τξ :
, οἵων δ ' αἱ δύο ὀρθαὶ τξ , τοιούτων Ϙθ λϚ : ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΑΛ
5819200 ΠΑ
καὶ Δωρικῶς : ἄλλη ἀλλαχοῦ . . ΠΑΡΑΚΛΙΝΟΥΣΙ . Τὸ ΠΑ μακρὸν ἐδέξατο , καὶ τὸ ΚΛΙ βραχύ : ὢ
! [ ] [ ἀναγκ ] [ ] [ ] ΠΑ ? ? [ ] [ ] ΟΞΩ ! [
5817701 ΖΝ
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου ,
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ
5815768 νδ
, καὶ ἡ μὲν ἡμίσεια τῆς προηγήσεως γίνεται μοιρῶν δ νδ λζ καὶ ἡμερῶν ξα ∠ ʹ ἔγγιστα , ἡ
ψκγ καὶ ἔτι , ὅσας καὶ ὁ ἥλιος ἐπιλαμβάνει τοῖς νδ κύκλοις μοίρας λβ . ἤδη μέντοι πάλιν ὁ Ἵππαρχος
5815617 διαγνωϲεωϲ
τετάρτῳ λόγῳ . Περὶ ὑγιεινῆϲ διδαϲκαλίαϲ τοῦ ϲώματοϲ καὶ περὶ διαγνώϲεωϲ δυϲκραϲιῶν τῶν τε κατὰ φύϲιν καὶ παρὰ φύϲιν καὶ
Ἴαϲιϲ τῶν ἐπὶ ϲηπεδόνι πυρετῶν . ιηʹ . Περὶ τριταίων διαγνώϲεωϲ . ιθʹ . Θεραπεία τριταίων . κʹ . Θεραπεία
5812864 ΖΑ
τὸ ΑΔΖ τρίγωνον τῷ εἴδει : λόγος ἄρα ἐστὶ τῆς ΖΑ πρὸς τὴν ΑΔ δοθείς : ἡ δὲ ΑΖ συναμφότερός
διὰ τὸ ἴσα εἶναι τά τε ἀπὸ τῶν ΒΖ , ΖΑ καὶ τὰ ἀπὸ τῶν ΒΚ , ΚΑ τῷ ἀπὸ
5805807 ٢٩
ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ
καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤
5803839 ΕΠ
ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ
. καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ
5801771 ΧΞ
ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς ΝΞ μείζων
ΤΜ , ΜΥ , ΥΦ , ΦΝ , ΝΧ , ΧΞ ἄρα ἑξῆς ἀλλήλων μείζονές εἰσιν ἀρχόμεναι ἀπὸ μεγίστης τῆς
5801107 ροα
ρξθ ιϚ γʹ Σήρου ποταμοῦ ἐκβολαί . . . . ροα ∠ ʹ ιζ γʹ τὸ πρὸς τοὺς Σίνας τοῦ
? ! δήσατο δεσμοῖς , αἴκιζέν τ ' ἀλόχους ! ροα ? ? ? κερδαλεόφρον ' ἐόντα . ἡμέας ἔτρεψεν
5794928 ΤΟ
δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ :
τὸ Ξ κέντρον γεγραμμένου κύκλου τοῦ ΜΝΠΦ αἱ ΡΟ ΥΟ ΤΟ , καὶ ἀπὸ τῶν διχοτομούντων τὰς ΟΟ περιφερείας σημείων
5786012 οε
ὥρας ἰσημερινῆς , ἡ δὲ τοῦ κατὰ κορυφὴν ἀπόστασις μοιρῶν οε . σκεψόμεθα δὴ ἐν τῷ παραλλακτικῷ κανόνι τὰ παρακείμενα
. . . . . . . . . . οε μζ ∠ ʹ . Κατέχουσι δὲ τὰ μὲν ἐπὶ
5785758 ΖΛ
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν
5783105 ριη
τῶν αὑτοῦ μηνῶν ιθ ἑαυτῷ ἐπιμερίζει ἡμέρας πγ , Σελήνῃ ριη , Κρόνῳ ρλ , Διὶ νβ , Ἄρει ξδ
. . . . . . . . . . ριη ∠ ʹ λη ∠ ʹδ Βαρζαῦρα . . .
5781714 ΟΥΔΕ
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία
5781305 οϚ
. . . . . . . . . . οϚ γοʹ λϚ δʹ . Ποταμοὶ δὲ διαῤῥέουσι τὴν χώραν
τὰ ἐν ὠϲὶ πάθη οε Πρὸϲ τὰϲ διὰ ψῦξιν ὀδύναϲ οϚ Πρὸϲ τὰϲ ἐξ ὕδατοϲ φαρμακώδουϲ ὀδύναϲ τοῦ πόρου τοῦ
5781132 ΞΖ
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς
5780802 ρϚ
. . . . . . . . . . ρϚ νβ ∠ ʹ ἀπὸ δὲ τούτου ῥεῖ ὅ τε
ἐπὶ τὴν δευτέραν ἔτη μὲν Αἰγυπτιακὰ περιέχει γ καὶ ἡμέρας ρϚ καὶ ὥρας κγ , μοίρας δὲ τῆς φαινομένης τοῦ
5778049 ΜΔ
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ
5775395 ησο
! [ [ ] αιρει ? [ [ ] ! ησο ! [ [ ] νηθα ? [ [ ]
] ! ! ἀγκάλην ς ? ! [ [ ] ησο τεκνία [ [ ] ! ! ! ! ουναγε
5774961 ΚΓ
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ
5772135 ΚΒ
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ
5769499 ΡΤ
διῆκταί τις ἡ ΗΤ , ἡ ΟΡ ἄρα πρὸς τὴν ΡΤ μείζονα λόγον ἔχει ἤπερ ἡ ὑπὸ ΡΤΗ γωνία πρὸς
ἡ ΡΤ : ἴση ἄρα ἐστὶ καὶ ἡ ΜΣ τῇ ΡΤ . ἔστι δὲ καὶ ὅλη ἡ ΜΣΞΥ ὅλῃ τῇ
5768767 ΑΛΒ
παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν
πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα
5766665 ΑΠ
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ
5759337 ἀϋω
. Αὖος , ὁ ξηρός , ἀπὸ τοῦ ὕω : ἀΰω , ἄϋος , καὶ κατὰ συναίρεσιν αὖος , ὁ
τὸ ὕω , τὸ βρέχω , μετὰ τοῦ στερητικοῦ α ἀΰω καὶ κατὰ συναίρεσιν αὔω , τὸ ἐξ ἀνομβρίας γινόμενον
5757087 ΖΟ
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ
5756584 ΤΩΝ
, ὥς φησι Τζέτζης , ἡ ἀερσιπότητος εὐθεῖα . . ΤΩΝ Ὁ Γ ' ΟΠΙΖΕΤΟ . Τούτων τῶν θεῶν ἐφοβεῖτο
ΛΕΞΙΣ ] ΟΙΚΕΙΑ ΜΕΝ [ ΕΣΤΙ [ ΚΑΤΑ ΤΗΝ ] ΤΩΝ ΡΥΘΜΩΝ [ ΦΥΣΙΝ ΟΥΣΑ ΙΑΜΒΙΚΗ ] ΤΟΥ ΙΑΜΒΟΥ [
5754422 Ϙδ
ὁ μὲν αος Μο Ϙη , ὁ δὲ βος Μο Ϙδ . καὶ ποιοῦσι τὸ πρόβλημα . ιϚ . Εὑρεῖν
Ὀξυπόριον καθαρτικόν Ϙβ Ὀξυπόριον διὰ φοινίκων Ϙγ Καθαρτικὸν διὰ κυδωνίων Ϙδ Καθαρτικὸν διὰ κιτρίου Ϙε Καθαρτικὸν διὰ μαράθρου ϘϚ Ἄλλο
5752168 ΣΡ
ΤΡΧ , τουτέστιν τῷ τοῦ ἀπὸ ΕΣ πρὸς τὸ ἀπὸ ΣΡ . ἔχει δὲ σύγκρισιν . ἐπεὶ οὖν τὸ ἀπὸ
τὸ ΝΘ : καὶ ὡς ἄρα τὸ ΜΖ πρὸς τὸ ΣΡ , οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ . τὸ
5751313 οὐληϲ
. Ϲμῆγμα πρὸϲ ἀχῶραϲ . παρακμαζούϲηϲ δὲ τῆϲ διαθέϲεωϲ καὶ οὐλῆϲ παντελῶϲ ἐπιγιγνομένηϲ , εἰϲ ἀναϲκευὴν τῆϲ ὅληϲ διαθέϲεωϲ χρηϲτέον
ἀνθράκων γίγνεται . θεραπεύειν δὲ αὐτοὺϲ μηνοειδῆ τομὴν κατὰ τῆϲ οὐλῆϲ ὅληϲ ἐμβάλλοντα , ὡϲ τὸ μὲν κυρτὸν τῆϲ τομῆϲ
5750825 ΜΡ
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ
5749378 ὁδοιποριων
ὑπὸ τοῦ Μαρίνου μὴ δεόντως ἐπιλελογισμένων . Διόρθωσις ἀπὸ τῶν ὁδοιποριῶν τοῦ μήκους τῆς ἐγνωσμένης γῆς . Ἡ αὐτὴ διόρθωσις
τὰ κατιϲχνωθέντα μόρια λε Περὶ κόπων ἐπὶ γυμναϲίοιϲ ἢ ἐξ ὁδοιποριῶν γιγνομένων λϚ Περὶ τοῦ ἑλκώδουϲ κόπου λζ Περὶ τοῦ
5749187 ΑΗΖ
αὐτὰ δὲ καὶ τὴν ΖΔ περιφέρειαν εὑρήσομεν καὶ τὴν ὑπὸ ΑΗΖ γωνίαν , ἀπὸ τῆς ΖΒ δοθείσης καὶ τῆς ΒΛ
ΔΓΑ : καὶ κοινὴ τῶν δύο τριγώνων τῶν ΑΔΓ , ΑΗΖ ἡ ὑπὸ ΔΑΓ γωνία : ἰσογώνιον ἄρα ἐστὶ τὸ
5744306 ξϚ
, πολυπλασιάσαντες τὸν ἀριθμὸν τῶν Ϙθ νβ κγ καὶ τῶν ξϚ λα κγ ἐπὶ τὴν εὑρεθεῖσαν μοῖραν α ιϚ με
. . . . . . . . . . ξϚ λθ γοʹ ὅθεν ὁ Μέλας καλούμενος ποταμὸς ῥέων συμβάλλει
5742636 ΑΣ
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν .
5741523 ροδ
ὧν ὑπεροχὴ # # κα . καὶ πάλιν ταῖς μὲν ροδ καὶ ρπϚ , # νθ μα : ταῖς δὲ
ἐχίδνηϲ ροα Ἐχῖνοϲ θαλάττιοϲ ροβ Ἐχῖνοϲ χερϲαῖοϲ ρογ Ἱππόκαμποι θαλάττιοι ροδ Περὶ κανθαρίδων ροε Καρκῖνοι ποτάμιοι ροϚ Περὶ καράβου ροζ

Back