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What are Flair embeddings'?

Flair embeddings are:

m contextual string embeddings.

m produced from character-level language model, which is
trained by predicting the next character on the basis of
previous characters.

Properties of Flair embeddings:

m model words as a sequence of characters without knowing any
explicit notion of words.

m are contextualized by their surrounding text.

m the same word will have different embeddings because of
different context use.

! Akbik et al. (2018)
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What is FLAIR?

FLAIR? is:
a simple NLP framework based on PyTorch and Python.

m originated from Flair embeddings.

m developed by Humbolt University of Berlin and its partner
companies.

m designed to facilitate training SOTA language models to solve
NLP tasks, such as NER, POS tagging etc.

m an embedding library: It presents a unified interface allowing

researchers to combine various types of word and document
embeddings.

2https://github.com /flairNLP /flair
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Embedding types

1 Classical word embeddings:
pre-trained over very large corpora and shown to capture

latent syntactic and semantic similarities, such as Skip-Gram
model3,GloVe* etc.

3Mikolov et al. (2013)
*Pennington et al. (2014)
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Embedding types (cont.)

2 Character-level features:
not pre-trained, but trained on task data to capture
task-specific subword features, such tasks as NER®, POS
tagging® etc.

3 Contextualized word embeddings: capture word semantics
in context’.

Note:
Flair embeddings are hypothesized to combine all good attributes
of above embeddings.

®*Lample et al. (2016)
®Ma and Hovy (2016)
"Peters et al. (2018)
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Overview of model
Flair embedding model aims to address sequence labeling tasks,

thus can be divided into two parts:
[ E-PER ] [
1

[ B-PER ]
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Character Language Model (a bidirectional character-level

neural language model):
m Input: pass sentences as sequence of characters into model

m Output: form word-level embeddings
Neural Representation Learning Seminar, CIS, LMU, SS 2021
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Overview of model (cont.)
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George Washington was

Sequence Labeling Model (BiLSTM-CRF sequence tagging
model):
m Input: contextual string embeddings produced by the 1. model
m Output: sequence tags, like names in NER
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Character Language Model

basically a forward-backward (bidirectional) LSTM architecture.

I.Washington
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Training of LM3

m Goal: estimate a good distribution P(xo.7) over sequences of
characters.

-
P(xo:T) = H P(xt[x0:¢—1) (1)
t=0

m In LSTM, P(x¢|x0:t—1) can be approximately represented with
the network output hy:

P(x¢|x0:t—1) = P(xt|h¢; 0) (2)

8Graves (2013)
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Training of LM (cont.)

m h; can be recursively computed with the help of memory cell
Ct:
he(x0:t-1) = (X1, he—1,¢:-1;0) (3)

ce(xo:t—1) = fe(x¢—1,he—1,¢1-1;6) (4)

m This model uses a softmax layer to compute the likelihood of
every character:

P(x¢|hs; V) = softmax(Vh; + b) (5)

where V and b, weights and biases, are part of model
parameters 0
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Extracting word representations (1)

m Alongside the previous forward model, we also need a
backward model to create contextualized word embeddings.

m The backward model works in the same way but in the
reversed direction:

PP(x¢[x¢11:7) & P(x¢|hy; 6) (6)
b_ ¢b _

h! = f(Xe41, hey1, €e11;0) (7)

€ = 10 (Xe41, 41, €ep1; 0) (8)
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Extracting word representations (2)

Extracting information from fLM

/
:
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>
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A

From the fLM, we extract the output hidden state after the word'’s
last character in the word.
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Extracting word representations (3)

Extracting information from bLM

\\
(

T

on w a s

>
>

A

From the bLM, we extract the output hidden state before the
word's first character in the word.
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Extracting word representation (4)

m Concatenating both hidden states from fLM and bLM to form
the final contextual string embedding.

hf
ot — [;’;”} 9)
ti—1

m The contextual string embedding captures the
semantic-syntactic information of the word itself and its
surrounding context.
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Examples

Examples of the word "Washington” in different contexts and its
nearest neighbors using cosine distance over Flair embeddings.

word context selected nearest neighbors

Washington  (a) Washington to curb support for [..] (1) Washington would also take [..] action [..]
(2) Russia to clamp down on barter deals |[..]
(3) Brazil to use hovercrafts for [..]

Washington  (b) [..] Anthony Washington (U.S.) [..] (1) [..] Carla Sacramento ( Portugal ) [..]
(2) [..] Charles Austin ( U.S. ) [..]
(3) [..] Steve Backley ( Britain ) [..]

Washington  (c) [..] flown to Washington for [..] (1) [..] while visiting Washington to [..]
(2) [..] journey to New York City and Washington [..]
(14) [..] lives in Chicago |[..]

Washington  (d) /[..] when Washington came charging back [..] (1) [..] point for victory when Washington found [..]
(4) [..] before England struck back with [..]
(6) [..] before Ethiopia won the spot kick decider [..]

Washington  (e) /..] said Washington |[..] (1) [..] subdue the never-say-die Washington |[..]
(4) [..] a private school in Washington [..]
(9) [..] said Florida manager John Boles [..]
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Sequence Labeling Model

The final word embeddings produced by the previous Character
Language Model are passed into a BiLSTM-CRF sequence
labeling model® to address downstream sequence labeling tasks.

P o

£ T
I [ Sequence Labeling Model . N
e ¢
I’\,’Vashinglon was born

r(}eorge

°Huang et al. (2015)
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BiLSTM

= Inputs:
Contextual string embeddings wo, ..., w,

m Outputs:
Forward outputs rf and backward outputs r?

o= |1 (10)
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With r; as inputs, CRF gives the final sequence probability:

P(yonlro:n) o [ [ wilyi-1, yi,m) (11)

i=1

Where:
iy y,r) = exp(Wy/ yr + by ) (12)
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Summary (1)

Advantages of Flair Embeddings
m Character-level LM is independent of tokenization and a fixed
vocabulary.

m Produce stronger character-level features, which is useful for
downstreaming sequential labeling task like NER.

m Have a much smaller vocabulary size:
#characters vs. #words

thus significantly easier to train and deploy in application.
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Summary (2)

Limitations of Flair Embeddings
m Struggle to produce meaningful embeddings if a rare string is
used in an underspecified context.
m Solution: Pooled Flair Embeddings'®

current sentence

embmmd‘ Indra

pooling
+concatenation

el
emb,,....| Indra
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Overview of experiments

Goal

m Assess in how far contextual string embeddings are useful for
sequence labeling.

m Compare contextual string embeddings with other types of
embeddings.
Tasks

m Shallow semantic tasks

- English NER in the CoNLLO3 setup
- German NER in the CoNLLO3 setup

m Shallow syntactic tasks

- Chunking in thr CoNLL2000 setup
- POS tagging in the default Penn treebank setup
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Experimental setup

Utilize the BiLSTM-CRF sequence labeling architecture!! in all
configurations.

Baselines
m HUANG!?: Using pretrained word embeddings.
m LAMPLE!3: Using pretrained word embeddings, in which
task-trained character features are additionally computed for
each word.

m PETERS!: Using contextualized word embeddings

"Huang et al. (2015)
2Huang et al. (2015)
BLample et al. (2016)
“Peters et al. (2018)
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Experimental setup (cont.)

Stacking embeddings:
It can be beneficial to add classic word embeddings to Flair
embeddings to add more latent word-level semantics.

W — w[{—'lair
[ WiGIoVe

wCVe is 3 precomputed GloVe embedding!®.

1

5 Pennington et al. (2014)
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Experinmental setup (cont.)

Proposed approaches
m PROPOSED: Simple Flair embeddings.
m PROPOSED _worp: Concatenating pre-trained static word
embeddings with Flair embeddings.
m PROPOSED, cnar: Concatenating task-trained character
features with Flair embeddings.
| PROPOSED+WORD+CHARZ Adding both.

m PROPOSED_a(L: Concatenating embeddings in all
baselines.
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Results

NER-English NER-German Chunking POS

Approach F1-score F1-score F1-score Accuracy
proposed
PROPOSED 91.97+0.04 85.78 £0.18 96.68+0.03 97.73+0.02
PROPOSED+worp 93.07+0.10 88.20 £ 0.21 96.70+£0.04 97.82+0.02
PROPOSED.cuar 91.92+0.03 85.88 £ 0.20 96.72+0.05 97.8+0.01
PROPOSED+worp+ciar ~ 93.09£0.12 88.32 + 0.20 96.71+£0.07 97.76£0.01
PROPOSED.aLL 92.72+0.09 n/a 96.65+0.05 97.85+0.01
baselines
HUANG 88.54+0.08 82.32 +0.35 95.4+0.08 96.94+0.02
LAMPLE 89.31+0.23 83.78 +0.39 95.34+0.06 97.02+0.03
PETERS 92.34+0.09 n/a 96.69+0.05 97.81+ 0.02

m New state-of-the-art for semantic tasks.

m Good performance on syntactic tasks.

m Traditional word embeddings helpful.

m Task-specific character features unneccessary.
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Framework overview!®

m Motivation: Simply mix and match different types of word
embeddings with minimal effort.

m Toolkits:
- A unified interface for all word embeddings as well as arbitrary
combination of them.

- Integrating standard NLP datasets to data structure for the
FLAIR framework.

- Including model training and hyperparameter selection routines
for typical training and testing workflows.

18 Akbik et al. (2019a)
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Implementation (1)

m Base class

from flair.data import Sentence

# init sentence
sentence = Sentence(’I live in Munich?’)

- Each Sentence is instantiated as a list of Token objects
- Each Token represents a word and has fields for tags and

embeddings

Neural Representation Learning Seminar, CIS SS 2021
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Implementation (2)

m Word embeddings

from flair.embeddings import WordEmbeddings

# init GloVe
glove = WordEmbeddings (’glove’)

# embed sentence
glove.embed (sentence)

# check out the embedded tokens
for token in sentence:
print (token.embedding)

- Instantiate a word embedding.
- Then call .embed() to embed a sentence.
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Implementation (3)

m Stacking embeddings

from flair.embeddings import FlairEmbeddings,
StackedEmbeddings

# init flair forward and backward embeddings

flair_forward = FlairEmbeddings (’news-foward’)
flair_backward = FlairEmbeddings(’news—
backward’)

# create a StackedEmbeddings object combining

# glove and flair forward/backward embeddings

stacked = StackedEmbeddings ([glove,
flair_forwaed,
flair_backward])
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Summary of embeddings

Summary of word and document embeddings supported by
FLAIR

Class Type Pretrained?
WordEmbeddings classic word embeddings (Pennington et al., 2014) yes
CharacterEmbeddings character features (Lample et al., 2016) no
BytePairEmbeddings byte-pair embeddings (Heinzerling and Strube, 2018) yes
FlairEmbeddings character-level LM embeddings (Akbik et al., 2018) yes
PooledFlairEmbeddings pooled version of FLAIR embeddings (Akbik et al., 2019b) yes
ELMoEmbeddings word-level LM embeddings (Peters et al., 2018a) yes
ELMoTransformerEmbeddings  word-level transformer LM embeddings (Peters et al., 2018b) yes
BertEmbeddings byte-pair masked LM embeddings (Devlin et al., 2018) yes
DocumentPoolEmbeddings document embeddings from pooled word embeddings (Joulin et al., 2017)  yes
DocumentLSTMEmbeddings document embeddings from LSTM over word embeddings no
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