Separation of Two Inseparable Logics

Separation of Test-Free Propositional Dynamic Logics over Context-Free Languages

Markus Latte

Dept. of Computer Science, Ludwig-Maximilians-University, Munich, Germany

GandALF 2011 June 17th

Motivation—Where are we?

Motivation—Where are we?

Motivation—Where are we?

Motivation—What is our Target?

Table of Contents

- Syntax & Semantic
- 2 A Simple World & the Real World
- 3 Eliminations
- Properties of Palindromes
- Extraction

Syntax of $PDL_0[\cdot]$

[Fischer/Ladner '79], [Berman/Paterson '81] [Harel/(Pnueli/Stavi '83 | Raz '90)] [Löding/Lutz/Serre '04], [Axelsson/Hague/Kreutzer/Lange/L. '10]

Let $\mathfrak A$ be a class of languages $L\subseteq \Sigma^+$.

Definiton (Syntax of $PDL_0[\mathfrak{A}]$)

where $L \in \mathfrak{A}$, and p denotes a proposition.

Syntax of $PDL_0[\cdot]$

[Fischer/Ladner '79], [Berman/Paterson '81] [Harel/(Pnueli/Stavi '83 | Raz '90)] [Löding/Lutz/Serre '04], [Axelsson/Hague/Kreutzer/Lange/L. '10]

Let \mathfrak{A} be a class of languages $L \subseteq \Sigma^+$.

Definiton (Syntax of $PDL_0[\mathfrak{A}]$)

where $L \in \mathfrak{A}$, and p denotes a proposition.

Test-free means

- ▶ no tests such as $\langle (\varphi; a)^* \rangle \psi$,
- ► no EU/ER/AU/AR-formulas.

Semantic of PDL₀[\cdot]

Example (Producer-Consumer Scenario)

- Producer can put items on a stack.
- ▶ Consumer can remove them and request further items.
- $\triangleright \Sigma := \{p, c, r\}.$
- $\blacktriangleright \ L:=\{w\in \Sigma^* \mid |w|_c=|w|_p \text{ and } |u|_c\leq |u|_p \text{ for any prefix } u \text{ of } w\}.$
- Specification:

$\mathtt{AG}\mathtt{EX}^ptt$	At any time it is possible to produce an object.
	the any time to be produced at the case and the same and

$${\sf AG}^L({\sf AX}^c{\sf ff}\wedge{\sf EX}^r{\sf tt})$$
 Whenever the buffer is empty, it is impossible to consume and possible to request.

$$\operatorname{AG}^{\overline{L}}(\operatorname{EX}^c\operatorname{tt}\wedge\operatorname{AX}^r\operatorname{ff})$$
 Whenever the buffer is non-empty, it is possible to consume and impossible to request.

where $\mathtt{AX}^c \varphi := \mathtt{AG}^{\{c\}} \varphi$, $\mathtt{AG} \varphi := \mathtt{AG}^{\Sigma^*} \varphi$, and $\mathtt{EX}^c \varphi := \mathtt{EF}^{\{c\}} \varphi$.

Table of Contents

- Syntax & Semantic
- 2 A Simple World & the Real World
- 3 Eliminations
- Properties of Palindromes
- 6 Extraction

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Setting up the Scenery

- $ightharpoonup \Sigma$ alphabet, $|\Sigma| \geq 2$.
- ightharpoonup Palindromes := $\{w \in \Sigma^* \mid w = w^R\} \in \mathsf{CFL} \setminus \mathsf{DCFL}$.
- ▶ Extended alphabet $\Sigma_{\$} := \Sigma \dot{\cup} \{\$\}$.
- Goal: none PDL₀[DCFL]-formula is equivalent to the PDL₀[CFL]-formula EF^{Palindromes.}\$tt.
- lacktriangle Assumption for contradiction: $PDL_0[DCFL] \ni \vartheta \equiv EF^{Palindromes \cdot \$}tt$.
- ▶ Wlog. no propositions in ϑ .

$PDL_0[DCFL] \leq PDL_0[CFL]$ —A Simple World

A simple world: ϑ uses neither \wedge nor AG.

- ightharpoonup $\operatorname{EF}^L \bigvee_i \psi_i \equiv \bigvee_i \operatorname{EF}^L \psi_i$,
- ightharpoonup $\operatorname{EF}^{L_1}\operatorname{EF}^{L_2}\psi \ \equiv \ \operatorname{EF}^{L_1\cdot L_2}\psi$, and
- ightharpoonup EF^Lff \equiv ff.

$PDL_0[DCFL] \leq PDL_0[CFL]$ —A Simple World

A simple world: ϑ uses neither \wedge nor AG.

- ightharpoonup $\operatorname{EF}^L\bigvee_i\psi_i\ \equiv\ \bigvee_i\operatorname{EF}^L\psi_i$,
- ightharpoonup EF L_1 EF $^{L_2}\psi$ \equiv EF $^{L_1\cdot L_2}\psi$, and
- ightharpoonup EF^Lff \equiv ff.

Therefore,

- lacksquare $artheta \equiv {
 m EF}^L$ tt where $L:=\bigcup_i \Pi_j L_{i,j}$ and $L_{i,j}$ are DCFLs over $\Sigma_\$.$
- ▶ Palindromes = $\{w \mid w\$ \text{ is a prefix of a word in } L\}$ = $L/(\$ \cdot \Sigma_\$^*) \cap \Sigma^*$ as $\mathrm{EF}^{\mathrm{Palindromes} \cdot \$}$ tt. = $\vartheta = \mathrm{EF}^L$ tt.

In this world. Palindromes is a finite union of DCFL-concatenations.

$PDL_0[DCFL] \leq PDL_0[CFL]$ —The Real World

Theorem [Bojańczyk 2008]

For $L \subseteq \Sigma^{\omega}$ the following are equivalent:

- lacktriangleright The tree language "a path belongs to L" is definable in ECTL.
- ▶ *L* is a finite union of languages of the form

$$A_0^* a_1 A_1^* a_2 \cdots A_{n-1}^* a_n A_n^{\omega}$$

where $a_1, \ldots, a_n \in \Sigma$ and $A_0, \ldots, A_n \subseteq \Sigma$.

Intractability

∧- and AG-subformulas cannot be eliminated
if the elimination method also applies to CTL.

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Strategy

Planned Definition

A language L is good iff ...

Planned Theorem

If $\mathrm{EF}^{L\cdot\$}\mathrm{tt} \equiv \vartheta \in \mathrm{PDL}_0[\mathrm{DCFL}]$ then L is good.

Planned Theorem

The language Palindromes is not good.

Table of Contents

- Syntax & Semantic
- 2 A Simple World & the Real World
- 3 Eliminations
- Properties of Palindromes
- Extraction

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Eliminations I

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Eliminations II

Proofsketch.

Transformations:

- ▶ Turn ϑ into a disjunctive normal form.
- ► Complete formula to

$$\vartheta \ \lor \ \bigvee \left\{ \bigwedge \Phi \mid \Phi \text{ set of EF-formulas in } \vartheta, \ \models \bigwedge \Phi \to \vartheta \right\}$$

Proofs:

- ▶ It is admissible to remove terms containing AG-formulas.
- ▶ In each term it suffices to pick one EF-formula.

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Extraction I

Therefore, have for some DCFLs L_i over Σ .

$${
m EF}^{
m Palindromes\cdot\$}$$
tt \equiv $artheta$ \equiv $\bigvee_i {
m EF}^{L_i} \psi_i$

Definiton

$$\llbracket \psi \rrbracket := \left\{ a_1 \cdots a_n \in \Sigma^* \mid \xrightarrow{a_1} \bullet \cdots \xrightarrow{a_n} \right\} \models \psi \right\}$$

Thus, Palindromes
$$= \bigcup_i (L_i \cap \Sigma^*) \cdot \llbracket \psi_i \rrbracket \quad \cup \quad (L_i/(\$\Sigma_\$^*) \cap \Sigma^*)$$

$$= \bigcup_i L_i' \cdot R_i'$$

for DCFLs L'_i over Σ , and for arbitrary languages R'_i over Σ .

Table of Contents

- Syntax & Semantic
- 2 A Simple World & the Real World
- 3 Eliminations
- Properties of Palindromes
- 6 Extraction

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Palindromes vs. Concat.

Lemma

Suppose $LR \subseteq \mathsf{Palindromes}$ and $|L| \ge 2$. Then

$$R \subseteq u^*V$$

for some word u and a finite language V.

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Palindromes vs. Concat.

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Palindromes vs. Concat.

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Good vs. Bad

What can we say about R if $LR \subseteq \mathsf{Palindromes}$ for |L| = 1?

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Good vs. Bad

What can we say about R if $LR \subseteq \mathsf{Palindromes}$ for |L| = 1? Almost nothing: R could be $\mathsf{Palindromes} \cdot L^R$.

Definition

A language L is good iff $L = \bigcup_{i=1}^n L_i R_i$ for L_i DCFL and $|L_i| \geq 2$.

Planned Theorem

If $EF^{L\cdot\$}tt \equiv \vartheta \in PDL_0[DCFL]$ then L is good.

Planned Theorem

The language Palindromes is not good.

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Palindromes are Bad

Theorem

Palindromes is not good.

Proof.

Otherwise, Palindromes
$$= \bigcup_i L_i R_i$$

$$= \bigcup_{\substack{i \\ R_i \text{ finite}}} \underline{L_i R_i} \ \cup \ \bigcup_i u_{i,0} u_{i,1}^* \ u_{i,2}^* u_{i,3}$$

Choose u s.t. it is not a prefix of the right union.

$$u \backslash \mathsf{Palindromes} = \bigcup_i \underbrace{u \backslash L_i R_i}$$

But Palindromes is not a finite union of DCFLs.

Separation of Test-Free PDLs over CFLs · Markus Latte · LMU, Munich, Germany

Table of Contents

- Syntax & Semantic
- 2 A Simple World & the Real World
- 3 Eliminations
- Properties of Palindromes
- Extraction

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Extraction II

Reminder

 $\mathrm{EF}^{\mathrm{Palindromes\$}}$ tt $\equiv \vartheta \equiv \bigvee_{i} \mathrm{EF}^{L_{i}} \psi_{i}$ implies that

$$\mathsf{Palindromes} = \bigcup_i L_i \cdot R_i$$

for DCFLs L_i over Σ , and for arbitrary languages R_i over Σ .

That's almost good except for " $|L_i| > 1$ ".

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Extraction III

Solution if $|L_i| = 1$ for some i

- ▶ Let $a \in \Sigma$ s.th. a is a prefix of the sole word of L_i .
- ▶ We have that $EF^{a \setminus Palindromes \cdot \$}$ tt $\equiv \bigvee_{i} EF^{a \setminus L_{i}} \psi_{i} =: a \setminus \vartheta$.
- ▶ Palindromes = $\bigcup_i L_i R_i = \bigcup_{\substack{i \ |L_i| > 2}} L_i R_i \cup a \bigcup_i \underbrace{a \setminus L_i R_i}_{= \llbracket a \setminus \vartheta \rrbracket}$

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Extraction III

Solution if $|L_i| = 1$ for some i

- ▶ Let $a \in \Sigma$ s.th. a is a prefix of the sole word of L_i .
- ▶ We have that $EF^{a \setminus Palindromes \cdot \$}$ tt $\equiv \bigvee_{i} EF^{a \setminus L_{i}} \psi_{i} =: a \setminus \vartheta$.
- $\qquad \qquad \mathsf{Palindromes} = \bigcup_i L_i R_i = \bigcup_{\substack{i \\ |L_i| > 2}} L_i R_i \ \cup \ a \bigcup_i \underbrace{a \backslash L_i R_i}_{= \llbracket a \backslash \vartheta \rrbracket}$
- ▶ If $[a \ \vartheta]$ is good then so Palindromes.
- → Ind. on a suitable measure yields that Palindromes is good.

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Extraction IV

Definition (Measure)

A measure is finite subset of $(\omega + 1)^*$, ordered by multi-set order based on lexicographical order on $(\omega + 1)^*$.

$$\begin{split} \mu(\ell) &:= \{[]\} & \ell \text{ literal or constant} \\ \mu(\varphi_1 \circ \varphi_2) &:= \mu(\varphi_1) \cup \mu(\varphi_2) & \circ \in \{\land, \lor\} \\ \mu(Q^L \varphi) &:= \begin{cases} \{|w| :: m \mid m \in \mu(\varphi)\} & \text{if } L = \{w\} \\ \{\omega :: m \mid m \in \mu(\varphi)\} & \text{otherwise} \end{cases} \quad Q \in \{\texttt{AG}, \texttt{EF}\} \end{split}$$

Example:
$$\mu$$
 ($\mathrm{EF}^{\{abba\}}(\mathrm{EF}^{\{c^n|n\leq 7\}}p \wedge \mathrm{EF}^{\{ba\}}\neg p)$) = $\{[4,\omega],[4,2]\}$

Properties

- ▶ All considered transformations weakly decrease the measure.
- $\blacktriangleright \mu(\mathrm{EF}^L\psi) < \mu(\mathrm{EF}^{a\setminus L}\psi) \text{ if } L = \{w\} \text{ and } a \text{ prefix of } w.$

$PDL_0[DCFL] \leq PDL_0[CFL]$ —Extraction V

Theorem

If $\mathrm{EF}^{L\cdot\$}\mathrm{tt} \equiv \vartheta \in \mathrm{PDL}_0[\mathrm{DCFL}]$ then L is good.

Corollary

 $PDL_0[DCFL] \leq PDL_0[CFL].$

Conclusion

- A separation of PDL₀[DCFL] and PDL₀[CFL] seems to be impossible by means of automata theory.
- ▶ Elimination of outermost ∧- and AG-formulas is possible.
- Iterated elimination is non-uniform
 —compared to Bojańczyk's impossibility result.
- ▶ $PDL_0[DCFL] \leq PDL_0[CFL]$.

Work in Progress and Future Work

- ► Extension to the EU/AR-fragment of XCTL[·] \geq PDL₀[·]. Interpretation of E(ψ_1 U^L ψ_2) compared to EF^L ψ as $L \cdot \llbracket \Psi \rrbracket$?
- ► Extension to the PDL[·].
- ► Extension to the EG/AF-fragment and so to the whole XCTL[·].
- ► Extension to the $\Delta PDL^{?}[\cdot]$.
- ► Generalize to separations like: $PDL[\mathfrak{A}] \leq PDL[\mathfrak{B}]$ if \mathfrak{A} is a "reasonable" subset of \mathfrak{B} .

