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Abstract

We define extensions of the full branching-time temporal logic CTL∗ in which
the path quantifiers are relativised by formal languages of infinite words, and
consider its natural fragments obtained by extending the logics CTL and CTL+

in the same way. This yields a small and two-dimensional hierarchy of temporal
logics parametrised by the class of languages used for the path restriction on one
hand, and the use of temporal operators on the other. We motivate the study
of such logics through two application scenarios: in abstraction and refinement
they offer more precise means for the exclusion of spurious traces; and they may
be useful in software synthesis where decidable logics without the finite model
property are required. We study the relative expressive power of these logics as
well as the complexities of their satisfiability and model-checking problems.

Keywords: temporal logic, CTL∗, formal languages, expressive power, model
checking, satisfiability

1. Introduction

Branching-time temporal logics are some of the most well-known and used
specification languages for reactive systems. The most prominent ones are the
logics CTL [12, 15] and CTL∗ [16]. While CTL has nice algorithmic properties —
model checking is P-complete and satisfiability checking is EXPTIME-complete —
its expressive power is very weak. CTL∗ amends this by unifying CTL with the
linear-time temporal logic LTL [34]. This way, it can express important properties
like fairness which is not possible in CTL. This comes at a certain price, though.
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Model checking CTL∗ is naturally at least as expensive as it is for LTL. In fact
it is no more expensive either, thus, it is PSPACE-complete [35]. The additional
complexity introduced by merging branching-time with linear-time formalisms
shows through in satisfiability checking which is 2-EXPTIME-complete [39, 17].

Temporal logics in general, and with it such branching-time logics, have
become prominent because of the success that model checking — an automatic
program verification method for correctness properties specified in temporal
logics — has had over the past decades [22]. In particular, model checking was
very successful in hardware verification because hardware can be modeled by
finite-state systems. Verifying infinite-state systems has become more and more
important in the domain of program verification since, and this is mainly due
to the growing importance of software in reactive systems. Note that software
usually leads to infinite-state systems because of the use of unbounded data
structures, recursive functions, etc.

The model-checking complexities mentioned above hold with respect to
finite models. Clearly, model checking infinite-state programs is undecidable in
general but it remains decidable for certain classes of infinite-state programs,
e.g. pushdown processes, and weak temporal logics like CTL and LTL. It is still
just PSPACE-complete for LTL but EXPTIME-complete for CTL [9, 41].

Several extensions and variations of such branching-time logics have been
considered since, usually with special purposes in mind: Timed CTL has been
introduced in order to verify properties in which real-time effects play a crucial
role [2]; action-based CTL considers models with more than one accessibility
relation [33]; Graded CTL adds some possibility of counting [7]; etc.

Here we consider extensions of branching-time logics in which the path
quantifiers can be relativised to traces that belong to a formal language of ω-
words. This defines a hierarchy of extensions parametrised by the class of formal
languages which can be used for the relativisation. In Section 2 we introduce
these logics — based on CTL, CTL∗ and the lesser known CTL+ which is known
to be only as expressive as CTL [15] but exponentially more succinct [42, 1, 26].

Section 3 motivates the use of these logics through two scenarios: abstraction
and software synthesis. Still, the main focus of this paper are the logics themselves.
Here we study the hierarchy of expressive power we obtain from these logics
(Section 5) with respect to different classes of formal languages, namely the
ω-regular ones, the ω-context-free ones and the ω-visibly pushdown ones. We
study their the computational complexity and decidability of their satisfiability
problems (Section 6) and of their model-checking problems (Section 7).

2. CTL∗ with Path Relativisation

2.1. Transition Systems

Models of CTL∗ with path relativisation are transition systems which—as
opposed to ordinary CTL∗ models and like models of action-based CTL—also
have labelled edges and need not be total. Let Σ be a finite alphabet and P be
a countably infinite set of atomic propositions. A transition system is a tuple
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T = (S,−→, λ) where S is a set of states, −→ ⊆ S×Σ×S is the transition relation,
and λ : S → 2P labels each state with a finite set of propositions that are true
in this state. We write s a−→ t instead of (s, a, t) ∈ −→.

In order to simplify technical details, we assume that Σ always contains a
special character d and that each transition system has a distinct state end with

s d−→ end for every s including end itself. Furthermore, end has no other incoming
or outgoing transitions than these. This means that transition systems are total
in the sense that in any state at least a d-action is possible. However, afterwards
nothing else is possible any more. Thus, taking a d-transition somehow indicates
being in a deadlock state.

A path in T is an infinite sequence π = s0, a0, s1, a1, . . ., alternating between
states and edge labels such that si

ai−−→ si+1 for all i ∈ N. The assumption above
ensures that no maximal paths other than infinite ones exist. We write ΠT (s)
for the set of all paths through T that start in s. For i ∈ N, the denote by π↑i
the ith suffix of π, i.e. si, ai, si+1, . . ..

A path π = s0, a0, s1, a1, . . . determines in a unique way its trace — the
ω-word a0a1a2 . . . over Σ. Abusing notation we will identify a path with its trace
of edge labels and sometimes simply write π ∈ L for a path π and a language L.

2.2. Formal Languages and Automata

As usual, let Σ be a finite alphabet. Then Σω denotes the set of all infinite
words over Σ; ε denotes the empty word. A formal ω-language, or just language
from now on, is a subset of Σω. We are particularly interested in three classes of
languages: the ω-regular ones ωREG, the ω-context-free ones ωCFL, and the
ω-visibly pushdown ones ωVPL.

In order to be able to use languages in formulas they need to be represented
syntactically. Here we choose automata for this purpose: nondeterministic Büchi
automata for ωREG [11], nondeterministic Büchi pushdown automata for ωCFL
[36], and nondeterministic Büchi visibly pushdown automata for ωVPL [3].

A nondeterministic Büchi automaton is a tuple A = (Q, qI , δ, F ) where Q is
a finite set of states, qI ∈ Q is a designated starting state, F ⊆ Q is a designated
set of acceptance states, and δ ⊆ Q × Σ × Q is the transition relation. A run
of A on a word w = a0a1 . . . ∈ Σω is a sequence of states q0, q1, . . . such that
q0 = qI and (qi, ai, qi+1) ∈ δ for all i ∈ N.

A nondeterministic Büchi pushdown automaton (ω-PDA) is a tuple A =
(Q,Γ,⊥, qI , δ, F ) where Q, qI and F are as above, Γ is a finite stack alphabet,
⊥ ∈ Γ is a designated bottom-of-stack symbol, and δ is a finite subset of
Q×Γ×Σ×Q×Γ∗. A run of A on a word w = a0a1 . . . is a sequence of pairs of
states and finite stacks over Γ of the form (q0, γ0), (q1, γ1), . . . such that q0 = qI ,
γ0 = ⊥, and for all i ∈ N: γi = γB, γi+1 = γγ′ and (qi, B, ai, qi+1, γ

′) ∈ δ for
some B ∈ Γ and some γ, γ′ ∈ Γ∗.

For the last kind of automaton we need a fixed partition of Σ into three
disjoint parts Σpush, Σpop, and Σint. A nondeterministic Büchi visibly pushdown
automaton is a tuple A = (Q,Γ,⊥, qI , δ, F ) as above with the exception of

δ ⊆ (Q× Γ× Σpush ×Q× Γ) ∪ (Q× Γ× Σpop ×Q) ∪ (Q× Γ× Σint ×Q) .
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A run is a sequence of state-stack pairs as above with the provision that for all
i ∈ N one of the following four cases holds.

• ai ∈ Σpush, γi = γB, γi+1 = γBC for some γ ∈ Γ∗, B,C ∈ Γ, and
(qi, B, ai, qi+1, C) ∈ δ.
• ai ∈ Σpop, γi = γB for some γ ∈ Γ∗, B ∈ Γ, γi+1 = γ, and (qi, B, ai, qi+1) ∈ δ.
• ai ∈ Σpop, γi = γi+1 = ⊥, and (qi,⊥, ai, qi+1) ∈ δ.
• ai ∈ Σint, γi = γB for some γ ∈ Γ∗, B ∈ Γ, γi+1 = γi and (qi, B, ai, qi+1) ∈ δ.

Thus, a visibly pushdown automaton acts very much like a pushdown automaton,
but the currently read input symbol determines whether something or nothing
gets pushed onto the stack, or popped off the stack.

A run of any of these automata on a word w is accepting if it contains
infinitely many states in F . The language L(A) of the automaton A is the set
of all words w for which there is an accepting run of A on w.

A typical visibly pushdown ω-language is for instance {anbncω | n ∈ N}
if a is a push-symbol, b is a pop-symbol, and c is an int-symbol. Equally,
{anbnaω | n ∈ N} is a visibly pushdown ω-language over the same alphabet, but
{anbancω | n ∈ N} for instance is not, because one needs a push- as well as a
pop-phase whilst reading the a-part of an input word in order to compare their
lengths. However, it is not too hard to construct a Büchi pushdown automaton
recognising this language.

The size of an automaton is |A| = |Q|, i.e. the number of its states.

2.3. Syntax and Semantics of Path Relativised CTL∗

Let A ⊆ 2Σω

be a class of ω-languages. Formulas of CTL∗ with path rela-
tivisation, CTL∗[A], are built like CTL∗ formulas with the difference that path
quantifiers are syntactically indexed by languages of ω-words.

ϕ ::= q | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | ELϕ

where q ∈ P and L ∈ A.
We take the liberty of identifying a language L with the smallest automaton

A such that L = L(A). This will make the presentation of formulas in examples
much more readable and yields a finite syntax for these logics with a well-defined
notion of formula size.

Also, we restrict — unless stated otherwise — our attention to the classes
ωREG, ωCFL and ωVPL as defined above, thus obtaining the three logics
CTL∗[ωREG], CTL∗[ωVPL], and CTL∗[ωCFL].

The semantics of CTL∗[A] is given as follows. Let T = (S,−→, λ) be a
transition system as above. In particular, all paths in it are infinite. For any
path π = s0, a0, s1, a1, . . . in T we have:

T , π |= q iff q ∈ λ(s0)

T , π |= ¬ϕ iff T , π 6|= ϕ

T , π |= ϕ ∨ ψ iff T , π |= ϕ or T , π |= ψ
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T , π |= Xϕ iff T , π↑1 |= ϕ

T , π |= ϕ U ψ iff ∃i ∈ N with T , π↑i |= ψ and ∀j < i : T , π↑j |= ϕ

T , π |= ELϕ iff ∃π′ ∈ ΠT (s0) s.t. π′ ∈ L and T , π′ |= ϕ

We introduce the abbreviation Eϕ := EΣωϕ, i.e. if the path relativiser does not
restrict the choice of the path at all then it is not mentioned explicitly.

Two formulas are equivalent, written ϕ ≡ ψ, if for all transition systems T ,
all its states s and all paths π, π′ ∈ ΠT (s) we have: T , π |= ϕ iff T , π |= ψ.

A state formula is a formula ϕ such that ϕ ≡ Eϕ. Thus, the value of a state
formula only depends on the first state of the path it is interpreted in. If ϕ is a
state formula we will simply write T , s |= ϕ. In order to enable a comparison to
other formalisms we restrict our attention to state formulas.

Subformulas are defined as usual. The size of a formula ϕ, written as |ϕ|, is
the number of its subformulas plus the sizes of the automata occurring in it.

2.4. Abbreviations and Fragments

In addition to the unrestricted path quantification we introduce more abbre-
viations like

• the Boolean constants tt := q ∨ ¬q for some q ∈ P and ff := ¬tt,

• other Boolean operators like ∧ and → in the usual way,

• the standard temporal operators Fϕ := tt U ϕ, Gϕ := ¬ F ¬ϕ, and ϕ R ψ :=
¬(¬ϕ U ¬ψ),

• universal path quantification via ALϕ := ¬EL¬ϕ and Aϕ := ¬E¬ϕ,

• operators from action-based CTL like E Xa ϕ := EaΣω X ϕ, etc.

Clearly, these syntactic extensions do not extend the expressive power of
the language. On the other hand, we will also consider syntactic restrictions
guided by the standard fragments of CTL∗ and study them with respect to
expressiveness and computational complexity of their decision problems.

Let A ⊆ 2Σω

as above. Formulas of CTL with Path Relativisation are given
by the following grammar.

ϕ ::= q | ¬ϕ | ϕ ∨ ϕ | E Xa ϕ | EL(ϕ U ϕ) | AL(ϕ U ϕ)

where q ∈ P, a ∈ Σ and L ∈ A.
Similarly, formulas of CTL+ with Path Relativisation are derived from ϕ in

the following grammar.

ϕ ::= q | ¬ϕ | ϕ ∨ ϕ | ELψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xϕ | ϕ U ϕ

where, again, q ∈ P and L ∈ A.
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Figure 1: Transition system of an alarm clock and an abstraction.

It is not hard to see, that CTL[A] is a syntactic fragment of CTL+[A]
which in turn is a syntactic fragment of CTL∗[A] for any fixed A containing
Σω. Furthermore, all formulas of the two smaller logics are state formulas in the
above sense.

3. Motivation

We motivate the study of path relativised branching-time logics through two
scenarios: abstraction and refinement, and software synthesis.

3.1. Abstraction and Refinement

Verification of infinite-state (or just very large) systems is often computa-
tionally infeasible or undecidable, and therefore done by considering finite and
smaller systems instead. The step from a larger to a smaller system can incur
loss of information about the behaviour of the larger system, hence, the smaller
system is an abstraction of the larger one. This is often done in a way such that
the abstract system approximates the behaviour of the concrete one, for instance
by having at least all the traces of the concrete one but possibly more [13]. If
a property without existential path quantification is verified on the abstract
system it then also holds on the concrete one. The other direction does not hold
in general.

Consider an alarm clock T which can be set to count down an arbitrary
number of steps and then ring. Its transition system is depicted in the top
of Figure 1. Clearly, an alarm clock should ring eventually once it is set to a
certain time, therefore, the alarm clock should not have a state from which an
infinite tick-path exists. This property is specifiable in action-based CTL as
A G ¬E Gtick tt.

Now consider an abstraction of this system which collapses all counter values
that are greater than 2. This introduces a tick-loop in the rightmost state of the
abstracted system T abs depicted at the bottom of Figure 1.
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Figure 2: Transition system of a buffer system and an abstraction.

It should be clear that T |= A G¬E Gtick tt but that T abs 6|= A G¬E Gtick tt. The
reason for this is the spurious trace that stays in the rightmost state forever.
It is called spurious because it has only been created through the abstraction
process since it does not exist in the concrete system.

It has been suggested not to check the original property on the abstract
system but to amend not only the system through abstraction but the property
as well, namely through the introduction of fairness predicates [8]. Take, for
instance the fairness predicate Φ := G F tick ⇒ G F ring, i.e. if infinitely many
ticks are being done then infinitely many rings are being done, too. Now it is
the case that T abs |=fair A G ¬E Gtick tt under this fairness predicate, meaning
that the CTL path quantifiers in this formula now only range over fair paths, i.e.
those that satisfy the fairness predicate Φ.

While this does work in this particular case, the introduction of a fairness
predicate seems rather arbitrary as well as its choice. Furthermore, the chosen
fairness predicate almost contradicts the correctness property at hand. Hence,
this is almost like only considering that part of the abstracted system which does
satisfy the correctness property and then showing that it does indeed. In other
words, finding the right fairness predicate may be as hard as showing correctness
of the original system.

Branching-time temporal logics with path relativisation offer a more fine-
tuned and more systematic way of amending the correctness properties. We
will consider another example in which the introduction of fairness is not able
to exclude spurious traces. Consider a system containing a buffer into which
items can be placed and from which items can be taken. It works such that once
something is taken out, it can only be emptied and nothing more can be put
into it. The transition system T is depicted on top in Figure 2. An abstraction
T abs which collapses all states containing more than 2 buffer items is depicted
below that.

Now consider the correctness property stating that at no point is it possible
to execute an out-action followed by an in-action. In action-based CTL it can
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be written as A G ¬E Xout E Xin tt. Clearly, it is satisfied by the original system T
and not satisfied by the abstraction T abs because of the spurious trace through
the self-loop in the state representing all large buffer contents. The important
observation about this is, though, that no fairness predicate can exclude all
the spurious traces which cause the violation of the correctness property. This
is simply because fairness is concerned with the infinite occurrence of states /
actions, etc. or the absence thereof. The characteristics of the spurious traces in
this case, however, is the single occurrence of an in-action after a single out-action.
It is therefore sensible to restrict the path quantification to traces of the form
inω ∪ in∗out∗dω where action d indicates, as introduced above, a transition into
an imaginary deadlock state.

The issue about the right choice of path relativisation still persists, though.
As in the first example, the trace predicate inω ∪ in∗out∗dω is somehow found
miraculously. However, CTL[A] allows for a more automatic approach depending
on A. Note that T is indeed a visibly pushdown system with push-action in
and pop-action out. The language of its traces is a visibly pushdown language
(ωVPL), characterised by the property that no in-action occurs after an out-
action and on any prefix, the number of out-actions is at most as high as the
number of in-actions. Let L be that language. Using CTL[ωVPL] it is then
possible to replace the correctness property above by A G ¬EL∩Σ∗ out inΣω F tt for
instance and test that on the abstracted system. Note how this restricts path
quantification to traces which are present in the original system only. This is of
course the essence of excluding spurious traces.

It should be clear that the formalism of well-known branching-time logics with
the additional path relativisation offers a systematic way of amending properties
to be checked on the original system. The path relativiser can be used to restrict
quantification to those paths that exist in the original system if the language of
traces of that system is expressible in the class of formal languages A used as
a parameter to the logic. It is also a major advantage to base such expressive
logics on well-known ones like CTL∗ and CTL. This could enable an automatic
abstraction process in which the user provides the correctness properties in
an intuitive language known to him like these branching-time logics, and the
transformation into their path relativised variants is done in the background.

It should also be clear that the use of path relativised logics does not mirac-
ulously solve all the problems arising with sound and incomplete abstractions.
In particular, there is no general recipe for the choice of the language used for
the relativisation, just as there is none for the exact fairness predicate in the
example above. It remains to be seen how heuristics can help to guide such
choices [27]. The advantage of path relativisation based on formal languages
over specific path relativisations using fairness constraints for instance lies in the
much greater power that the former provides for the exclusion of spurious traces.

3.2. Software Synthesis

Synthesis is the problem of automatically generating, given a specification ϕ,
a model T of ϕ. Note that this is more general than the satisfiability problem
since it implicitly answers the question of whether or not ϕ is satisfiable.
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The synthesis problem has been considered before, in particular in the context
of automatically generating controllers, i.e. components of systems that guide the
system’s behaviour such that a given specification is satisfied [4]. Such work has
considered temporal logics which possess the finite model property, i.e. for which
every satisfiable formula has a finite model. Synthesis for specification languages
with the finite model property therefore results in the automatic generation
of finite programs, for instance hardware. Software gives rise to infinite-state
models, though, through the use of unbounded variable values, data structures,
recursion, etc.

Thus, in order to be able to synthesise software (skeletons) one needs spec-
ification logics that are decidable but do not have the finite model property.
Examples of such logics are rare, in particular in the area of program logics
which are often required to be bisimulation-invariant. Hence, the lack of finite
model property must not be based on the lack of bisimulation-invariance. An
example of such a logic is PDL with Intersection whose satisfiability problem
is decidable [14] and which can make non bisimulation-invariant assertions like
“there is an infinite path and no loop”. Clearly, such an assertion can only be
satisfied in an infinite model.

The branching-time logics using path relativisation with ω-visibly pushdown
language satisfy these two requirements: lack of finite model property and
decidability. Another example of such a logic is PDL with Recursive Programs
[31] which is used here in order to obtain decidability and complexity results for
the branching-time logics. Compared to that, the logics proposed here have the
advantage of a more intuitive syntax which is useful for pragmatic aspects in
software synthesis.

4. Related Formalisms

We briefly mention some logics that are related to the ones presented here.
The branching-time logics CTL and CTL∗ have been extended in various ways
to make up for all sorts of deficiencies. For instance, there are several versions
of action-based CTL which are interpreted — as the logics in this paper and as
opposed to ordinary CTL — over transition systems with edge labels [6, 10, 32].
They refine the temporal operators in CTL using regular languages (of finite
words) in one way or the other. Clearly, their expressive power does not extend
further than ω-regular tree languages and this is why we do not consider them any
further. In particular, we leave the question of determining the exact relationship
between CTL[ωREG] and these action-based variants of CTL to the reader since
the focus of this paper are the non-regular extensions of CTL.

Extensions of branching-time logics with specifications of infinite traces have
also been considered, in particular ECTL and ECTL+ which add to CTL and
CTL+, resp., temporal operators of the form FG and GF [16]. This is done in
order to remedy their weakness of not being able to express fairness properties.
Still, it should be clear that this extension does not capture the whole world of ω-
regularity, hence, CTL[ωREG] and CTL+[ωREG] are certainly not embeddable
into those extensions.
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There have also been investigations into extensions of CTL (but not CTL∗

or CTL+) beyond regularity [5]. Extended CTL — the name does not seem
to identify the logic uniquely — enhances the temporal operators in CTL with
formal languages of finite words. These are used to constrain the moments in
which an until property should be fulfilled for instance, or to relax a generally
formula. These investigations consider classes of languages beyond the regular
ones as it is done here. However, the two formalisms are quite different since
here we use the formal languages to constrain paths rather than moments along
a path.

Finally, we mention Propositional Dynamic Logic over a class A of formal
languages of finite words [19], PDL[A], which is one of the very rare logics
which has also been considered with non-regular features in mind. This simply
is standard modal logic with an infinite set of accessibility relations. In case
of A being the class of regular languages they form a Kleene algebra, i.e. are
describable by regular expressions. On the other hand, the modal operator 〈L〉,
where L is such a description, can also be read as “there is a finite path whose
trace is in the language L”. It is then easy to consider PDL over other classes of
languages, for instance the context-free ones [23] or the visibly pushdown ones
[31]. Furthermore, we consider its extension by tests and the delta operator
[37, 31] which can be used to postulate the existence of an infinite path whose
trace belongs to some language. This will be one of the main tools through
which we obtain upper bounds on the complexity of the branching-time logics
considered here, as well as measure their relative expressive power.

Remembering the setting of abstract interpretation as described in the previ-
ous section, it should be clear that only the non-regular extensions of the logics
mentioned here could be suitable for the task described above. ∆PDL?[ωVPL]
is a very powerful logic with suitable algorithmic and model-theoretic properties.
However, it does not provide an elegant syntax, in particular the temporal
operators that one has in CTL[ωVPL] need to be encoded in the formal language
part in ∆PDL?[ωVPL]. This makes it less suitable for a generic amendment of
correctness properties in abstract interpretation. Extended CTL, as mentioned
above, does provide such a nice syntax but it is not clear how the use of formal
languages of finite words could be used for the systematic exclusion of infinite
spurious traces.

5. Expressivity

We begin by investigating the (relative) expressive power of the logics in-
troduced above. An overview of the partial order that these logics form w.r.t.
expressivity is given in Figure 3. An arrow pointing from L to L′ indicates that
L′ is at least as expressive as L. Formally, we write L ≤f L′ with f ∈ {lin, exp}
to state that for every formula ϕ ∈ L there is an equivalent ψ ∈ L′ with at
most a linear or exponential (respectively) blow up in size. Implicitly, such a
statement involving a language L for path relativisation requires that L is given
in terms of an automaton as named in Section 2.3.
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∆PDL?[ωREG] // ∆PDL?[ωVPL] // ∆PDL?[ωCFL]

CTL∗ // CTL∗[ωREG]

OO

// CTL∗[ωVPL]

OO

// CTL∗[ωCFL]

OO

CTL+

OO

// CTL+[ωREG]

OO

// CTL+[ωVPL]

OO

// CTL+[ωCFL]

OO

CTL
��

OO

// CTL[ωREG]

OO

// CTL[ωVPL]

OO

// CTL[ωCFL]

OO

Figure 3: Hierarchy of expressive power.

We write L �f L′ to denote that such a translation exists, but there are
formulas of L′ which are not equivalent to any formula in L. Such a relation is
depicted using a dashed arrow in Figure 3. In any case, we will drop the index if
a potential blow-up is of no concern.

To shorten statements about the variety of logics, CTL�— including their
path relativisations — is used to denote either of CTL, CTL+ or CTL∗.

First we prove that using path relativisation at all increases the expressive
power in any case.

Theorem 1. CTL� �lin CTL�[A] for any A ) {Σω, ∅}.

Proof. The embedding of CTL, CTL+ and CTL∗, respectively, is trivial using
Σω as a quantifier restriction. The strictness of this embedding is a very simple
consequence of the fact that any logic CTL� cannot distinguish path labels.
Suppose A ) {Σω, ∅}. Then there is an L ∈ A such that there are words
w, v ∈ Σω with w ∈ L and v 6∈ L. Now consider the formula EL G tt. It is
satisfied by the model which has a single path labelled w only such that all
states are labelled with ∅ for instance. Suppose there was an equivalent CTL�

formula ϕ. Now consider the model that arises from the above by changing
the path label into v. Then this still satisfies ϕ but it does not satisfy EL G tt

anymore.

It should be clear that using a richer syntax or a bigger class of formal
languages cannot result in less expressive power which is expressed by the next
two statements.

Proposition 2. CTL�[A] ≤ CTL�[B] for A ⊆ B.

Proposition 3. CTL[A] ≤ CTL+[A] ≤ CTL∗[A] for all A.

We show that ∆PDL?[A] does indeed bound the expressive power of the
branching-time logics from above. We consider this separately for CTL[A] on
one hand and CTL∗[A] (and with it also CTL+[A]) on the other because of the
involved blow-ups in the respective translations.

Theorem 4. CTL∗[A] ≤exp ∆PDL?[A] for any class A which is closed under
intersection with ω-regular languages.

11



Proof. The translation, say ·̃, is defined inductively. We detail some cases only.
For a formula ELϕ, its translation is ∆A where A is the intersection of the
automaton represented by L with an automaton B. For the latter, the LTL-part
of ϕ can be rephrased [40] as a Büchi automaton of exponential size in |ϕ|. That

is, any outermost path-quantified subformula ψ is replaced by a test-operator ψ̃?
in B. The case of ALϕ can be handled by using negation and complementation.
Finally, the size of the constructed formula is exponential in the size of the given
one, as duplications of subformulas do not affect the size.

All considered language classes are closed under intersection with ω-regular
languages. Since CTL[A] is a fragment of CTL∗[A], we obtain — for free —
a translation of CTL[A] into ∆PDL?[A] from Theorem 4. In that case, the
exponential blow-up is unnecessary though. In fact, there is a linear translation.

Theorem 5. CTL[A] ≤lin ∆PDL?[A] for A ∈ {ωREG, ωVPL, ωCFL}.

Proof. The embedding is proved by induction on the structure of formulas in
CTL[A]. We detail only the case of θ := EA(ϕ U ψ) for an automaton A with
states Q, initial state q0, and final states F . Let ϕ′ and ψ′ be the translations of
ϕ and ψ, respectively. The translation of θ is 〈B〉tt where B is an automaton of
the same kind as A with states containing Q× {0, 1}, initial state (q0, 0) and
final states F × {1}. The second component shall denote whether the U has

been fulfilled. Let p
a

act
// q denote a transition in A leading from state p by

reading a ∈ Σ ∪ {ε} to state q while performing operation act on the stack — if

applicable. Then B contains the following three transitions for p
a

act
// q.

(q, 0)
?ϕ′

nop
// a

act
// (q′, 0) (q, 0)

?ψ′

nop
// a

act
// (q′, 1) (q, 1)

a

act
// (q′, 1)

Next we consider some model-theoretic properties and use them to separate
logics along the horizontal axis in Figure 3. A logic is said to have the finite
model property if every satisfiable formula of that logic has a finite transition
system as a model.

Theorem 6. CTL[ωVPL] does not have the finite model property.

Proof. Consider the visibly pushdown alphabet Σ with a push-action a, a pop-
action b and an internal action c. Let L := {anbmcω | n 6= m} and take the
CTL[ωVPL]-formula

ϕ = Eaω G Eb∗cω G tt ∧ AL G ff .

Assume it has a finite model of size n. As the formula enforces a path an+1bn+1cω,
the model also contains a path ambn+1cω with m < n+ 1. However, this path
violates AL G ff. On the other hand, ϕ is satisfiable: a model is shown in
Figure 4(a).

12
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(b) For Theorem 8.

Figure 4: Models used in the proofs of Theorem 6 and 8.

An immediate consequence is the separation of the logics over ω-regular and
the ones over ω-visibly pushdown languages.

Corollary 7. CTL�[ωREG] � CTL�[ωVPL].

Proof. A CTL�[ωREG]-formula can be translated into a ∆PDL?[ωREG]-formula
by Proposition 3 and Theorem 4. However, the latter has the finite model
property [19, Thm. 3.2].

We continue along the same lines in order to obtain a separation between
the logics over ω-visibly pushdown languages and the ones over ω-context-free
languages. A logic is said to have the visibly pushdown model property if every
satisfiable formula of this logic has a model which can be represented as the
transition graph of a visibly pushdown automaton. Furthermore, it has the
pushdown model property if the same holds for models which can be represented
as transition graphs of pushdown automata.

Theorem 8. CTL[ωCFL] does not have the pushdown model property.

Proof. Let L1 := {aibjc∗dω | i 6= j} and let L2 := {a∗bicjdω | i 6= j} be two
ωCFLs over the alphabet {a, b, c, d}. Consider the CTL[ωCFL]-formula

ϕ = Eaω G Eb∗c∗dω G tt ∧ AL1 G ff ∧ AL2 G ff ∧ Aa∗b∗c∗dω G ff .

In any model T the set of all paths — starting from the initial state — is
{anbncndω | n ∈ N}. For the sake of contradiction, assume that such a model
was representable by a pushdown system. Now, we take any state of the system
as a final state which can handle the input d. The obtained pushdown automaton
(on finite words) would accept the language {anbncn | n ∈ N} which is of course
impossible. On the other hand, the formula ϕ is indeed satisfiable: a model is
depicted in Figure 4(b).

In order to conclude a gap in expressive power we also need an upper bound
on the logics over ω-visibly pushdown languages similar to the finite model
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property of the regular ones used above. Clearly, the finite model property
cannot be used because its lack has already been established in Theorem 6.
However, the visibly pushdown model property works in this case. We state it
here for the logic CTL∗[ωVPL]. The proof uses a close inspection of the decision
procedure for the stronger logic ∆PDL?[ωVPL], hence that logic also has this
property.

Theorem 9. CTL�[ωVPL] has the visibly pushdown model property.

Proof. Any formula ϕ ∈ CTL�[ωVPL] can be translated into an equivalent
formula ϕ′ ∈ ∆PDL?[ωVPL] according to Proposition 3 and Theorem 4. Such a
formula is satisfiable iff the language of a certain stair-parity visibly-pushdown
tree automaton is not empty [29]. Every tree in the language represents a
model. The emptiness test can be rephrased as whether or not the ∃-player has a
winning strategy in the corresponding visibly pushdown game with a stair-parity
acceptance condition. This game can be translated [30] into a parity game.
Following this chain, any winning strategy for the ∃-player in the latter game
can be lifted to a visibly pushdown system which models ϕ.

The expressivity gap is then a consequence of this upper bound and the
lower bound stated in Theorem 8 with the trivial observation that every visibly
pushdown system is also a pushdown system.

Corollary 10. CTL�[ωVPL] � CTL�[ωCFL].

Next we separate logics along the vertical axis. The main tool for this is
the (in-)expressibility of fairness, as it is for the separation between CTL∗ on
one hand and CTL+ and CTL on the other. Fairness describes the linear-time
property “infinitely often p” for some atomic proposition p. A branching-time
logic is said to be able to express fairness (w.r.t. p) if it can formalise the existence
of a path on which p holds infinitely often.

We remark that it is known that CTL+ is only as expressive as CTL despite
its richer syntax [15]. This does not carry over if fairness is introduced, though:
The logic ECTL+ which enhances CTL+ with temporal operators GF and FG for
expressing fairness and its complement, is strictly more expressive as ECTL, the
corresponding counterpart on top of CTL [16]. We suspect that CTL+[A] is also
strictly more expressive than CTL[A] for any reasonable class A.

Lemma 11. CTL+[A] cannot express fairness for any class A of languages.

Proof. For the sake of contradiction, assume that there is CTL+[A]-formula ϕ
expressing this property. This would also characterise fairness over transition
systems using a single accessibility relation only. For such systems the quantifiers
are relativised either to ∅ or to Σω. Hence, ϕ can be understood as a CTL+-
formula. But fairness is not expressible in CTL+ [16, 15].

On the other hand, EΣω G Fp expresses fairness in CTL∗[A] for as long as A
contains the universal language Σω.

Corollary 12. CTL[A] � CTL∗[A] and CTL+[A] � CTL∗[A] for any class A.
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6. Satisfiability

We present results on the decidability and computational complexity of the
satisfiability problem for CTL∗[A] and its fragments over the main classes of
formal languages of infinite words considered here. We start with a simple and
not too surprising undecidability result.

Theorem 13. The satisfiability problem for CTL[A] is undecidable for every
class A ⊇ ωCFL.

Proof. Remember that the inclusion problem for two context-free languages is
undecidable [24, Thm. 8.12]. Let L1 and L2 be two context-free languages over
an alphabet Σ and let # 6∈ Σ. The CTL[ωCFL]-formula EL1#ω Gtt ∧ AL2#ω Gff

is unsatisfiable iff L1 ⊆ L2.

Decidability can be achieved when considering smaller classes of languages
that possess nice algorithmic and algebraic properties, e.g. ωREG and ωVPL for
instance. There is a difference in using CTL on one hand and CTL+ or CTL∗

on the other. Thus, we examine the extensions of CTL first. The complexity of
CTL[ωREG] is easily being characterised.

Theorem 14. The satisfiability problem for CTL[ωREG] is EXPTIME-complete.

Proof. The upper bound is a consequence of the linear translation into the logic
∆PDL?[ωREG] in Theorem 5. It is known that the satisfiability problem of the
latter is in EXPTIME [18]. The lower bound trivially follows from the fact that
the satisfiability problem for plain CTL is EXPTIME-hard already which is easily
shown by adapting the corresponding proof for PDL[REG] [19].

Using ωVPL instead of ωREG makes the satisfiability problem exponentially
more difficult.

Theorem 15. The satisfiability problem for CTL[ωVPL] is 2-EXPTIME-complete.

Proof. The upper bound follows again from the linear translation of CTL[ωVPL]
into ∆PDL?[ωVPL] — c.f. Theorem 5 — whose satisfiability problem is in
2-EXPTIME [31].

The lower bound can be proved by a reduction from the tiling game problem
for the 2n × N-corridor which is 2-EXPTIME-hard [38] using the same ideas that
led to the 2-EXPTIME-hardness proof of the satisfiability problem for PDL[VPL]
[29].

Given a finite set T of tiles with two relations H,V ⊆ T 2 that denote
horizontal and vertical matchings of adjacent tiles and a designated tile t0,
players 1 and 2 place tiles from T on the aforementioned corridor as follows.
Tile t0 is being placed in the first cell of the first row. Player 2 always has to
complete a whole row of 2n many tiles. Player 1 then plays a tile in the first
cell of the next row, etc. A player wins when the opponent cannot place a tile
that matches the preceding one in the row regarding H and the tile in the same
column of the previous row regarding V . Player 2 also wins every infinite play.
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The decision problem at hand is then to decide, given such a tiling system G,
whether or not player 2 has a winning strategy. Such a strategy can easily be
represented as a tree of nodes labelled with tiles from T such that every node
at a height which is a multiple of 2n has successors for every possible choice
of player 1, and every other node has exactly one successor, namely the choice
of player 2 in that position. It is then possible to construct a formula ϕnG of
size polynomial in G = (T,H, V, t0) and n, that is satisfiable iff player 2 has a
winning strategy for the game on 2n × N as described above.

This formula is obtained as the conjunction of several parts. The first one
says that every node is labelled with exactly one tile, and the root of the tree is
labelled with t0. We use T as a set of atomic propositions and the transition
label a to mark the part of the tree that represents the strategy. There also are
labels b and c such that the a-part forms a complete subtree, and every node
in this subtree has additional paths of the form b∗cω. However, all nodes on a
path of the form b∗cω must have a unique tile label. Then it is possible to refer
to the label of the first node on such a path by asserting this about the entire
subtree on such paths.

sane := t0 ∧ Aaω∪a∗b∗cω G ff ∧ A G
( ∨
t∈T

t ∧
∧
t′ 6=t

¬t′
)
∧ A G (

∧
t∈T

t→ Ab∗cω G t)

We furthermore use n propositions x0, . . . , xn−1 to model a counter which is
being used in order to detect every node that marks the start of a new row.
Let nullx :=

∧n−1
i=0 ¬xi and fullx :=

∧n−1
i=0 xi say that the counter value is 0,

respectively, that its maximal value 2n − 1.

countx := nullx ∧ Aaω G
(
(fullx ∧ A Xa nullx) ∨
n−1∨
i=0

¬xi ∧ A Xa xi ∧ (
∧
j<i

xj ∧ A Xa ¬xj) ∧∧
j>i

(xj → A Xa xj) ∧ (¬xj → A Xa ¬xj)
)

Then we need to say that the horizontal matching relation is satisfied.

horiz := Aaω G
(
¬fullx →

∧
t∈T

(t→
∧

(t,t′)6∈H

A Xa ¬t′)
)

Now all the remains to be said is that every position that is not at the start of a
row has a successor in distance 2n with a vertically matching tile, and for every
position at the start of a row there is such a successor at that distance for every
matching tile. We require that every node that is reachable along a’s only has
a b-path of length 2n, followed by c’s only. In order to achieve that length we
use propositions y0, . . . , yn−1 to model a second counter, and formulas nully and
fully just like their x-counterparts above.
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county := Aaω G

(
E Xb tt ∧ A Xb nully ∧ Ab+cω G

(
(fully ∧ A Xb ff ∧ E Xc tt) ∨

(
A Xc ff ∧ E Xb tt ∧

n−1∨
i=0

¬yi ∧ A Xb yi ∧ (
∧
j<i

yj ∧ A Xb ¬yj)

∧
∧
j>i

(yj → A Xb yj) ∧ (¬yj → A Xb ¬yj)
)))

We can then use the ωVPL L := {anbncω | n ≥ 1} in order to relate a node in
this tree to all nodes at distance 2n from it. Remember that the b-paths starting
in any node reachable via a’s have length exactly 2n.

vert := Aaω G
((
¬nullx ∧

∧
t∈T

t→
∨

(t,t′)∈V

EL F (E Xc tt ∧ t′)
)
∨

(
nullx ∧

∧
t∈T

t→
∧

(t,t′)∈V

EL F (E Xc tt ∧ t′)
) )

Finally, let ϕnG := sane ∧ countx∧ county ∧horiz ∧ vert . We leave it to the reader
to verify that a winning strategy for the tiling game G can be extracted from a
model for this formula if player 2 has such a strategy, and that the formula is
unsatisfiable otherwise.

Now we turn to the stronger languages CTL∗ and CTL+. Upper bounds
can be obtained using the linear translation of CTL[A] and the exponential
translation of CTL∗[A] into ∆PDL?[A], as presented in the previous section.

Theorem 16. The satisfiability problem for CTL∗[ωREG] is in 2-EXPTIME,
and that for CTL∗[ωVPL] is in 3-EXPTIME.

Proof. This follows from Theorem 4 since satisfiability of ∆PDL?[ωREG] is in
EXPTIME [17] and for ∆PDL?[ωVPL] it is in 2-EXPTIME [29].

We remark that it is also possible to obtain the same upper bounds by refining
the tableau- and automata-based decision procedure for CTL∗ which reduces the
satisfiability problem to the problem of solving a doubly exponentially large parity
game [21] with a single exponential number of priorities. These can be solved
in doubly exponential time. The path relativisation can be included as follows.
Every E-paths get equipped with an automaton for the respective language. Doing
so imposes an additional requirement on the acceptance condition. Similarly,
automata are attached to A-paths. Since an A-path may be duplicated among the
children in a tableau, the respective automaton must be deterministic. In case
of CTL∗[ωREG] the refinement stays within the doubly exponential size and
single exponential bound on number of priorities, and so does it for CTL∗[ωVPL].
However, in this case the resulting game is not a simple parity game anymore
but a stair-parity game. Solving these games is exponential in the size of the
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Satisfiability Model Checking

A — ωREG ωVPL ωCFL — ωREG ωVPL ωCFL

CTL∗[A] 2-EXPTIME 2-EXPTIME 3-EXPTIME undec. PSPACE PSPACE EXPTIME EXPTIME

CTL+[A] 2-EXPTIME 2-EXPTIME 3-EXPTIME undec. ∆P
2 ∆P

2 ∆P
2 ∆P

2

CTL[A] EXPTIME EXPTIME 2-EXPTIME undec. P P P P

Figure 5: Complexity results for the satisfiability and the model-checking problem.

game [30] resulting in a 3-EXPTIME upper bound altogether. The advantage of
this approach simply is that there is an implementation of the aforementioned
CTL∗ decision procedure [20]. This could in principle be extended to a decision
procedure for CTL∗[ωREG] and CTL∗[ωVPL].

Matching lower bounds are not too difficult to achieve, in particular the
one for CTL∗[ωREG] which holds for CTL+[ωREG] already. Regarding the
logics over ωVPL, the 2-EXPTIME-hardness proof can easily be amended to a
3-EXPTIME-hardness proof. Instead of requiring b-paths of length 2p(n), one

requires them to be of length 22p(n)

. Additionally, one has to mark the beginning

of each segment of length 22p(n)

instead of just 2p(n) in order to prescribe the
correct branching structure. While logics like PDL and CTL can only count up
to some exponential number, it is known that one can formalise the existence of

a path of length 22p(n)

in CTL+ already [26].

Theorem 17. The satisfiability problem for CTL+[ωREG] is 2-EXPTIME-hard,
and that for CTL+[ωVPL] is 3-EXPTIME-hard.

Proof. The 2-EXPTIME lower bound for CTL+ [25] is trivially inherited by
CTL+[ωREG]. The 3-EXPTIME lower bound for CTL+[ωVPL] can be obtained
by a simple adaption of the 2-EXPTIME-hardness result for PDL[VPL] using
a reduction from the word problem for alternating, doubly exponential space

bounded Turing Machines and the known trick to count up to 22p(n)

for some
polynomial p in CTL+ [26].

Figure 5 summarises the decidability and complexity results presented in this
section and compares them to the corresponding results for the pure branching-
time logics — i.e. those without path relativisation — in the last row. The stated
complexity classes denote completeness under polynomial time reductions.

7. Model Checking

In this section, we investigate the model-checking problem for the path-
relativised logics. A summary is given in Figure 5. Although the satisfiability
problem for CTL�[ωCFL] is undecidable, its model-checking problem is solvable
efficiently.

Theorem 18. The model-checking problem for CTL[A] over finite transition
systems is in P if A ⊆ ωCFL, and hard for P if Σω ∈ A.
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Proof. Given a formula ϕ ∈ CTL[A] and a transition system T = (S,−→, λ),
we compute inductively the set of states in T which satisfy a subformula of ϕ.
Thereto, we extend λ with those formulas. The cases are similar to that of pure
CTL. We detail the case of a formula EL(ϕ U ψ) for L ∈ A. For the purpose of a
simple presentation assume that L is given as a finite-state Büchi automaton
A = (Q, q0, δ, F ) where Q is the set of states, q0 ∈ Q, the transition relation
δ ∈ Q × Σ × Q, and F ⊆ Q are the final states. We construct for every state
s ∈ S an automaton Bs := (Q × S × {0, 1}, (q0, s, 0), δ′, F ′) which recognises
witnessing paths for EL(ϕ U ψ) starting at s. The last component of the state
is 1 iff the eventuality is satisfied. So, δ′ consists of

((q, s, 0), a, (q′, s′, 0)) if ϕ ∈ λ(s)

((q, s, i), a, (q′, s′, 1)) if ψ ∈ λ(s) or i = 1

where each line requires q′ ∈ δ(q, a) and s
a−→ s′ for some a ∈ Σ. Finally,

F ′ := F × S × {1}. A similar construction is available for ω-PDAs. The
emptiness check for this ω-PDA can be done in P [9, Thm. 3.2] — note that the
Büchi condition is expressible in LTL. Finally, CTL is hard for P. Hence, so is
CTL[A].

Next we classify the model-checking problem for CTL+[A]. It turns out to
have the same complexity as the model-checking problem for ordinary CTL+,
namely it is complete for the class ∆P

2 in the polynomial hierarchy. This is
defined as PNP — the class of all problems solvable in polynomial time by a
deterministic machine with access to an NP-oracle.

Theorem 19. The model-checking problem for CTL+[A] over finite transition
systems is ∆P

2 -complete for A ∈ {ωREG, ωVPL, ωCFL}.

Proof. The lower bound is trivially inherited from CTL+ which is known to
have a ∆P

2 -hard model-checking problem [28]. For the corresponding upper
bound it suffices to show that CTL+[ωCFL ] belongs to ∆P

2 . For this purpose,
the proposed decision procedure recursively computes and memorises for each
state subformula its set of satisfying states. For each such subformula ϕ, the
procedure operates in non-deterministic polynomial time and may use the result
for the subformulas of ϕ atomically.

Let T = (S,−→, λ) be the considered transition system, s ∈ S be a state, and
ELψ be the quested formula where L is given by a pushdown automaton A. The
procedure firstly rewrites the outermost R-connectives in U- and G-connectives.
Secondly, it guesses the satisfied side of all those disjunctions which do not occur
under a temporal operator. Hence, we may assume that ψ is a conjunction of
literals, of X-formulas, of G-formulas, and of U-formulas. Thirdly, the procedure
guesses the order in which the U-formulas get fulfilled. Based on this order, the
procedure constructs an ω-pushdown automaton B similar to that in the proof
of Theorem 18. The automaton is the product of A and T and, in addition,
verifies the X- and G-formulas and the fulfilment of the U-formulas in the guessed
order. The verification takes advantage of the memorization as the subformulas
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of the said formulas are state formulas. A run of this automaton represents a
witness for the formula ELψ. The size of the automaton is polynomial in the
size of A, T and of ψ. Again, the non-emptiness can be checked in polynomial
time. Note that if we shifted the non-determinism from the procedure to the
automaton B, the size of B would become exponential.

In contrast to the previous logics, the complexity for model checking CTL∗[A]
depends on the concrete A.

Theorem 20. The model-checking problem for CTL∗[ωREG] over finite transi-
tion systems is PSPACE-complete.

Proof. The hardness statement follows from Theorem 1 using that the model-
checking problem for CTL∗ is PSPACE-hard [35].

To prove that the model-checking problem is in PSPACE, we use the mem-
orisation technique for state formulas as we did in the proofs of Theorem 18
and 19. Let T = (S,−→, λ) be the considered transition system, let s be a state
in S, ELϕ the considered state formula and let L be given by a finite-state Büchi
automaton A. As the state subformulas of ϕ are considered as atoms, we may
assume that λ also lists such subformulas and that ϕ is a LTL-formula essentially.
For such a formula there is [40] a finite-state Büchi automaton B which recognises
exactly all paths fulfilling ϕ. The size of B is exponential in |ϕ|. To fit the space
requirement, the model-checking algorithm does not construct B explicitly but a
short description [40, Thm. 3.6] in space polynomial in |ϕ|. That is, every state
of B is representable in space polynomial in |ϕ|, and the description contains a
polynomial-space decision procedure for every relation in B.

Based on the product of T , A and B, let C be a finite-state Büchi automaton
which guesses a path in T successively starting at the state s and which runs A
and B on this path. Hence, T , s |= ELϕ iff the language of C is not empty.
The model-checking algorithm computes a short description of C and runs
an emptiness-test on that description. Both parts are performable in space
polynomial in |ELϕ| [40, Lem. 2.5].

Theorem 21. The model-checking problems for CTL∗[ωVPL] and CTL∗[ωCFL]
over finite transition systems are in EXPTIME.

Proof. The proof follows the lines of the proof of Theorem 20. But this time,
A is an ω-PDA and the algorithm can construct the automaton B explicitly
as we have enough space. Therefore, C is also an ω-PDA of exponential size.
The emptiness test can be performed in time polynomial in |C|, cf. the proof of
Theorem 18. All in all, the algorithm requires exponential time.

Theorem 22. The model-checking problems for CTL∗[ωVPL] and CTL∗[ωCFL]
over finite transition systems are hard for EXPTIME.

Proof. Similar to the proof of Theorem 15, a tiling game but for the n × N-
corridor is used. The decision problem whether player 2 has a winning strategy
is EXPTIME-hard [38].
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The reduction to CTL∗[ωVPL] produces for every tiling problem G =
(T,H, V, t0) and binary parameter n ∈ N a transition system T , a state s
and a formula EL(A)ϕ — their components are sketched later — such that
T , s |= EL(A)ϕ iff player 2 has a winning strategy. A witness of the formula
represents a depth-first traversal of the tree representing the strategy. However,
as this kind of serialisation cannot handle infinite branches we may assume that
G does not admit any infinite run. (Technically, an encoding of an n-bit counter
into the tiling ensures this requirement.) The H-constraint can be checked
by A because two horizontally adjacent tiles occur as neighbouring labels in
the witness of EL(A)ϕ. The stack of the ω-pushdown automaton A is used for
bookkeeping the traversal.

The only property which A cannot handle is the V -constraint because the
constraint affects positions far apart. However, this job can be assigned to ϕ. A
row of tiles (t1, . . . , tn) is encoded by unfulfilled eventualities. These eventualities
can be created by the formula

∧n
i=1 γ

ti
i where

γti :=
∧

s∈T,s 6=t

(¬cellsi ) U cell
t
i

and where cellti is an atomic proposition stating that the ith column is tiled
with t. A basic building block for transition system T addresses the choice of
a next row. For T = {♣,♠,♥} this block looks as follows. The labels for the
edges are omitted.

cell♣1
//

!!

��

cell♣2
//

##

��

cell♣n−1
//

##

��

cell♣n

��

@@

//

��

cell♠1

==

//

!!

cell♠2

;;

//

##

cell♠n−1

;;

//

##

cell♠n //

cell♥1

FF

==

// cell♥2

EE

;;

// cell♥n−1

EE

;;

// cell♥n

@@

Assume that the witness for EL(A)ϕ arrives from the left, and that ϕ has

ensured open eventualities γtii for i = 1, . . . , n. The witness must, thus, choose
the trace which corresponds to the unfulfilled eventualities. If the formula

nextRow :=

n∧
i=1

X . . . X︸ ︷︷ ︸
i times

 ∧
t1∈T

cellt1i →
∨
t2∈T

(t1,t2)∈V

Xγt2i




is forced at the leftmost node, nextRow ensures the creation of a new row which
matches the vertical constraint.

In order to link the automaton to ϕ, every edge to a state in the final
transition system will be labelled with the name of that state. In this manner, A
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1 guess and push an initial tiling row R;

2 push the minimal tile which player 1 can attach to R,

3 and enter an accepting loop if impossible;

4 while stack is not empty do

5 choose either

6 pop a tile t and a tiling row R;

7 let t’ be the minimal tile > t
8 which player 1 can attach to R
9 and reject otherwise;

10 push tiling row R and tile t’;
11 or

12 pop a tile t and a tiling row R;

13 reject if there is title > t
14 which player 1 can attach to R;

15 end-choose;

16 guess a tiling row S starting with t and push it;

17 push the minimal tile which player 1 can attach to S,
18 and enter an accepting loop if impossible;

19 end-while;

20 enter an accepting loop;

Figure 6: Algorithm for the ω-visibly pushdown automaton A as used in Theorem 22.

is notified about the witnessing path and can force decision by rejecting wrong
ways. Thus we have established a bidirectional communication.

The ω-visibly pushdown automaton A implements the non-deterministic
algorithm shown in Figure 6. Its stack contains a sequence of pairs each consisting
of a tiling row R and a single tile t. The tile t is the next possible move of
player 1 on the row which follows R. To enumerate all her possible moves, we
assume that there is total order on the tiles. Every guess of a row shall fulfil the
H-constraint. In line 1, A guesses an initial row — the choice of player 1 is fixed
to t0 in this case — and the first possible move of player 1 for the next row. For
this purpose, A only need to keep the first column of R in memory. All push-
and pop-operations of tiling rows are sent to ϕ by reading a piece of the input.

As long as the strategy tree is not entirely traversed, the algorithm considers
the next possible move t of player 1 on a row R. In line 5 the algorithm guesses
whether or not there is a further move t′ of player 1 on R. The guess is verified in
line 7 and 13, respectively. The row R is sent to ϕ to create the open eventualities.
This anticipatory test is needed because these eventualities are used in different
ways in each branch. In both cases, the eventualities are used to correctly guess
the next row in line 16. But if player 1 has a further choice to play on R, the
choice must to be stored on the stack. For this purpose, the transition system
has a copy of the show transition system such that

revealRow :=

n∧
i=1

X . . . X︸ ︷︷ ︸
i times

( ∧
t1∈T

(
cellt1i → Xγt1i

))
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can reveal the unfulfilled eventualities and send the tiles successively to A —
which in turn pushes the row on the stack.

The guess of the next row happens as described at the beginning. If the
whole tree is traversed the automaton forces the witness to go to a sink state
and stay there. Hence, A requires a coBüchi acceptance condition only. The
alphabet can be chosen as a pushdown alphabet.

All in all, the final transition system T is mainly the flow chart of the
algorithm in Figure 6 but the nodes for the lines 6, 10, 12 and 16 are replaced
by copies of the shown transition system. The final formula is

EL(A) G
(

(branch1 → (revealRow ∧ X . . . X︸ ︷︷ ︸
n times

nextRow))

∧ (branch2 → nextRow)
)

where branch1 and branch2 are propositions indicating the branch chosen in
line 5.

Corollary 23. The model-checking problems for CTL∗[ωVPL] and CTL∗[ωCFL]
over finite transition systems are EXPTIME-complete.

Proof. By Theorems 21 and 22.

8. Conclusion and Further Work

We have considered extensions of the well-known full branching-time tem-
poral logic CTL∗ using path relativisation with formal languages of ω-words,
investigated expressivity and complexity issues and shown a possible area of
application for such logics.

While it clearly still remains to be seen whether or not these logics can prove
to be useful in the domain of abstract interpretation as well as elsewhere, there
are also some open questions regarding the theory behind this family of logics.
In particular, it is currently unknown whether or not CTL+[A] equals CTL[A] in
expressive power. We suspect that this is not the case for non-trivial classes A.

Another open problem is the suspected separation between CTL∗[A] and
∆PDL?[A]. It seems like the latter should have higher expressive power by being
able to synchronise — via the test operator — between labels along a path and
formulas that hold on this path. Note that in CTL∗[A] these are two entirely
separate issues: the path relativiser selects the path according to its edges, the
temporal part of the formula is satisfied (or not) on this path because of its
states.

It is of course also possible to compare path relativised branching-time logics
more thoroughly with other existing formalisms, for instance the logics over
ωREG with existing regular extensions of CTL or extensions with fairness
predicates.
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