Branching Time? Pruning Time!

Markus Latte'* and Martin Lange?

! Department of Computer Science, University of Munich, Germany
2 School of Electrical Engineering and Computer Science, University of Kassel, Germany

Abstract. The full branching time logic CTL* is a well-known specification
logic for reactive systems. Its satisfiability and model checking problems are
well understood. However, it is still lacking a satisfactory sound and complete
axiomatisation. The only proof system known for CTL* is Reynolds’ which comes
with an intricate and long completeness proof and, most of all, uses rules that do
not possess the subformula property.

In this paper we consider a large fragment of CTL* which is characterised by
disallowing certain nestings of temporal operators inside universal path quantifiers.
This subsumes CTL™ for instance. We present infinite satisfiability games for
this fragment. Winning strategies for one of the players represent infinite tree
models for satisfiable formulas. These can be pruned into finite trees using fixpoint
strengthening and some simple combinatorial machinery such that the results
represent proofs in a Hilbert-style axiom system for this fragment. Completeness
of this axiomatisation is a simple consequence of soundness of the satisfiability
games.

1 Introduction

Temporal logics originate from the philosophical tense logics [[14] and are now important
specification languages in computer science where they are being used to abstractly
describe and verify the behaviour of reactive systems [[11]]. One of their most prominent
examples is the full branching-time temporal logic CTL* [2]]. Its satisfiability and model
checking problem—i.e. the algorithmic nature of the logic—is well understood by
now [[183]]. This cannot necessarily be said about the proof-theoretic nature of CTL*:
despite CTL*’s long lifespan no clean and simple sound and complete axiomatisation has
been found for it so far.

Various axiomatisations for simpler temporal logics like LTL for instance have been
known for a long time, and others have been found since [[7U5/10l9]. The same can be
said about CTL [1U13l918]]. These two logics enjoy the property that their formulas are
modularly composed of a finite number of temporal operators and an axiomatisation
can describe the handling of each of them. In CTL* though, the arbitrary mixture and
nesting of path formulas leads to an essentially infinite number of temporal operators
of which formulas are composed. A proper axiomatisation would have to capture their
nature in a finite number of formula schemes. So far, the only successful attempt at
presenting a sound and complete axiomatisation is Reynolds’ [15]. However, it features
an unsatisfactory system because of a rather intricate and difficult completeness proof.

* Supported by the DFG Graduiertenkolleg 1480 (PUMA)

2 Markus Latte and Martin Lange

Most of all though, it contains rules which do not have the subformula property, for
instance the rule (AA) . The subformula property bounds the search space within a proof
search. In particular for this rule, there is no (obvious) upper bound on the possible
premises in terms of the conclusion because the rule introduces new atoms in its premise.
The problem of finding a simple axiomatisation for CTL* with a neat completeness proof
is therefore still open.

In this paper we make a step forward in this direction. We consider a large fragment
of CTL* by restricting the nesting of temporal operators under a universal path quantifier.
We call this fragment CTL?. Syntactically, it supersedes CTL and even CTL*, and the sat-
isfiability problem for CTL! is therefore already 2EXPTIME-complete [6] which indicates
that it is not an easy fragment. It also exceeds the expressive power of these two logics;
for instance, it it possible to express that a path satisfying some fairness constraint exists.

Note that this fragment is not closed under complements in the sense that the negation
of a formula with restrictions concerning universal path quantifiers has—in positive
normal form—restrictions on existential path quantifiers. This is not a major problem. It
simply means that one has to regard the context in which the logic is being used. We
consider CTL! in the context of satisfiability; in the context of validity one has the dual
restrictions on existential path quantifiers.

We present a calculus of infinite games characterising the satisfiability problem for
CTL!. We then employ combinatorial arguments and logical principles by which winning
strategies in these games, which are infinite trees, can be made finite and loop-free.
These are then used to derive a complete Hilbert-style axiomatisation for CTLE.

This is, as far as we know, the first attempt at approaching the CTL* axiomatisation
problem on the syntactic route “from below”. Other attempts are syntactic and “from
above” in the sense that they consider a superlogic, for instance CTL* with past op-
erators [[16] which apparently makes things easier, or semantic in the sense that they
redefine the class of structures over which the logic is interpreted [17].

The rest of the paper is organised as follows. Section “Branching Time” introduces
the mentioned temporal logics; section “Playing Time” presents the satisfiability games;
in section “Pruning Time” we show how to transform infinite winning strategies into
finite ones; and section “Proving Time” presents the axiomatisation.

2 Branching Time

Transition Systems and Paths. A transition system is atuple T = (S,— , L) where
S is a set of states, — C S x S a transition relation and L : P — 2° a function that
assigns to each ¢ in some non-empty set P of atomic propositions the set of states L(q)
in which ¢ holds. Here we assume the transition relation to be total: for all s € S there
isat € S such that s — ¢. A path is an infinite sequence ™ = g, s1, ... € S“ such
that s; —» 5,41 for all i € N. With 7% we denote the k-th suffix of , namely the path

SkySk41s----

CTL*. Formulas of the branching time temporal logic CTL* over P in positive normal
form are given by the following grammar.

pu=q|qleVe|pAp|Ex|Ax

Branching Time? Pruning Time! 3

az=plaValaAa|Xa|ala | aRa

where ¢ € P. The formulas ¢ and —q are called literals. The constructors E and A are
called path quantifiers; X, U and R are called temporal operators. Formulas derived as ¢
are called state formulas, those that are derived from « are called path formulas. The
latter only occur as genuine subformulas of the former, i.e. a CTL* formula is one that
is derived from ¢ in this grammar. Throughout this paper we will adopt the convention
that small letters of the end of Greek alphabet, like ¢, 1/, denote state formulas and small
ones from the beginning, like «, 3, denote path formulas. Note that every state formula
is also a path formula.

We also use the standard abbreviations from temporal logic: Fa := ttUa and
Ga := ff R a where tt := ¢ V —q and £f := ¢ A\ —q for some q € P.

The closure of a formula 9 is the least set Cl(¢}) that contains ¢ and satisfies the
following.

If Qo € CI(0) for some @ € {E, A} then a € CI(9).

Ifa A B e Cl(Y)oraV g e Cl(¥) then {a, B} C CI(V).

If X¢p € CI(49) then ¢ € CI(¥).

If p o 9p € CI(9) then {t), p,X(¢p o)} C CI(¥F), for all o € {U,R}.

Thus, the closure is essentially the set of all subformulas with the exception of the
fixpoint-operators which we also include with a prefixed X-operator. Note that the size
of the closure of some ¢ is linear in its syntactic length. We therefore use it as a measure
for the size of a formula: || := |Cl(p)].

Formulas of CTL* are interpreted over states and paths of a transition system 7 =
(8,—> , L), reflecting the two types of formulas.

T,sEq iff ¢ € L(s)
T.sEq iff q & L(s)
T,sEpvy iff T,sEeorT,sE v
T,sEpAy iff T,sEeandT,s E¥

T,s EEa iff thereisapathm =s,s',... with 7,7 = «
T,s E Aa iff for all paths m = s,8’,... wehave 7,7 = «
T.mlEe iff 7,5 when pisa state formulaand 7 = s, 5, ...

T.rEaVvp iff T,nrEaorT,nEpS

T, rEang iff T,nrEaand T, 7 =0

T, 7 = Xa iff 7,7' =«

T,m = aUp iff thereisa k € N with 7, 7% = Band forall j < k: 7,7’ = «
T,ml=aRB iff forallk e N:T,7% = Borthereis j < k: T, 7’ = a

Two (state) formulas are equivalent, written ¢ = 1), iff for all 7 and all states s we
have: T, s | @ iff T, s = 1. A state formula ¢ is valid, written |= o, iff T, s |= ¢ for
any transition system 7 and any of its states s. Equally, a path formula « is valid, also

4 Markus Latte and Martin Lange

written |= «, if 7,7 = « for any transition system 7 and any path 7 in it. Note that
E «iff E Aa.

Finally, we introduce the dual —¢ of a formula ¥ as follows: ¢ and —q are dual to
each other; the usual deMorgan law’s apply; path quantifiers are dual to each other as
in “Ea := A« and vice-versa; the next-operator is self-dual as in =X := X—; and
the temporal fixpoint operators are dual to each other as in —(¢Ut) := (—¢)R(—1)) and
vice-versa. With negation around we can introduce implication « — (3 as ~a V 3 as
usual. The next section explains why we have introduced formulas in positive normal
form and avoided the use of negation as a first-class operators.

CTL?. The fragment CTL is obtained from CTL* in positive normal form by disallowing
certain nestings of temporal operators inside a universal path quantifier: the arguments to
an until formula in there must be state formulas. Formally, the syntax of CTL! formulas
is given by the following grammar.

pu=ql-gleVeleAp|Ea|AB
az=gplaValaAa|Xa|ala | aRa

Bu=@|BVE|BAB|XB|¢Up | RS

All the concepts introduced above for CTL* like the closure and the semantics clearly
carry over to CTL! as well. However, note that the dual = of a CTL! formula 9 need not
be a CTL! formula itself. A syntax for the dual of CTLF is obtained from the one above
by switching E and A. We set =CTL* := {¢ | ~¢ € CTL!} as a subset of CTL*.

It is easy to see that many of the standard and simple types of properties like
safety, liveness, fairness, etc. are expressible in some form or the other in CTLE, for
instance through AG gsqfc, AGEF qiic, AGF qyqir. Also, it is possible to express a standard
requirement for schedulers, namely that all requests need to be served at a later point:
AG(qrequest —F qserve)~

However, it is for example not possible to say that all paths that are fair w.r.t. some
predicate « satisfy some property 8. This would be A(GFa —) which would be
A(FG—a V f3) in positive normal form and thus contain an R-formulas in an argument of
a U-formula inside a universal path quantifier.

A prominent example of a CTL* formula which essentially bears much of the diffi-
culty of finding a complete axiomatisation is the limit closure formula

orc = qAAG(q — EX(qUp)) — EG(qUp) .
It is a valid CTL* formula, hence, its dual -y, is unsatisfiable which is
q AG(—\q Vv EX(qu)) A AF(—qR—p)
in positive normal form. This is not a CTL! formula though because the last conjunct is

universally path quantified and contains a U-formula (of the abbreviated form F) which
itself contains an R-formula in one of its arguments.

Branching Time? Pruning Time! 5

9071/)7¢ SDZ7¢ . QO,EH,@
(N) 7@/\%@ (V) ooV ord 3,:€{0,1} (ESt) 7}3(%]_[)’@
E(a, 5, IT),® ® E(3,11),® | E(a,X(aUB),II),d
EN) E(a ABII),® (Ect) EQ, D (EV) E(aUB, II), ® 3
E(ay, IT), , E(o, 3,1T),® | E(B,X(oRB),),
(EV) E(ao Van, IT), ® Fi€{0.1} (ER) E(aRB,IT), ® 3
Ala, X),A(8,%),® Ao, B,X),® 0, ® | AX, D
) = pans. D) M) Geveme MY g
(AU) @ | @, AX(pUy),X), D | AX, P 5, if 37 not U-pure
Alpuy, X)), P
) Lo ? | Apli € D AQRU) [P€ DD o o

A(P1 U1, ..., onUthy),

(B, X),A(a, X(aRB), X)), P

A(aRB, X)), ®
EIT;,AS:, ..., ASm

EXII1,... EXII,,AX>1, ..., AKX 5, A

(ar) 2

AD:, ... AZ,
AXZy, .. AXZ,, A

(Xo) (X1)

v, 1 € [n]

Fig. 1. Rules for the CTL! satisfiability game.
3 Playing Time

Configurations, Rules, Plays, and Winning Conditions. We present a game-theoretic
characterisation of the satisfiability problem for CTL?. The game G(¥J) is played by two
players 3 and V who want to show that 9J is satisfiable, resp. is unsatisfiable. We fix a
state formula ¥ € CTL¥ for the rest of this section.

A block is an element of {E,A} x 2¢(%) written EIT or AX. They represent the
state formulas E A IT and A\/ X. Conversely, we identify a state formula Qo with the
block Q{«} for Q € {A,E}. A configuration is a set of state formulas and of blocks,
for instance @1, ..., ¢, EIly, ..., EIl,, A}, ..., Y. The intended formula of such a
configuration is the conjunction of its elements.

A formula set X' is called U-pure if it consists of formulas of the form ¢; Uy only.
We write XX to denote the set {X¢ | ¢ € X'} and equally for XI1. A configuration @ is
propositionally inconsistent if there is a proposition ¢ s.t. {¢, ~¢} C .

The game G (1) starts in the initial configuration 9 and proceeds according to the
rules presented in Fig. [l1] We write [n] to denote {1,...,n}. There are a few important
comments to regard when reading the rules.

— They are to be read bottom-up, i.e. if the current configuration in a play is an instance
of the pattern below then the player annotated to the right of a rule chooses one of
the configurations on top to continue with. The respective player can choose from
the alternatives which are separated by “|”. Some rules are deterministic, i.e. no
player is making a choice. The configuration on the top of a rule is called premise
and that on the bottom conclusion.

6 Markus Latte and Martin Lange

— Formulas denoted ¢, v, o1, . . . are state formulas according to the syntax of CTL*;
formula denoted «, 3, a1, . . . are path (and therefore possibly also state) formulas.
A always stands for a set of literals, ¢ denotes an arbitrary set of blocks and state
formulas, and X' and I denote a set of path formulas.

— As we identify the state formula Ea: with the block E{c }—for instance—the rules
(A) and (V) can generate blocks.

— Although configurations and blocks are sets in the main, they are written as lists.
However, a notation like A(a A 8, X)), ® implicitly states that « A 8 ¢ X and
Ala A B, X)) ¢ . Otherwise, a rule application could be repeated ad infinitum and
hinders progress.

Note that in certain configurations several rules may apply, even rules for both players
to perform choices. We therefore assume an arbitrary but fixed ordering on the rules
which determines uniquely the rule that applies to a configuration. The exact ordering is
irrelevant for the theory developed here.

In an application of a rule, the formula and the block which get transformed are
called principal formula and block, respectively. Examples are the formula o A S and the
block A(a A 3, X)) in the instance of the rule (AA) as shown in Fig.|1| In the rule (AT)
all formulas in the principal block are principal. The unaffected blocks and formulas are
called side formulas taking blocks for formulas. Continuing the example, these are the
formulas in X' and in ®.

A play is a possibly infinite sequence of configurations starting in the initial one
and resulting from successive rule applications. Note that in every play, the intended
formula of a configuration is in CTL!. Before we can define the winner of a play we need
a technical definition capturing the unfulfilledness of least fixed point constructs.

Definition 1. A component of a configuration C'is a state formula in C, an A-block in
C or a single formula inside an E-block contained in C. Let @, @1, . .. be an infinite
play. The rules induce a connection relation on components of adjacent configurations in
this play, obtained from the game rules in a straightforward way. A component C' in @;
is connected to a component C’ in @;11, written (®;, C) ~ (P;11,C"), if either

— C'is not principal and C = (', or
— C is principal in this rule application and gets transformed into C”.

Example 2. To illustrate the second item consider an instance of the rule (ASt) as shown
Fig.[T]for ¢ = Ec. For the left alternative, Ec becomes part of the configuration both as a
state formula and as a block E{«}. Therefore, (-, A(Ee, X)) ~~ (-, Ea) and, if «v is a state
formula, (-, A(Ecr, X)) ~~ (-, &) hold. For the other alternative, we have (-, A(Ecr, X)) ~~
(-,AX)). On the other hand, a U- and an R-formula can grow by unfolding these fixed
points. For example, the instance of the rule (EU) in Fig.[I]yields (-, aUB) ~ (-, X(aUpB)).

The following lemma is not hard to see. Note that only the unfolding rules for U- and
R-formulas create in some sense larger configurations, but they introduce an X-operator
which has to be dealt with before the respective formula can be unfolded again.

Lemma 3. Every infinite play contains infinitely many applications of rules (Xo) or (X4).

Branching Time? Pruning Time! 7

Definition 4. A thread in @, P1, ... is a sequence Cy, C1, . . . of components such that
(D;, C;)y ~> (DPiy1,Ciqr) forall ¢ € N. It is called a bad thread if either

— there is a Uy € Cl(9) s.t. C; = Uy for infinitely many i, or
— there is a block AY’ with X being U-pure, s.t. C; = AX for infinitely many .

In the first case we also speak of a bad E-thread, in the second case of a bad A-thread.

Hence, a play contains a bad thread if there is either a U-formula inside some E-
blocks that regenerates itself infinitely often via the unfolding in rule (EU), or there is an
A-block which contains no R-formula that regenerates itself in a similar way along this
play. Player V wins a play m = &g, P4, ... if
(V-1) thereis ann € N s.t. &, is propositionally inconsistent, or
(V-2) thereisann € Ns.t. A) € &,,, or
(V-3) m contains a bad thread.

In all other cases, player 3 wins the play.

Determinacy. An important game-theoretic concept is determinacy meaning that for
every game exactly one of the players has a winning strategy. The games presented here
are determined. The proof is relatively simple by appealing to known determinacy results
about games in general. We only need to identify the winning plays as being of a certain
type, namely being recognisable by a co-Biichi automaton.

Lemma 5. For a bad thread Cy, C4, ... in @y, P, ... either

— thereisak € Nand pUy € CI(0) s.t. C; € {pU,X(pU)} forall i > k, or
— there is a k € N and a U-pure set X C CI(9) s.t. C; € {AX,A(XX)} forall i > k.

Proof. The case distinction follows Definition 4| For k£ we take one of the infinitely
many values ¢ mentioned in that definition. Finally, the game rules entail the properties
along the corresponding suffix. O

Theorem 6. The CTL! satisfiability games are determined, i.e. for every 9, either 3 or ¥/
has a winning strategy for the game G ().

Proof. Following Lemma [5] and [3] the winning conditions can be represented as a
co-Biichi condition and are therefore in the Borel hierarchy. The result then follows
immediately from Martin’s Theorem [12]].]

Soundness and Completeness. Due to lack of space we only sketch how one can
prove that the games correctly characterise satisfiability in CTL?. It is possible to do this
via explicit constructions of a model from a winning strategy for player 3, etc. Instead,
we appeal to a very similar system that is known to correctly characterise satisfiability
for CTL* [4]. However, the syntactical restrictions of CTL* considered here supersede
the distinction between traces and threads as exploited in [4]].

Theorem 7. Player 3 has a winning strategy for the game G(0) iff ¥ is satisfiable.

8 Markus Latte and Martin Lange

The games here differ from the system in [4] in the rules for universally path
quantified blocks and in the winning conditions. There, the rules are simply dual to the
ones for existentially path quantified blocks; in detail: rule (AU) and (AT) here replace the
dual version of (EU). Furthermore, in the system for full CTL*, a bad thread of A-blocks
must not contain any infinitely regenerating R-formula. In order to prove soundness and
completeness of the games for CTL? it suffices to see that the CTL! games essentially
behave like the CTL* games when applied to a CTL? formula. Now note that the defining
property of being a CTL! formula is having no genuine path formulas as arguments to a
U-formula inside an A-block. State formulas, though, get removed from A-blocks with
rule (ASt). This justifies rule (AU). Furthermore, if a sequence of connected A-blocks
through a play contains no regenerating R-formula then the set of formulas in those
blocks must eventually become U-pure because no U-formula in there can spawn off
anything that remains in this set. Then the unfolding of U-formulas in a U-pure set can be
synchronised which justifies rule (AU). Finally, a bad thread in the sense of Def. |4]is a
bad trace in the system for CTL*, and vice versa.

4 Pruning Time

By Thm. E]and -1 is a tautology iff player V has a winning strategy in the game G(19).
In the next section we will present an axiomatisation for CTL!, and in this section we
develop the necessary tools in order to prove completeness thereof. We consider V’s
winning strategy as a tree, namely the tree of all plays which conform to this strategy.
L.e. at every position in which player 3 makes a choice or a deterministic rule applies all
successors are preserved in the tree. At position in which player V makes a choice only
the choice prescribed by the strategy is preserved in the tree. Clearly, such a tree is in
general infinite. We turn it into a finite tree which essentially is a finite derivation for -
in the axiom system of the next section.

As this axiomatisation should also be sound it clearly does not suffice to truncate the
tree at arbitrary positions. Instead, the resulting finite tree should satisfy the following
properties: (1) leaves should be unsatisfiable; and (2) unsatisfiability should be preserved
in the direction towards the root. This is enough to yield completeness since it constructs
a proof for an unsatisfiable —, i.e. a valid 9.

The principles used to achieve (1) and (2) are the following. At nodes which are
inconsistent or contain A{), it suffices to simply truncated the tree. This is possible on
all plays that player V wins with his winning conditions or[(V-2)] The remaining
paths in the tree contain bad threads. We use the principle of fixpoint strengthening in
order to preserve satisfiability but disable infinite unfoldings of U-operators. In essence,
this principle forbids the unfolding of a (set of) U-formulas in a certain context for the
second time. Instead, the node becomes inconsistent and can be truncated as well.

An additional difficulty is the fact that this has to be done in the tree as a whole rather
than on each branch separately—even though bad threads are properties of branches.
Note that two branches with bad threads may have a common prefix but these threads
may differ on that prefix. This is basically handled by a scheduling mechanism which
strengthens least fixpoint formulas one-by-one.

Branching Time? Pruning Time! 9

EB,I),® | E(x,X(aUrp),II),®

(E0)! E(pUnust, 1), P (Ev)* E(aUrp, II),®

Oy T e e

(! AMprUstn, ... pnUathn), & ()" Aéﬁﬁi i:gf:l}:)is
g s el
(a7’ Vi ® | o1, 00, AR (01 UsY1), -, X(pnUsthy)), @ 2 e

A(Wlwa ceey SD'VLUQ/)H): P

Fig. 2. Rules for annotated U-formulas in E-blocks.

4.1 Annotations and Their Rules

For a set of formulas I" C CI(¢) define ¢Urv := (o A= AT)U(p A=~ AT"). The set
I' is called an annotation to the formula pUw. Note that annotating formulas can take
us out of the CTL! fragment. This, however, is just an observation and has no negative
effect since its semantics is well-defined as a CTL*-formula.

The annotation is used to remember a set of side formulas. Informally, once the
annotated formula occurs in a configuration with the same side formulas again, we like
to truncate the play right after this repetition.

On an infinite play the U-formulas are eventually handled by the rules (EU) and (AU)
for I = [n] only. Both rules are extended to operate on annotated formulas, introducing
four new rules for each occurrence of U-formulas inside E- or A-quantifiers: one rule
to create an annotation, one to keep it through the usual unfolding, one to erase it for
following different branches with different bad threads, and one to terminate the play.
These new rules are shown in Fig.

The annotation in rule (AU)® is placed on all formulas in the block simultaneously.
None of the rules can change or remove the annotation of a formula in such a block
without affecting the other formulas. Hence, we actually annotate the whole block rather
than each formula. However, for simplicity we focus on the annotation of formulas.

Lemma 8. The conclusion in rule (EU) is unsatisfiable, and for the rules (EU)%, (EU)*
and (EU)b we have that if all premises are unsatisfiable then so is the conclusion.

Proof. We detail the proof for the most difficult rule only, that is for (EU)”. Assume that
there is a transition system 7 and a path 7 such that

T.rEaig A \NIT A N\ 1)

Let k € Nbe such that 7, 7% |= 3, and T, 7' = a A =3 for all i < k. Among all such
paths satisfying (), we choose a path 7 with a minimal k-value. Suppose that none of

10 Markus Latte and Martin Lange

the premises is satisfiable. Thus, we have in particular
T.m e (BV (e AX(aUnueB) A NIT A [\ 2.

Then there is a 0 < ¢ < k such that 7,7’ = = A(IT U). Additionally, (T yields
T,7" |= aUB. Therefore, Eq. (1) holds for 7! instead of 7. But the k-value of ¢ is
k — ¢ < k. Thus, this is a contradiction to the minimality of k. O

Lemma 9. The conclusion in rule (AU)' is unsatisfiable, and for the rules (Aﬁ)h, (AU)*
and (AU)b we have that if all premises are unsatisfiable then so is the conclusion.

Proof. Consider the rule (AU)”. Assume that
P A /\ & is unsatisfiable for all j € [n],)
and that
T,sEA (\/ie[n] %‘Ui/fi) ANN\P 3

holds for a transition system 7 and a state s in 7.

For any such pair (7, s) satisfying (3) we associate a tree with unordered children.
The tree is the unwinding of 7~ which begins at s and ends at a node ¢ whenever there
isan ¢ € [n] such that 7,¢t = 4¢; and T,r = ¢; for any node r along the path
from s, including, to ¢, excluding. Since an associated tree does not show any infinite
path—nevertheless the tree might be infinite—the strict subtree-order is well-founded
on associated trees.

Now, let 7 and s be such that they satisfy (3) and that their associated tree is a
minimal one w.r.t. the strict subtree-order among all associated trees which originate
from pairs which satisfy (3). By (@) the associated tree cannot consist of its root only.
For the sake of contradiction, assume that the pair of 7 and s does not model the right
premise of (AU)’. Then there is a state r different from s, which corresponds to a node
in the associated tree, such that 7, r [~ — /\ . However, the subtree at r is the associate
tree of 7 and r. But this situation contradicts the choice of 7 and s.

The argument for the other rules are simpler. U

Remark 10. Although the rules in Fig. 2| are sound w.r.t. unsatisfiability they are not
invertible in general. Consider the rule (EU)": the configuration E(pUg,y(p A q)) is
unsatisfiable whereas E(pU(p A ¢)) is satisfiable. Therefore, these rules are unsuitable
for an incorporation into the game defined in Sect. [3in the first place.

4.2 Truncating Infinite Trees

The following constructions consider (labelled) trees. To simplify the presentation we
introduce some notations. For a tree 7" and nodes u, v in T' we write u <p v iff u is a
proper ancestor of v, u <7 v iff u <7 v or u = v, T'|, for the subtree located at v such
that v is the root of T'|,, and w is a child of v (v is parent of u, resp.) iff v <7 u and
v <7 w <7 u for nonode w in T'. A path in 7T is a (finite or infinite) sequence such that

Branching Time? Pruning Time! 11

any node in the sequence is a parent of the succeeding node if the latter exists. A branch
is a path with begins at the root. Since <7 is well-founded—but not a linear order in
general—, miny (V') denotes the set of minimal nodes w.r.t. <7 in a set V' of nodes.

For the remaining section assume that — is a tautology. Hence, player V has a
winning strategy for the game G(¢9), cf. Thm. [6|and[7] From now on, formulas and sets
of formulas are assumed to be in or subsets of Cl(1}).

Definition 11. We say that a tree T is a (-)tree which follows a set of rules R iff each
node is labelled with a configuration for ¢, the root is labelled with ¢, and for each node
v one of the following items holds.

— v is a leaf and the node is propositionally inconsistent or contains A{.

— v has exactly one child, say w, such that v is the conclusion and w the premise of
the same instance of the rule (Xo) or (X1).

— Forarulein R\ {(Xo), (X1)} and for a principal block and formula(s), the set of
children is the set of possible successor configurations which player 3 can choose
with this rule, principal block and formula(s). For instance, a node for the rule (AT)
has exactly n + 2" children if n is the number of U-formulas in the principal A-block:
The left hand of ““|” admits n possibilities and the right hand 2.

Note that in such a tree any inner node uniquely determines the rule which was used
in the justification for the second and the last item.

Lemma 12. There is a ¥-tree which follows the rules in Fig.

Proof. The winning strategy of player V is taken for a tree. However, not all possible
moves of player 3 need to be considered. For the last item in Def. [11] it suffices to
consider just one rule, principal block and formula(s) on 3’s turn. Moreover, on every
branch the first node is changed into a leaf iff the node is propositionally inconsistent or
contains A). The obtained tree follows the said rules. O

We fix such a tree and call it Ty. The label of a node v is written as ¢(v). We may
take the node for its label. As each branch in Ty forms a game in the sense of Sect. [3}—at
least a prefix of a game for which the winner is already determined—, we may use the
game-theoretic notations for the tree as well. For instance, every infinite branch in T}
contains a bad thread.

To handle repetitions in an infinite branch of Ty we set

Rep(¢9) := {¥| ¥ €29 and ¥ is U-pure}
U {¢ | ¢ € CI(?) and ¢ is a U-formula} x 29

Definition 13. Let p € Rep(19). A node v in the tree Ty is a repeated node for p iff there
isapath vy,...,vg in Ty for some K > 1 such that v; = v, £(v1) = £(vk) and one of
the following items holds.

- p € 299 4 is the conclusion of an instance of (AU), Ap is principal for that
application, and there is a sequence 3, ..., Y of sets of formulas such that
21 = EK =p and <€(Ui), A(EZ» ~ <€(’Ui+1),A(Ei+1)> for all i € [K — 1]

12 Markus Latte and Martin Lange

- p= (¢, M) for {x} UII C CI(19), v is the conclusion of an instance of (EU), ¢ and
E(¢, IT) are principals for that instance, and there are a sequence ¢1, ...,k of
formulas and a sequence 114, ..., Il x of sets of formulas such that 1 = px = @,
II, = I = II, and <A€(’UZ),E(QOZ,HZ)> ~ <£(’U¢+1),E(§0i+17ﬂi+1)> forall i €
[K —1].

A node v is called repeating node for v and p.

Lemma 14. Let (v;);en be an infinite branch in Ty. If the play (¢(v;))ien contains a
bad thread then there is a p € Rep(1)) such that for every i there are 7=, j7 € N with
i<jT<jT, v;- is a repeated node for p, and v;+ is their repeating node.

Proof. Let (C;);en be a bad thread in (£(v;));en. Lem. [§yields two possibilities. We
consider the first case only—the other is very similar. So, let k, ¢, 1 as written in
that alternative. Let ¢ € N be given. At least one of the rules (Xo) and (X;) is applied
infinitely often, cf. Lem. [3| Therefore and as only the rule (EU) can modify a U-formula,
the rule (EU) is also applied infinitely often with U as principal formula. Because the
amount of different instances of the rule (EU) is finite, there are 5~ and ;51 such that
max(k,i) < j~ < jT,v;- is arepeated node for pUt, and v,+ is their repeating node.
Indeed, (Ciﬂf_l)ie[ﬁ_jfﬂ] is the (-sequence as required in Def.|13| To this end, the
i element sequence of the IT-sequence is the set of side formula in the E-block which
hosts C;4 ;- _1. O

The truncation of Ty to a finite tree is realized by the operation - |y -. To this end,
the operation considers the elements of Rep(#) in some order. So, let (Repi)ie[‘Rep(g)H
be an enumeration of Rep(19).

Definition 15 (- |}y -). For atree S and i € N, the application S |}y i returns a tree. If
S is finite or i > |Rep(¥)|, S |}y i := S. Otherwise, let

V™ := ming{v | v is a repeated node for Rep, in S},

V;Z := ming{v’ | v’ is a repeating node for v~ and Rep, in S}, and

V+ = ming{v | vand v* are <g-incomparable for all v~ € V"~ and vt € V" }

where v~ € V. For every v € V1 the operation replaces S|, by (S|,) {by (i + 1).
And for every v € V'~ the operation annotates formulas and truncates subtree in S,
depending on Rep,. If Rep; is a set of U-pure formulas .S 4 ¢ does the following. By
definition, v is the conclusion of the rule (AU) such that Rep; is principal. The said
rule got replaced by an instance of the rule (AU)". As this rule annotates formulas the
operation proceeds away from the root as long as the current node is a proper ancestor of
an v’ € V7. Along this traversal, the rules got adjusted to the annotation. In particular, if
the rule is (AU) and the annotated formulas are principal, the rule got replaced by (AU)*.
When the traversal reaches an v’ € V, the node is replaced by the rule (AU)'. And as
soon as the current node is not an ancestor of any v’ € V", the operation inserts the
rule (Aﬁ)h to got rid of the annotation and skips the remaining subtree. The procedure
for the other case—that is, Rep; is a pair—is similar but replaces instances of the rule
(EU) by (EU)®, (EU)*, (EU)? and (EU)*. Since the set V~ is defined in terms of ming,

Branching Time? Pruning Time! 13

the adjustments for the annotations do not interfere for different elements in V' ~. This
completes the description of - | .

Theorem 16. Ty | 1 is a finite O-tree which follows the rules in Fig.[I|and

Proof. Each call S |}y i returns a tree such that its root and S’s root share the same
label. Therefore by construction, the tree Ty {9 1 follows the rules. If Rep(?) = @) then
Ty {9 1 = Ty and by Lem. [T4] the tree does not contain any bad thread. Since player V
wins G(19), Ty must be finite. Now, suppose Rep(¢) # (0. For the sake of contradiction,
assume that Ty |}y 1 is infinite. Since the tree is finitely branching, Konig’s Lemma
yields an infinite branch. The execution of Ty | 1 leads to at most |Rep(¥)| + 1 nested
invocations at a time. For each branch and each invocation the operation - |} - inserts
at most one node, namely the premise to the rule (AI_JO)h or (EU)". Therefore, Ty has an
infinite branch. For simplicity we shall neither count nor name these additional nodes—
hence the infinite branches in Ty and in T} |} 1 are identically equal. By definition, this
branch contains a bad thread. Lem. names a p € Rep(?). Let i be such that Rep, = p.
Since the branch is infinite, there was an invocation Ty|, {9 ¢ such that v lies on the
infinite branch. Additionally, the same application of Lem. yields two nodes v~ and
v on the infinite branch such that v <7, v~ <7, v*, v is a repeated node for p, and
v™T is their repeating node. Among all such pairs (v~,v") we minimize v~ and then
vt. Therefore, in the invocation of Tylv V9 @ we have that v~ € V™~ and vt e VUJC.
The algorithm truncates the tree at v*. This is a contradiction to the assumption that the
infinite path in T} passes v™. O

5 Proving Time

We present a Hilbert-style axiomatisation of =CTL? and prove it to be sound and complete.
An axiomatisation is a set of axioms and a set of rules. The axioms and rules may contain
formula variables. A proof for some formula ¢ is a finite sequence g, ..., @, S.t
¢ =y and forall ¢ = 0,...,n we have: ¢, is either an instance of an axiom or follows
from some ¢y, .. ., @;—1 via an instantiation of one of the rules. We write I~ ¢ to denote
that ¢ is provable.

The axiomatisation is derived from the satisfiability game rules in Fig. [T] and the
amended rules in Fig. [2|in the following way. Take a rule in which player 3 makes a
choice among premisses Py, ..., P, from a conclusion C'. Then —C should be provable
from =P, ..., =~ P,. The axioms and rules are presented in Fig. E} All formula variables
«, B and ~y range over arbitrary CTL*-formula and ¢, ¥, and 1) over CTL*-state formula.
The axiom (Ax-1)) can be made finite using a textbook-like axiomatisation of propo-
sitional logic where path-quantified formulas are taken for propositions in the purely
propositional logic.

Using the previous sections, soundness and completeness of this axiomatisation is
relatively easy to establish.

Theorem 17 (Soundness). For all ¢ € CTL*: if - ¢ then |= .

Proof. By induction on the length of a proof. One easily establishes that all axioms are
valid and all the rules preserves validity. In particular, the rules (Ru-3)) and (Ru-4)) are

14 Markus Latte and Martin Lange

(Ax-1) All substitution instances of propositional tautologies

(Ax-2) F E(aV) «<> Ea VEf (Ax-3) FE(p A a) <> ¢ AEa
(Ax-4) F aUB < BV (a A X(aUB)) (Ax-5) F (¢ = B) = (Ea — EfB)
(Ax-6) - X(aV B) < Xa VIS (Ax-7) - Ett
(Ax-8) - EXtt (Ax-9) - EXEa <+ EX«

(Ax-10) F (a AY)U(B Ay) — aUB Ru-1) If F @« — fand - o then - 3

(Ru-2) If H Ee — Ef thent EXaa — EXf
Ru-3) IFEA((y V B) A (v V eV X((aV—7)R(BV —7)))) then = A(y V (aRB))

IfEx = (A % ACV @9 VECA X((g5 VXIR(; V X))
(Ru-4) J€E[n] Jj€[n] j€[n]

thentx — E(A\ ;R¢;)
j€[n]

Fig. 3. Axioms and rules of the ~CTL* axiomatisation.

the negations of the rules (EU)” and (AU)® in the main. Indeed, the proofs of Lem.
and 9] also hold for arbitrary formulas in CTL* as long as the configuration is a state
formula. O

Lemma 18. - If @ is propositionally inconsistent or contains AD then - =)\ .
- If &' is a premise and P the conclusion of (Xo) or (X1), then b = \ &' implies
F AP
— Let R be a rule in Fig.[l|orR|apart from (Xo) and (X1). For a fixed principal block
and fixed principal formula(s), let @1, . .. D, be all possible premises to a conclusion
P for the rule R. If = — \ @, for all i € [n] then we have - -~ \ P.

Proof. The argument is mainly straightforward. For the rules of the satisfiability game it
suffices to show that the conclusion implies the disjunction of the premises. Exceptions
are (Xo), (X1), (EU)” and (AU)’. These rules can be proven sound by , @
and (Ru-4). In some cases it is necessary to move side formulas first into and later out of
the principal block. O

Theorem 19 (Completeness). For all ¢ € ~CTL!: if |= ¢ then - .

Proof. Suppose |= ¢, i.e. - is unsatisfiable. According to Thm. |7} player V has a
winning strategy for the game G(—). Thanks to Thm. there is a ~p-tree T' which
follows the rules of Fig.|l|and|2|and whose root is —. By induction on the tree we can
construct a proof for ¢ using Lemma|[T8§] U

Altogether, the axiomatisation is sound and complete for —CTL¥, and hence also for
its fragments CTL and CTL™T.

6 Conclusion

A task for further work is obviously to extend these techniques to even larger fragments,
let alone CTL* itself. It remains to be seen whether the syntactic restriction in CTLF,
namely the fact that U-formulas inside of A-quantifiers must have state formulas as

Branching Time? Pruning Time! 15

arguments, can be relaxed. If these are path formulas to some extend then a connected
sequence of A-blocks which does not contain a regenerating R-formula need not become
U-pure eventually. The problem is then to find a logical principle which is sound w.r.t.
unsatisfiability and which allows one to strengthen such non-U-pure formula sets in order
to become unsatisfiable after too many unwindings.

Another problem in this context is the fact that Lemma] cannot be made to work for
universally path quantified formulas, i.e. by replacing each E in the corresponding rules
with A. The reader is invited to attempt to prove the resulting statement. The problem
essentially is that path formulas may hold somewhere in a path starting in a state but not
in other paths starting in the same state. This, however, is true for state formulas.

References

1. E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and System Sciences, 30:1-24, 1985.

2. E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On branching
versus linear time temporal logic. Journal of the ACM, 33(1):151-178, 1986.

3. E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of programs.
SIAM Journal on Computing, 29(1):132-158, 2000.

4. O. Friedmann, M. Latte, and M. Lange. A decision procedure for CTL* based on tableaux
and automata. In Proc. 5th Int. Joint Conf. on Automated Reasoning, IJCAR’10, volume 6173
of LNCS, pages 331-345. Springer, 2010.

5. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The temporal analysis of fairness. In Proc. 7th
Symp. on Principles of Programming Languages, POPL’80, pages 163—173. ACM, 1980.

6. J. Johannsen and M. Lange. CTL™ is complete for double exponential time. In Proc. 30th
Int. Coll. on Automata, Logics and Programming, ICALP’03, volume 2719 of LNCS, pages
767-775. Springer, 2003.

7. F. Kroger. Temporal Logic of Programs. Springer, 1987.

8. F. Kroger and S. Merz. Temporal Logic and State Systems. Texts in Theoretical Computer
Science. Springer, 2008.

9. M. Lange and C. Stirling. Focus games for satisfiability and completeness of temporal logic.
In Proc. 16th Symp. on Logic in Computer Science, LICS’01, Boston, MA, USA, 2001. IEEE.

10. O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability and completeness.
Logic Journal of the IGPL, 8(1):55-85, 2000.

11. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems Specifica-
tion. Springer, 1992.

12. D. A. Martin. Borel determinacy. Ann. Math., 102:363-371, 1975.

13. W. Penczek. Branching time and partial order in temporal logics. In L. Bolc and A. Szatas,
editors, Time and Logic — A Computational Approach, pages 179-228. UCL Press, London,
1995.

14. A. N. Prior. Time and modality. Oxford University Press, Oxford, UK, 1957.

15. M. Reynolds. An axiomatization of full computation tree logic. Journal of Symbolic Logic,
66(3):1011-1057, 2001.

16. M. Reynolds. An axiomatization of PCTL*. Information and Computation, 201(1):72-119,
2005.

17. M. Reynolds. A tableau for bundled CTL*. Journal of Logic and Computation, 17(1):117-132,
2007.

18. A.P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal
of the Association for Computing Machinery, 32(3):733-749, 1985.

	Branching Time? Pruning Time!

