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Introduction to CTL"

Origin: Emerson and Halpern '86
» supersedes the branching-time logic CTL and the linear-time
logic LTL

p-calculus

I

CTL”

/N

CTL LTL

» applied to specify and verify reactive and agent-based systems
» also applied to program synthesis

» however: decision procedures difficult to obtain

» worst case runtime: doubly exponential

» lower bound: Vardi and Stockmeyer '85
» upper bound: Emerson and Sistla '84; Emerson and Jutla '00



Decision procedures

Emerson-Jutla Method ('84)

> emptiness test of a tree automaton accepting all models

» drawbacks: no implementation, unintuitive proof structure,
constant branching degree

Reynolds’ Tableaux ('09)

» exhaustive tableau-search restricted by small model property

» drawbacks: fairly slow in practice, no intrinsic detection of
unfulfilled eventualities

> existence of infinite tableaux with global conditions

» drawbacks: requires automata deterministation for checking
global conditions
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Syntax of CTL"

Negation normal form

Yu=q|og|YAY VY| XY | YUY | YRy | EY | Ay

where g € P are propositional constants
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Negation normal form
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This talk: replace fixpoints ¥Ut, ¥Rt by Fi, G.
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Negation normal form
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where g € P are propositional constants

This talk: replace fixpoints ¥Ut, ¥Rt by Fi, G.
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Transition systems
TS T = (S,—,\) with
> (S,—) directed, total graph

» X :S — 27 labeling function
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Interpretation

Transition systems

TS 7T =(S,—, ) with
> (S,—) directed, total graph
» \:S — 27 labeling function

Path 7: sequence (s;)ien = S0, S1, - - . of states respecting edges

Notations: 7° = $;, 8i41,- - -



Semantics

Semantics of Formulas

» T, mEq iff ¢ € A(7(0))

> 7,7 ~q iff ¢ & A(m(0))
>T77T):¢1/\1/}2 |ffT77T):¢1 andTuﬂ):sz
>T77T):¢1\/1/}2 |ffT77T):¢1 or Tuﬂ)zsz

> 7,7 = Xt iff 7,7l =

» 7,7 EFy iff 7,7 = for some i € N

>» 7,7 =Gy iff 7,78 =1 forall ieN

» T, 1 EEy iff 7,7 = 1) for some 7 with 7(0) = 7(0)

» T,m =AY iff 7,7 =1 for all 7 with 7(0) =



A Tableau for CTL"

A tableau for 1 is a tree which imitates a potential model of ¥J.



A Tableau for CTL"

A tableau for 1 is a tree which imitates a potential model of ¥J.

A pre-tableau for a formula 9 is an infinite tree s.th.
» it is finitely branching,

» each node is labelled with a goal (as a set),

A, ..., AY,, EIL, ..., E,, A

N

set of literals in ¥

blocks

Example: {A{-p V ¢}, E{Xp,Fq}, —p, —q}.
Sloppy writing: A(—p V q) or E(Xp,II), e.g.
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A pre-tableau for a formula 9 is an infinite tree s.th.
» it is finitely branching,
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A Tableau for CTL"

A tableau for 1 is a tree which imitates a potential model of ¥J.

A pre-tableau for a formula 9 is an infinite tree s.th.
> it is finitely branching,
» each node is labelled with a goal (as a set),
AYy, ..., AY,, EILy, ..., EIl,,, A

Nzt AV Z) A NZEATL) A AA

Example: {A{-p V q}, E{Xp,Fq}, —p, —q}.
Sloppy writing: A(—p V q) or E(Xp,1I), e.g.



A Tableau for CTL"

A tableau for 1 is a tree which imitates a potential model of ¥J.

A pre-tableau for a formula 9 is an infinite tree s.th.

> it is finitely branching,
» each node is labelled with a goal (as a set),
A4, ..., AY,, EIly, ..., EIl,, A
» nodes are locally consistent, i.e.
» does not contain a literal together with its negation, and
» does not contain A{.
» root is labelled with E{¢},
» nodes follow the following rules ...



Rules of the Tableau — Logical Rules

Notations:  Trees are shown botanically correct.
Symbol ...|... separates alterative premisses.

Rules for Boolean connectives

B(p,1),® | E(6,11),® E(p, §,11), &
V) =V, o EN) Fon o), @
Alp, 9, %), ® A(p, X),A(¢, X), @
W) Yove ) e N e D)0
P
%) 20,9

Rules for literals

L LELO
E(¢,1I),®



Rules of the Tableau — Logical Rules

Notations:  Trees are shown botanically correct.
Symbol ...|... separates alterative premisses.

Rules for Boolean connectives

B(p,1),® | E(6,11),® E(p, §,11), &
V) =V, o EN) Fon o), @
Alp, 9, %), ® A(p, X),A(¢, X), @
W) Yove ) e N e D)0
P
%) 20,9

Rules for literals and path quantifiers

¢ EIL, ® Ep ,EIL, ® Ao ,EIL ®
— (EE) ————— (EA) ————
E(£,I),® E(Ep,I),® E( Ap ,II), @
0, | A%, ® Ep,® | AY,® Ap,® | AX,®
(Al) ————  (4E) (AR)

ACL,S),® A(Ep %), @ A(Ap %), ®



Rules of the Tableau — Temporal Rules

Characterisation as fixed points

Fo «— oV X(Fyp) Gp — © AX(Gp).

Corresponding rules

) FO . | EEE) DO EQ X)), 0
E(Fy,II), E(Gy, II), @
o) A XE, D), @ (1) A DY), ) @
A(Fy,X), @ A(Gy,XY), @



Rules of the Tableau — Successor Rules

Successor Rules
. EIl;,AY1,...,AY,, ... EIl,,AY,...,AYZ, (n > 0)
(%) EXILy,...,EXIL,, AXSq, ..., AXSm, A

AS, ..., AS,,

(%o) AXSq,..., AXS,, A

Notation: XI:={Xv | v € T'}.
Note: rule (Xo) ensures that the intended model is total.



Rules of the Tableau — Successor Rules

Successor Rules
. EIl;,AY1,...,AY,, ... EIl,,AY,...,AYZ, (n > 0)
(%) EXILy,...,EXIL,, AXSq, ..., AXSm, A

AS, ..., AS,,

(%o) AXSq,..., AXS,, A

Notation: XI:={Xv | v € T'}.
Note: rule (Xo) ensures that the intended model is total.

Lemma

Every infinite branch of a pre-tableau contains infinitely many
applications of rules (Xo) or (X1).



Pre-Tableau for AFGp A EGEF—p

%) A(FGp), A(Gp, FGp)
A(XFGp), A(XGp, XFGp)
A(p, XFGp), A(XGp, XFGp)
A(Gp, XFGp)
A(FGp), A(Gp, FGp)

(o) A(XFGp), A(XGp, XFGp), —p
A(p, XFGp), A(XGp, XFGp), —p
A(Gp, XFGp), E(—p) A(Gp, XFGp), E(EF—p, XGEF—p)
A(Gp, FGp), E(F—p) A(Gp, FGp), E(GEF—p)

(X1)

p; A(XGp, XFGp), E(XF—p), E(XGEF —p)
A(p, XFGp), A(XGp, XFGp), E(Fp), E(XGEF —p)

A(Gp, XFGp), E(EF—p, XGEF—p)
A(FGp), E(GEF—p)
E(AFGp, EGEF—p)

E(AFGp A\ EGEF—p)




Pre-Tableau for AFGp A\ EGEF—p

AxrGp) aGeparey) (D

\@Q W~ AFGp A EGEF—p

A(XFGp), A(XGp, XFGp), —p i

p. A(XGp, XFGp), E(XF-p), E(XGEF )



Pre-Tableau for AFGp A\ EGEF—p

A(FGp), A(Gp, FGp)
(Xo) A(XFGp), A(XGp, XFGp) C
A(p, XFGp), A(XGp, XFGp) é)

A(Gp, XFGp)

A(FGp), A(Gp, FG
(XO) ( p)7 ( P, p) @Q l?é AFGp A EGEF—p
A(XFGp), A(XGp, XFGp), —p T
A(p, XFGp), A(XGp, XFGp), —p
A(Gp, XFGp), E(—p) A(Gp, XFGp), E(EF—p, XGEF—p)
A(Gp, FGp),E(F—p) A(Gp,FGp), E(GEF—p)

(X1)

p, A(XGp, XFGp), E(XF—p), E(XGEF—p)
A(p, XFGp), A(XGp, XFGp), E(F—p), E(XGEF—p)
A(Gp, XFGp), E(EF—p, XGEF—p)
A(FGp), E(GEF—p)
E(AFGp, EGEF—p)
E(AFGp A EGEF—p)




Connection Relations

» Connection on the block level.
Example:

(EA) B > ‘ ] is connected to
E(Ap,II) , AY (on block level)



Connection Relations

» Connection on the block level.
Example:

(EA) B > ‘ ] is connected to
E(Ap,II) , AY (on block level)

» Connection on the formula level.
Example:

EA Ap EIl,AY is connected to

E(Ap, II),A X (on formula level)




Traces and Threads

Traces

» A trace is an infinite sequence of connected blocks.

» A trace is an E- resp. A- trace iff the block quantifier
eventually remains E resp. A.

» A thread is an infinite sequence of connected formulas.

» A thread is an F- resp. G-thread iff there is some 9 s.t. the
thread finally alternates between Fi) or XF1) (resp. G...).



Traces and Threads

Traces

» A trace is an infinite sequence of connected blocks.

» A trace is an E- resp. A- trace iff the block quantifier
eventually remains E resp. A.

» A thread is an infinite sequence of connected formulas.

» A thread is an F- resp. G-thread iff there is some 9 s.t. the
thread finally alternates between Fi) or XF1) (resp. G...).

Lemma
» Any trace is either an E- or an A-trace.

» Any thread is either an F- or a G-thread.



Tableau

Pre-tableaux are insufficient — an informal dicussion

» In the intended model

» every formula on a F-thread is false, and
» every formula on a G-thread is true.

» Blocks in an E-trace is understood as a conjunction.
» Avoid F-threads.

» Blocks in an A-trace is understood as a disjunction.
> Assure a G-thread.

Definiton

A tableau for ¥ is a pre-tableau for ¥ iff on every branch we have
» every E-trace does not contain an F-thread, and
> every A-trace contains a G-thread.

Such traces and branches are called good.



(X

o)

Successful Tableau for AFGp A EGEF—p

A(Gp, XFGp)
A(Gp, FGp)

(%) p; A(XGp, XFGp) C®
A(p, XFGp), A(XGp, XFGp) ‘
A(Gp, XFGp) (=p)

A(FGp), A(Gp, FGp)

A(XFGp), A(XGp, XFGp), —p Q = AFGp A EGEF—p
A(p, XFGp), A(XGp, XFGp), —p
A(Gp, XFGp), E(—p) A(Gp, XFGp), E(EF—p, XGEF—p)
A(Gp, FGp), E(F—p) A(Gp, FGp), E(GEF—p)

(X1)

p, A(XGp, XFGp), E(XF—p), E(XGEF—p)
A(p, XFGp), A(XGp, XFGp), E(F—p), E(XGEF—p)
A(Gp, XFGp), E(EF—p, XGEF—p)
A(FGp), E(GEF—p)
E(AFGp, EGEF—p)
E(AFGp A EGEF—p)




(X

o)

Successful Tableau for AFGp A EGEF—p

A(Gp, XFGp)
A(Gp, FGp
(%o) D, A((XG]), XFz;p)
A(p,XFGp), A(XGp, XFGp)
A(Gp, XFGp)
A(FGp), A(Gp, FGp)
A(XFGp), A(XGp, XFGp), —p
A(p, XFGp), A(XGp, XFGp), —p
A(Gp, XFGp),E(—p) A(Gp, XFGp), E(EF—p, XGEF—p)
A(Gp,FGp),E(F—p) A(Gp,FGp),E(GEF—p)
p, A(XGp, XFGp), E(XF—p), E(XGEF—p)
A(p, XFGp), A(XGp, XFGp), E(F—p), E(XGEF—p)
A(Gp, XFGp), E(EF—p, XGEF—p)
A(FGp), E(GEF—p)
E(AFGp, EGEF—p)
E(AFGp A EGEF—p)

(X1)




(X

o)

Successful Tableau for AFGp A EGEF—p

A(Gp, XFGp)
A(Gp, FGp
(o) P, A((XGp, XFz;p)
A(p, XFGp), A(XGp, XFGp)
A(Gp, XFGp)
A(FGp), A(Gp, FGp)
A(XFGp), A(XGp, XFGp), —p
A(p, XFGp), A(XGp, XFGp), —p
A(Gp, XFGp), E(—p) A(Gp, XFGp), E(EF—p, XGEF—p)
A(Gp,FGp),E(F—p) A(Gp,FGp), E(GEF—p)
p, A(XGp, XFGp), E(XF—p), E(XGEF—p)
A(p, XFGp), A(XGp, XFGp), E(F—p), E(XGEF—p)
A(Gp, XFGp), E(EF—p, XGEF—p)
A(FGp), E(GEF—p)
E(AFGp, EGEF—p)
E(AFGp A EGEF—p)

(X1)




Soundness

If there is a tableau for CTL*-formula ¥ then ¥ is satisfiable.

Proof sketch.

Collapse given tableau to an interpretation and show that this
interpretation models 9. O



Completeness

Theorem

If a CTL*-formula ¥ is satisfiable then it has a tableau.

Proof sketch.

» Construct a pre-tableaux for ¥} by unrolling a model of ¥ s.th.
the unraveled model satisfied the current goal.

» For rules with alternatives premises: prefer premises
decomposing the principal formula obeying the model.

» Hence, Fy is rewritten to ¢ as soon as possible, for
instance. ]



Completeness

Theorem

If a CTL*-formula ¥ is satisfiable then it has a tableau.

Proof sketch.

» Construct a pre-tableaux for ¥} by unrolling a model of ¥ s.th.
the unraveled model satisfied the current goal.

» For rules with alternatives premises: prefer premises
decomposing the principal formula obeying the model.

» Hence, Fy is rewritten to ¢ as soon as possible, for
instance. ]

Remark

» Completeness proof does not use the small model property.
(That is, replace fixed points by approximants.)

» We have not use any automata or game theory so far.



Decision Procedure

there is a tableau for ¥
Given a CTL*-formula ¥, decide whether ¥ issatisfiable.



Decision Procedure

there is a tableau for ¥
Given a CTL*-formula ¥, decide whether ¥ issatisfiable.

Idea: treat a tableau as a parity game.



Tableau — Game

The property separating tableaux from pre-tableaux is w-regular.



Tableau — Game

The property separating tableaux from pre-tableaux is w-regular.

Game

Given an appropriate deterministic w-automaton A.
» States: pairs of goals for ¥ and A’s of state.
» Proponent chooses the rule application.

» Opponent chooses the premise
whenever the rule application is branching.

v

Additionally, edges respect the transition relation of A.

v

Turn A's acceptance condition into that of the game.



Tableau — Game

Observation

The property separating tableaux from pre-tableaux is w-regular.

Game

Given an appropriate deterministic w-automaton A.
» States: pairs of goals for ¥ and A’s of state.
» Proponent chooses the rule application.

» Opponent chooses the premise
whenever the rule application is branching.

v

Additionally, edges respect the transition relation of A.

v

Turn A's acceptance condition into that of the game.

Property

Proponent has a winning strategy for E{J}
iff
¥ has a tableau.



Tableau — Game — Automata

Alphabet X5°%:=%, x 25u0(),
Second component marks an A- or E-block in the first component.

non-det. co-Bichi, over Eg'“k non-det. co-Biichi, over Eg‘“k
A-trace contains a R-thread; E-trace contain an U-thread;
A-trace is good E-trace is bad

complementation

det. Biichi, over Yblock SR,
i non-det. Biichi, over ¥y

A-trace does not contain — -
Branch is bad

a R-thread; A-trace is bad

determinisation &
complementation

det. parity aut. A, over Xy

Branch is good




Conclusion

Summary

>
>

>

>

Tableau is sound and complete for CTL*.
Rules are “natural”.

Correctness proof relies on neither automata theory nor game
theory nor the small model property.

The decision procedure uses game theory as a back-end and
can benefit from it.

Complexity of the decision procedure optimal.

Implementation

>

http://www.tcs.ifi.lmu.de/mlsolver/.

Future Work

>

>

>

Implement Emerson’s procedure (as a comparison).
Find a way to avoid or to reduce determinisation.

Find a proof system for CTL" with natural axioms and rules
—as opposed to existing ones.
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