A Decision Procedure for CTL* Based on Tableaux and Automata

Oliver Friedmann 1 Markus Latte 1 Martin Lange 2

- ¹ Dept. of Computer Science, Ludwig-Maximilians-University, Munich, Germany
- Dept. of Electrical Engineering and Computer Science, University of Kassel, Germany

IJCAR

Edinburgh, 16-19 July 2010

Introduction to CTL*

Origin: Emerson and Halpern '86

supersedes the branching-time logic CTL and the linear-time logic LTL

- applied to specify and verify reactive and agent-based systems
- ▶ also applied to program synthesis
- however: decision procedures difficult to obtain
- worst case runtime: doubly exponential
 - ▶ lower bound: Vardi and Stockmeyer '85
 - upper bound: Emerson and Sistla '84; Emerson and Jutla '00

Decision procedures

Emerson-Jutla Method ('84)

- emptiness test of a tree automaton accepting all models
- drawbacks: no implementation, unintuitive proof structure, constant branching degree

Reynolds' Tableaux ('09)

- exhaustive tableau-search restricted by small model property
- drawbacks: fairly slow in practice, no intrinsic detection of unfulfilled eventualities

Our System

- existence of infinite tableaux with global conditions
- drawbacks: requires automata deterministation for checking global conditions

Table of contents

- Syntax and Semantic of CTL*
- A Tableau for CTL*
 - Definition of a Pretableau
 - Definition of a Tableau
 - Soundness and Completeness
- A Decision Procedure

Syntax of CTL*

Negation normal form

$$\psi ::= q \mid \neg q \mid \psi \land \psi \mid \psi \lor \psi \mid \mathtt{X}\psi \mid \psi \mathtt{U}\psi \mid \psi \mathtt{R}\psi \mid \mathtt{E}\psi \mid \mathtt{A}\psi$$

where $q \in \mathcal{P}$ are propositional constants

Syntax of CTL*

Negation normal form

$$\psi ::= q \mid \neg q \mid \psi \wedge \psi \mid \psi \vee \psi \mid \mathtt{X}\psi \mid \mathtt{YMG} \mid \mathtt{WRG} \mid \mathtt{E}\psi \mid \mathtt{A}\psi$$

where $q \in \mathcal{P}$ are propositional constants

This talk: replace fixpoints $\psi U \psi$, $\psi R \psi$ by $F \psi$, $G \psi$.

Syntax of CTL*

Negation normal form

$$\psi ::= q \mid \neg q \mid \psi \land \psi \mid \psi \lor \psi \mid \mathsf{X}\psi \mid \mathsf{F}\psi \mid \mathsf{G}\psi \mid \mathsf{E}\psi \mid \mathsf{A}\psi$$

where $q \in \mathcal{P}$ are propositional constants

This talk: replace fixpoints $\psi U \psi$, $\psi R \psi$ by $F \psi$, $G \psi$.

Interpretation

Transition systems

TS $\mathcal{T} = (\mathcal{S}, \rightarrow, \lambda)$ with

- $ightharpoonup (\mathcal{S},
 ightarrow)$ directed, total graph
- lacksquare $\lambda: \mathcal{S}
 ightarrow 2^{\mathcal{P}}$ labeling function

Interpretation

Transition systems

TS $\mathcal{T} = (\mathcal{S}, \rightarrow, \lambda)$ with

- $ightharpoonup (\mathcal{S},
 ightarrow)$ directed, total graph
- $\lambda: \mathcal{S} \to 2^{\mathcal{P}}$ labeling function

Path π : sequence $(s_i)_{i\in\mathbb{N}}=s_0,s_1,\ldots$ of states respecting edges

Interpretation

Transition systems

TS $\mathcal{T} = (\mathcal{S}, \rightarrow, \lambda)$ with

- $ightharpoonup (\mathcal{S},
 ightarrow)$ directed, total graph
- lacksquare $\lambda: \mathcal{S} o 2^{\mathcal{P}}$ labeling function

Path π : sequence $(s_i)_{i\in\mathbb{N}}=s_0,s_1,\ldots$ of states respecting edges

Notations: $\pi^i = s_i, s_{i+1}, \dots$

Semantics

Semantics of Formulas

$$ightharpoonup T, \pi \models q \qquad \qquad \text{iff } q \in \lambda(\pi(0))$$

$$\blacktriangleright \ \mathcal{T}, \pi \models \neg q \qquad \qquad \text{iff } q \not\in \lambda(\pi(0))$$

$$ightharpoonup \mathcal{T}, \pi \models \psi_1 \wedge \psi_2 \quad \text{iff } \mathcal{T}, \pi \models \psi_1 \text{ and } \mathcal{T}, \pi \models \psi_2$$

$$ightharpoonup \mathcal{T}, \pi \models \psi_1 \lor \psi_2 \quad \text{ iff } \mathcal{T}, \pi \models \psi_1 \text{ or } \quad \mathcal{T}, \pi \models \psi_2$$

$$ightharpoonup \mathcal{T}, \pi \models \mathtt{F} \psi \qquad \qquad \mathsf{iff} \ \mathcal{T}, \pi^i \models \psi \ \mathsf{for \ some} \ i \in \mathbb{N}$$

$$\blacktriangleright \ \mathcal{T}, \pi \models \mathsf{G} \psi \qquad \qquad \mathsf{iff} \ \mathcal{T}, \pi^i \models \psi \ \mathsf{for \ all} \qquad i \in \mathbb{N}$$

$$\blacktriangleright \ \mathcal{T}, \pi \models \mathtt{E} \psi \qquad \qquad \mathsf{iff} \ \mathcal{T}, \widetilde{\pi} \models \psi \ \mathsf{for \ some} \ \widetilde{\pi} \ \mathsf{with} \ \pi(0) = \widetilde{\pi}(0)$$

$$\blacktriangleright \ \mathcal{T}, \pi \models \mathtt{A} \psi \qquad \qquad \mathrm{iff} \ \mathcal{T}, \widetilde{\pi} \models \psi \ \mathrm{for \ all} \qquad \widetilde{\pi} \ \mathrm{with} \ \pi(0) = \widetilde{\pi}(0)$$

A tableau for ϑ is a tree which imitates a potential model of ϑ .

A tableau for ϑ is a tree which imitates a potential model of ϑ .

A pre-tableau for a formula ϑ is an infinite tree s.th.

- it is finitely branching,
- each node is labelled with a goal (as a set),

Example: $\{A\{\neg p \lor q\}, \ E\{Xp,Fq\}, \ \neg p, \ \neg q\}.$ Sloppy writing: $A(\neg p \lor q)$ or $E(Xp,\Pi)$, e.g.

A tableau for ϑ is a tree which imitates a potential model of ϑ .

A pre-tableau for a formula ϑ is an infinite tree s.th.

- ▶ it is finitely branching,
- each node is labelled with a goal (as a set),

Example: $\{A\{\neg p\vee q\},\ E\{Xp,Fq\},\ \neg p,\ \neg q\}.$ Sloppy writing: $A(\neg p\vee q)$ or $E(Xp,\Pi)$, e.g.

A tableau for ϑ is a tree which imitates a potential model of ϑ .

A pre-tableau for a formula ϑ is an infinite tree s.th.

- it is finitely branching,
- each node is labelled with a goal (as a set),

$$\mathtt{A}\Sigma_1,\;\ldots,\;\mathtt{A}\Sigma_n,\;\mathtt{E}\Pi_1,\;\ldots,\;\mathtt{E}\Pi_m,\;\Lambda$$

$$\textstyle \bigwedge_{i=1}^n \mathtt{A}(\bigvee \Sigma_i) \ \land \ \textstyle \bigwedge_{i=1}^m \mathtt{E}(\bigwedge \Pi_i) \ \land \ \textstyle \bigwedge \Lambda$$

Example:
$$\{A\{\neg p\vee q\},\ E\{Xp,Fq\},\ \neg p,\ \neg q\}.$$
 Sloppy writing: $A(\neg p\vee q)$ or $E(Xp,\Pi)$, e.g.

A tableau for ϑ is a tree which imitates a potential model of ϑ .

A pre-tableau for a formula ϑ is an infinite tree s.th.

- it is finitely branching,
- each node is labelled with a goal (as a set),

$$\mathsf{A}\Sigma_1, \ldots, \mathsf{A}\Sigma_n, \mathsf{E}\Pi_1, \ldots, \mathsf{E}\Pi_m, \Lambda$$

- nodes are locally consistent, i.e.
 - does not contain a literal together with its negation, and
 - ▶ does not contain AØ.
- ▶ root is labelled with $E\{\vartheta\}$,
- ▶ nodes follow the following rules . . .

Rules of the Tableau – Logical Rules

Notations: Trees are shown botanically correct.

Symbol ... | ... separates alterative premisses.

Rules for Boolean connectives

$$(E\vee) \frac{E(\varphi,\Pi),\Phi \mid E(\psi,\Pi),\Phi}{E(\varphi\vee\psi,\Pi),\Phi}$$

$$(E \wedge) \frac{E(\varphi, \psi, \Pi), \Phi}{E(\varphi \wedge \psi, \Pi), \Phi}$$

$$(\mathsf{A}\vee) \frac{\mathsf{A}(\varphi,\psi,\Sigma),\Phi}{\mathsf{A}(\varphi\vee\psi,\Sigma),\Phi}$$

$$(\mathtt{A}\wedge) \ \frac{\mathtt{A}(\varphi,\Sigma),\mathtt{A}(\psi,\Sigma),\Phi}{\mathtt{A}(\varphi\wedge\psi,\Sigma),\Phi}$$

 $(Ett) \frac{\Phi}{F \emptyset \Phi}$

(E1)
$$\frac{\ell, \text{E}\Pi, \Phi}{\text{E}(\ell, \Pi), \Phi}$$

$$(A1) = \frac{\ell, \Phi \mid A\Sigma, \Phi}{A(\ell, \Sigma), \Phi}$$

Rules of the Tableau – Logical Rules

Notations: Trees are shown botanically correct.

Symbol ... | ... separates alterative premisses.

Rules for Boolean connectives

$$(\mathsf{E}\vee) \ \frac{\mathsf{E}(\varphi,\Pi), \Phi \ | \ \mathsf{E}(\psi,\Pi), \Phi}{\mathsf{E}(\varphi\vee\psi,\Pi), \Phi} \qquad (\mathsf{E}\wedge) \ \frac{\mathsf{E}(\varphi,\psi,\Pi), \Phi}{\mathsf{E}(\varphi\wedge\psi,\Pi), \Phi}$$

$$(A \lor) \frac{A(\varphi, \psi, \Sigma), \Phi}{A(\varphi \lor \psi, \Sigma), \Phi}$$

$$(A \land) \frac{A(\varphi, \Sigma), A(\psi, \Sigma), \Phi}{A(\varphi \land \psi, \Sigma), \Phi}$$

(Ett)
$$\frac{\Phi}{E\emptyset, \Phi}$$

Rules for literals and path quantifiers

$$(E1) \frac{ \ell, E\Pi, \Phi}{ E(\ell, \Pi), \Phi} \qquad (EE) \frac{ E\varphi, E\Pi, \Phi}{ E(E\varphi, \Pi), \Phi} \qquad (EA) \frac{ A\varphi, E\Pi, \Phi}{ E(A\varphi, \Pi), \Phi}$$

$$(\text{A1}) \frac{\textcolor{red}{\ell}, \Phi + \text{A}\Sigma, \Phi}{\text{A}(\textcolor{red}{\ell}, \Sigma), \Phi} \qquad (\text{AE}) \frac{\textcolor{red}{\mathbb{E}\varphi}, \Phi + \text{A}\Sigma, \Phi}{\text{A}(\textcolor{red}{\mathbb{E}\varphi}, \Sigma), \Phi} \qquad (\text{AA}) \frac{\textcolor{red}{\mathbb{A}\varphi}, \Phi + \text{A}\Sigma, \Phi}{\text{A}(\textcolor{red}{\mathbb{A}\varphi}, \Sigma), \Phi}$$

Rules of the Tableau – Temporal Rules

Characterisation as fixed points

$$F\varphi \leftrightarrow \varphi \lor X(F\varphi)$$

$$G\varphi \leftrightarrow \varphi \wedge X(G\varphi).$$

Corresponding rules

$$(\mathrm{EF}) \ \frac{\mathrm{E}(\psi,\Pi), \Phi \ | \ \mathrm{E}(\mathrm{X}(\mathrm{F}\psi),\Pi), \Phi}{\mathrm{E}(\mathrm{F}\psi,\Pi), \Phi} \ (\mathrm{EG}) \ \frac{\mathrm{E}(\psi,\mathrm{X}(\mathrm{G}\psi),\Pi), \Phi}{\mathrm{E}(\mathrm{G}\psi,\Pi), \Phi}$$

$$(AF) \frac{A(\psi, X(F\psi), \Sigma), \Phi}{A(F\psi, \Sigma), \Phi}$$

$$(\mathtt{AG}) \ \frac{\mathtt{A}(\psi, \Sigma), \mathtt{A}(\mathtt{X}(\mathtt{G}\psi), \Sigma), \Phi}{\mathtt{A}(\mathtt{G}\psi, \Sigma), \Phi}$$

Rules of the Tableau – Successor Rules

Successor Rules

$$(\mathbf{X}_1) \ \frac{\mathbf{E}\Pi_1, \mathbf{A}\Sigma_1, \dots, \mathbf{A}\Sigma_m \quad \dots \quad \mathbf{E}\Pi_n, \mathbf{A}\Sigma_1, \dots, \mathbf{A}\Sigma_m \qquad (n>0)}{\mathbf{E}\mathbf{X}\Pi_1, \dots, \mathbf{E}\mathbf{X}\Pi_n, \mathbf{A}\mathbf{X}\Sigma_1, \dots, \mathbf{A}\mathbf{X}\Sigma_m, \boldsymbol{\Lambda} }$$

$$(\mathbf{X}_{\mathbf{0}}) \ \frac{\mathbf{A}\Sigma_{1}, \dots, \mathbf{A}\Sigma_{m}}{\mathbf{A}\mathbf{X}\Sigma_{1}, \dots, \mathbf{A}\mathbf{X}\Sigma_{m}, \boldsymbol{\Lambda}}$$

Notation: $X\Gamma := \{X\gamma \mid \gamma \in \Gamma\}.$

Note: rule (X_0) ensures that the intended model is total.

Rules of the Tableau – Successor Rules

Successor Rules

$$(\mathbf{X}_1) \ \frac{\mathbf{E}\Pi_1, \mathbf{A}\Sigma_1, \dots, \mathbf{A}\Sigma_m \quad \dots \quad \mathbf{E}\Pi_n, \mathbf{A}\Sigma_1, \dots, \mathbf{A}\Sigma_m \qquad (n>0) }{\mathbf{E}\mathbf{X}\Pi_1, \dots, \mathbf{E}\mathbf{X}\Pi_n, \mathbf{A}\mathbf{X}\Sigma_1, \dots, \mathbf{A}\mathbf{X}\Sigma_m, \boldsymbol{\Lambda} }$$

$$(\mathtt{X}_\mathtt{O}) \ \dfrac{\mathtt{A}\Sigma_1, \dots, \mathtt{A}\Sigma_m}{\mathtt{A}\mathtt{X}\Sigma_1, \dots, \mathtt{A}\mathtt{X}\Sigma_m, \Lambda}$$

Notation: $X\Gamma := \{X\gamma \mid \gamma \in \Gamma\}.$

Note: rule (X_0) ensures that the intended model is total.

Lemma

Every infinite branch of a pre-tableau contains infinitely many applications of rules (X_0) or (X_1) .

Pre-Tableau for $AFGp \land EGEF \neg p$

Pre-Tableau for $AFGp \land EGEF \neg p$

Pre-Tableau for $AFGp \land EGEF \neg p$

Connection Relations

Connection on the block level. Example:

(EA)
$$A\varphi$$
, $E\Pi$, $A\Sigma$ is connected to (on block level)

Connection Relations

Connection on the block level. Example:

► Connection on the formula level.

Example:

$$(EA) \frac{A \varphi, E \Pi, A \Sigma}{E(A\varphi, \Pi), A \Sigma} \xrightarrow{\text{is connected to}} (on formula level)$$

Traces and Threads

Traces

- ► A trace is an infinite sequence of connected blocks.
- ► A trace is an E- resp. A- trace iff the block quantifier eventually remains E resp. A.

Thread

- A thread is an infinite sequence of connected formulas.
- ▶ A thread is an F- resp. G-thread iff there is some ψ s.t. the thread finally alternates between F ψ or XF ψ (resp. G. . .).

Traces and Threads

Traces

- ► A trace is an infinite sequence of connected blocks.
- ► A trace is an E- resp. A- trace iff the block quantifier eventually remains E resp. A.

Thread

- A thread is an infinite sequence of connected formulas.
- ▶ A thread is an F- resp. G-thread iff there is some ψ s.t. the thread finally alternates between F ψ or XF ψ (resp. G. . .).

Lemma

- ▶ Any trace is either an E- or an A-trace.
- ▶ Any thread is either an F- or a G-thread.

Tableau

Pre-tableaux are insufficient – an informal dicussion

- In the intended model
 - every formula on a F-thread is false, and
 - every formula on a G-thread is true.
- Blocks in an E-trace is understood as a conjunction.
 - Avoid F-threads.
- ▶ Blocks in an A-trace is understood as a disjunction.
 - Assure a G-thread.

Definiton

A tableau for ϑ is a pre-tableau for ϑ iff on every branch we have

- every E-trace does not contain an F-thread, and
- every A-trace contains a G-thread.

Such traces and branches are called good.

Successful Tableau for $AFGp \land EGEF \neg p$

Successful Tableau for $AFGp \land EGEF \neg p$

Successful Tableau for $AFGp \land EGEF \neg p$

Soundness

Theorem

If there is a tableau for CTL^* -formula ϑ then ϑ is satisfiable.

Proof sketch.

Collapse given tableau to an interpretation and show that this interpretation models $\vartheta.$

Completeness

Theorem

If a CTL^* -formula ϑ is satisfiable then it has a tableau.

Proof sketch.

- ▶ Construct a pre-tableaux for ϑ by unrolling a model of ϑ s.th. the unraveled model satisfied the current goal.
- For rules with alternatives premises: prefer premises decomposing the principal formula obeying the model.
- ▶ Hence, $F\varphi$ is rewritten to φ as soon as possible, for instance.

Completeness

Theorem

If a CTL^* -formula ϑ is satisfiable then it has a tableau.

Proof sketch.

- ▶ Construct a pre-tableaux for ϑ by unrolling a model of ϑ s.th. the unraveled model satisfied the current goal.
- For rules with alternatives premises: prefer premises decomposing the principal formula obeying the model.
- ▶ Hence, $F\varphi$ is rewritten to φ as soon as possible, for instance.

Remark

- ► Completeness proof does not use the small model property. (That is, replace fixed points by approximants.)
- ▶ We have not use any automata or game theory so far.

Decision Procedure

there is a tableau for ϑ

Given a CTL^* -formula ϑ , decide whether $\overline{\vartheta}$ is satisfiable.

Decision Procedure

there is a tableau for ϑ

Given a CTL^* -formula ϑ , decide whether $\underline{\vartheta}$ is satisfiable.

Idea: treat a tableau as a parity game.

Tableau → **Game**

Observation

The property separating tableaux from pre-tableaux is $\omega\text{-regular}.$

Tableau → **Game**

Observation

The property separating tableaux from pre-tableaux is ω -regular.

Game

Given an appropriate deterministic ω -automaton \mathcal{A} .

- States: pairs of goals for ϑ and \mathcal{A} 's of state.
- Proponent chooses the rule application.
- Opponent chooses the premise whenever the rule application is branching.
- ightharpoonup Additionally, edges respect the transition relation of A.
- ► Turn A's acceptance condition into that of the game.

Tableau → **Game**

Observation

The property separating tableaux from pre-tableaux is ω -regular.

Game

Given an appropriate deterministic ω -automaton \mathcal{A} .

- ▶ States: pairs of goals for ϑ and \mathcal{A} 's of state.
- ▶ Proponent chooses the rule application.
- Opponent chooses the premise whenever the rule application is branching.
- \triangleright Additionally, edges respect the transition relation of \mathcal{A} .
- ▶ Turn A's acceptance condition into that of the game.

Property

Proponent has a winning strategy for $\mathrm{E}\{\vartheta\}$ iff ϑ has a tableau.

Tableau → **Game** — **Automata**

Alphabet $\Sigma_{\vartheta}^{\mathsf{block}} := \Sigma_{\vartheta} \times 2^{Sub(\vartheta)}$.

Second component marks an A- or E-block in the first component.

Conclusion

Summary

- ▶ Tableau is sound and complete for CTL*.
- Rules are "natural".
- Correctness proof relies on neither automata theory nor game theory nor the small model property.
- ► The decision procedure uses game theory as a back-end and can benefit from it.
- ► Complexity of the decision procedure optimal.

Implementation

http://www.tcs.ifi.lmu.de/mlsolver/.

Future Work

- Implement Emerson's procedure (as a comparison).
- Find a way to avoid or to reduce determinisation.
- ► Find a proof system for CTL* with natural axioms and rules
 - —as opposed to existing ones.