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Introduction to CTL∗

Origin: Emerson and Halpern ’86

◮ supersedes the branching-time logic CTL and the linear-time
logic LTL

µ-calculus

CTL∗

CTL LTL

◮ applied to specify and verify reactive and agent-based systems

◮ also applied to program synthesis

◮ however: decision procedures difficult to obtain

◮ worst case runtime: doubly exponential
◮ lower bound: Vardi and Stockmeyer ’85
◮ upper bound: Emerson and Sistla ’84; Emerson and Jutla ’00



Decision procedures

Emerson-Jutla Method (’84)

◮ emptiness test of a tree automaton accepting all models

◮ drawbacks: no implementation, unintuitive proof structure,
constant branching degree

Reynolds’ Tableaux (’09)

◮ exhaustive tableau-search restricted by small model property

◮ drawbacks: fairly slow in practice, no intrinsic detection of
unfulfilled eventualities

Our System

◮ existence of infinite tableaux with global conditions

◮ drawbacks: requires automata deterministation for checking
global conditions
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Syntax of CTL∗

Negation normal form

ψ ::= q | ¬q | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ | ψRψ | Eψ | Aψ

where q ∈ P are propositional constants
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Negation normal form

ψ ::= q | ¬q | ψ ∧ ψ | ψ ∨ ψ | Xψ | Fψ | Gψ | Eψ | Aψ

where q ∈ P are propositional constants

This talk: replace fixpoints ψUψ, ψRψ by Fψ, Gψ.
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Interpretation

Transition systems

TS T = (S,→, λ) with

◮ (S,→) directed, total graph

◮ λ : S → 2P labeling function

Path π: sequence (si)i∈N = s0, s1, . . . of states respecting edges

Notations: πi = si, si+1, . . .



Semantics

Semantics of Formulas

◮ T , π |= q iff q ∈ λ(π(0))

◮ T , π |= ¬q iff q 6∈ λ(π(0))

◮ T , π |= ψ1 ∧ ψ2 iff T , π |= ψ1 and T , π |= ψ2

◮ T , π |= ψ1 ∨ ψ2 iff T , π |= ψ1 or T , π |= ψ2

◮ T , π |= Xψ iff T , π1 |= ψ

◮ T , π |= Fψ iff T , πi |= ψ for some i ∈ N

◮ T , π |= Gψ iff T , πi |= ψ for all i ∈ N

◮ T , π |= Eψ iff T , π̃ |= ψ for some π̃ with π(0) = π̃(0)

◮ T , π |= Aψ iff T , π̃ |= ψ for all π̃ with π(0) = π̃(0)
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A tableau for ϑ is a tree which imitates a potential model of ϑ.



A Tableau for CTL∗

A tableau for ϑ is a tree which imitates a potential model of ϑ.

A pre-tableau for a formula ϑ is an infinite tree s.th.

◮

Example: {A{¬p ∨ q}, E{Xp, Fq}, ¬p, ¬q}.
Sloppy writing: A(¬p ∨ q) or E(Xp,Π), e.g.

it is finitely branching,

◮ each node is labelled with a goal (as a set),

AΣ1 , . . . , AΣn , EΠ1 , . . . , EΠm , Λ

set of literals in ϑ

blocks
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A tableau for ϑ is a tree which imitates a potential model of ϑ.

A pre-tableau for a formula ϑ is an infinite tree s.th.

◮
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A Tableau for CTL∗

A tableau for ϑ is a tree which imitates a potential model of ϑ.

A pre-tableau for a formula ϑ is an infinite tree s.th.

◮ it is finitely branching,

◮ each node is labelled with a goal (as a set),

AΣ1, . . . , AΣn, EΠ1, . . . , EΠm, Λ

◮ nodes are locally consistent, i.e.
◮ does not contain a literal together with its negation, and
◮ does not contain A∅.

◮ root is labelled with E{ϑ},

◮ nodes follow the following rules . . .



Rules of the Tableau – Logical Rules

Notations: Trees are shown botanically correct.
Symbol . . . | . . . separates alterative premisses.

Rules for Boolean connectives
E(ϕ,Π),Φ | E(ψ,Π),Φ

(E∨)
E(ϕ ∨ ψ,Π),Φ

E(ϕ,ψ,Π),Φ
(E∧)

E(ϕ ∧ ψ,Π),Φ

A(ϕ, ψ,Σ),Φ
(A∨)

A(ϕ ∨ ψ,Σ),Φ

A(ϕ,Σ), A(ψ,Σ),Φ
(A∧)

A(ϕ ∧ ψ,Σ),Φ

Φ(Ett)
E∅,Φ

Rules for literals

ℓ , EΠ,Φ
(El)

E( ℓ ,Π),Φ

ℓ ,Φ | AΣ,Φ
(Al)

A( ℓ ,Σ),Φ



Rules of the Tableau – Logical Rules

Notations: Trees are shown botanically correct.
Symbol . . . | . . . separates alterative premisses.

Rules for Boolean connectives
E(ϕ,Π),Φ | E(ψ,Π),Φ

(E∨)
E(ϕ ∨ ψ,Π),Φ

E(ϕ,ψ,Π),Φ
(E∧)

E(ϕ ∧ ψ,Π),Φ

A(ϕ, ψ,Σ),Φ
(A∨)

A(ϕ ∨ ψ,Σ),Φ

A(ϕ,Σ), A(ψ,Σ),Φ
(A∧)

A(ϕ ∧ ψ,Σ),Φ

Φ(Ett)
E∅,Φ

Rules for literals and path quantifiers

ℓ , EΠ,Φ
(El)

E( ℓ ,Π),Φ

Eϕ , EΠ,Φ
(EE)

E( Eϕ ,Π),Φ

Aϕ , EΠ,Φ
(EA)

E( Aϕ ,Π),Φ

ℓ ,Φ | AΣ,Φ
(Al)

A( ℓ ,Σ),Φ

Eϕ ,Φ | AΣ,Φ
(AE)

A( Eϕ ,Σ),Φ

Aϕ ,Φ | AΣ,Φ
(AA)

A( Aϕ ,Σ),Φ



Rules of the Tableau – Temporal Rules

Characterisation as fixed points

Fϕ↔ ϕ ∨ X(Fϕ) Gϕ↔ ϕ ∧ X(Gϕ).

Corresponding rules

E(ψ,Π),Φ | E(X(Fψ),Π),Φ
(EF)

E(Fψ,Π),Φ

E(ψ, X(Gψ),Π),Φ
(EG)

E(Gψ,Π),Φ

A(ψ, X(Fψ),Σ),Φ
(AF)

A(Fψ,Σ),Φ

A(ψ,Σ), A(X(Gψ),Σ),Φ
(AG)

A(Gψ,Σ),Φ



Rules of the Tableau – Successor Rules

Successor Rules
EΠ1, AΣ1, . . . , AΣm . . . EΠn, AΣ1, . . . , AΣm (n > 0)

(X1)
EXΠ1, . . . , EXΠn, AXΣ1, . . . , AXΣm,Λ

AΣ1, . . . , AΣm

(X0)
AXΣ1, . . . , AXΣm,Λ

Notation: XΓ:={Xγ | γ ∈ Γ}.
Note: rule (X0) ensures that the intended model is total.



Rules of the Tableau – Successor Rules

Successor Rules
EΠ1, AΣ1, . . . , AΣm . . . EΠn, AΣ1, . . . , AΣm (n > 0)

(X1)
EXΠ1, . . . , EXΠn, AXΣ1, . . . , AXΣm,Λ

AΣ1, . . . , AΣm

(X0)
AXΣ1, . . . , AXΣm,Λ

Notation: XΓ:={Xγ | γ ∈ Γ}.
Note: rule (X0) ensures that the intended model is total.

Lemma

Every infinite branch of a pre-tableau contains infinitely many
applications of rules (X0) or (X1).



Pre-Tableau for AFGp ∧ EGEF¬p

A(FGp), A(Gp, FGp)
(X0)

A(XFGp), A(XGp, XFGp)

A(p, XFGp), A(XGp, XFGp)

A(Gp, XFGp)

A(FGp), A(Gp, FGp)
(X0)

A(XFGp), A(XGp, XFGp),¬p

A(p, XFGp), A(XGp, XFGp),¬p

A(Gp, XFGp), E(¬p)

A(Gp, FGp), E(F¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(Gp, FGp), E(GEF¬p)
(X1)

p, A(XGp, XFGp), E(XF¬p), E(XGEF¬p)

A(p, XFGp), A(XGp, XFGp), E(F¬p), E(XGEF¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(FGp), E(GEF¬p)

E(AFGp, EGEF¬p)

E(AFGp ∧ EGEF¬p)
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Connection Relations

◮ Connection on the block level.
Example:

(EA)
Aϕ , EΠ , AΣ

E(Aϕ,Π) , AΣ

is connected to
(on block level)



Connection Relations

◮ Connection on the block level.
Example:

(EA)
Aϕ , EΠ , AΣ

E(Aϕ,Π) , AΣ

is connected to
(on block level)

◮ Connection on the formula level.
Example:

(EA)
A ϕ , E Π , A Σ

E( Aϕ , Π ), A Σ

is connected to
(on formula level)



Traces and Threads

Traces
◮ A trace is an infinite sequence of connected blocks.

◮ A trace is an E- resp. A- trace iff the block quantifier
eventually remains E resp. A.

Thread
◮ A thread is an infinite sequence of connected formulas.

◮ A thread is an F- resp. G-thread iff there is some ψ s.t. the
thread finally alternates between Fψ or XFψ (resp. G. . . ).



Traces and Threads

Traces
◮ A trace is an infinite sequence of connected blocks.

◮ A trace is an E- resp. A- trace iff the block quantifier
eventually remains E resp. A.

Thread
◮ A thread is an infinite sequence of connected formulas.

◮ A thread is an F- resp. G-thread iff there is some ψ s.t. the
thread finally alternates between Fψ or XFψ (resp. G. . . ).

Lemma
◮ Any trace is either an E- or an A-trace.

◮ Any thread is either an F- or a G-thread.



Tableau

Pre-tableaux are insufficient – an informal dicussion
◮ In the intended model

◮ every formula on a F-thread is false, and
◮ every formula on a G-thread is true.

◮ Blocks in an E-trace is understood as a conjunction.
◮ Avoid F-threads.

◮ Blocks in an A-trace is understood as a disjunction.
◮ Assure a G-thread.

Definiton

A tableau for ϑ is a pre-tableau for ϑ iff on every branch we have

◮ every E-trace does not contain an F-thread, and

◮ every A-trace contains a G-thread.

Such traces and branches are called good.



Successful Tableau for AFGp ∧ EGEF¬p

A(Gp, XFGp)

A(Gp, FGp)
(X0)

p, A(XGp, XFGp)

A(p, XFGp), A(XGp, XFGp)

A(Gp, XFGp)

A(FGp), A(Gp, FGp)
(X0)

A(XFGp), A(XGp, XFGp),¬p

A(p, XFGp), A(XGp, XFGp),¬p

A(Gp, XFGp), E(¬p)

A(Gp, FGp), E(F¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(Gp, FGp), E(GEF¬p)
(X1)

p, A(XGp, XFGp), E(XF¬p), E(XGEF¬p)

A(p, XFGp), A(XGp, XFGp), E(F¬p), E(XGEF¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(FGp), E(GEF¬p)

E(AFGp, EGEF¬p)

E(AFGp ∧ EGEF¬p)

p

¬p

p

|= AFGp ∧ EGEF¬p
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Soundness

Theorem

If there is a tableau for CTL∗-formula ϑ then ϑ is satisfiable.

Proof sketch.

Collapse given tableau to an interpretation and show that this
interpretation models ϑ.



Completeness

Theorem

If a CTL∗-formula ϑ is satisfiable then it has a tableau.

Proof sketch.
◮ Construct a pre-tableaux for ϑ by unrolling a model of ϑ s.th.

the unraveled model satisfied the current goal.

◮ For rules with alternatives premises: prefer premises
decomposing the principal formula obeying the model.

◮ Hence, Fϕ is rewritten to ϕ as soon as possible, for
instance.



Completeness

Theorem

If a CTL∗-formula ϑ is satisfiable then it has a tableau.

Proof sketch.
◮ Construct a pre-tableaux for ϑ by unrolling a model of ϑ s.th.

the unraveled model satisfied the current goal.

◮ For rules with alternatives premises: prefer premises
decomposing the principal formula obeying the model.

◮ Hence, Fϕ is rewritten to ϕ as soon as possible, for
instance.

Remark
◮ Completeness proof does not use the small model property.

(That is, replace fixed points by approximants.)

◮ We have not use any automata or game theory so far.



Decision Procedure

Given a CTL∗-formula ϑ, decide whether
there is a tableau for ϑ

(((((((hhhhhhhϑ is satisfiable.



Decision Procedure

Given a CTL∗-formula ϑ, decide whether
there is a tableau for ϑ

(((((((hhhhhhhϑ is satisfiable.

Idea: treat a tableau as a parity game.



Tableau 7→ Game

Observation

The property separating tableaux from pre-tableaux is ω-regular.



Tableau 7→ Game

Observation

The property separating tableaux from pre-tableaux is ω-regular.

Game

Given an appropriate deterministic ω-automaton A.

◮ States: pairs of goals for ϑ and A’s of state.

◮ Proponent chooses the rule application.

◮ Opponent chooses the premise
whenever the rule application is branching.

◮ Additionally, edges respect the transition relation of A.

◮ Turn A’s acceptance condition into that of the game.



Tableau 7→ Game

Observation

The property separating tableaux from pre-tableaux is ω-regular.

Game

Given an appropriate deterministic ω-automaton A.

◮ States: pairs of goals for ϑ and A’s of state.

◮ Proponent chooses the rule application.

◮ Opponent chooses the premise
whenever the rule application is branching.

◮ Additionally, edges respect the transition relation of A.

◮ Turn A’s acceptance condition into that of the game.

Property

Proponent has a winning strategy for E{ϑ}
iff

ϑ has a tableau.



Tableau 7→ Game — Automata

Alphabet Σblock
ϑ :=Σϑ × 2Sub(ϑ).

Second component marks an A- or E-block in the first component.

non-det. co-Büchi, over Σblock
ϑ

A-trace contains a R-thread;
A-trace is good

det. Büchi, over Σblock
ϑ

A-trace does not contain
a R-thread; A-trace is bad

non-det. co-Büchi, over Σblock
ϑ

E-trace contain an U-thread;
E-trace is bad

non-det. Büchi, over Σϑ

Branch is bad

det. parity aut. A, over Σϑ

Branch is good

complementation

determinisation &
complementation



Conclusion

Summary

◮ Tableau is sound and complete for CTL∗.

◮ Rules are “natural”.

◮ Correctness proof relies on neither automata theory nor game
theory nor the small model property.

◮ The decision procedure uses game theory as a back-end and
can benefit from it.

◮ Complexity of the decision procedure optimal.

Implementation

◮ http://www.tcs.ifi.lmu.de/mlsolver/.

Future Work

◮ Implement Emerson’s procedure (as a comparison).

◮ Find a way to avoid or to reduce determinisation.

◮ Find a proof system for CTL∗ with natural axioms and rules
—as opposed to existing ones.
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