
Decision Procedures for CTL∗

Oliver Friedmann1 Markus Latte1

1 Dept. of Computer Science, Ludwig-Maximilians-University, Munich, Germany

CLoDeM

Edinburgh, 15 July 2010

Introduction to CTL∗

Origin: Emerson and Halpern ’86

◮ supersedes the branching-time logic CTL and the linear-time
logic LTL

µ-calculus

CTL∗

CTL LTL

◮ applied to specify and verify reactive and agent-based systems

◮ also applied to program synthesis

◮ however: decision procedures difficult to obtain

◮ worst case runtime: doubly exponential
◮ lower bound: Vardi and Stockmeyer ’85
◮ upper bound: Emerson and Sistla ’84; Emerson and Jutla ’00

Table of contents

1 Syntax and Semantic of CTL∗

2 Emerson-Jutla Method

3 Reynolds’ Tableaux

4 Infinite Tableaux

5 Experimental Results

Syntax of CTL∗

Negation normal form

ψ ::= q | ¬q | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ | ψRψ | Eψ | Aψ

where q ∈ P are propositional constants

Syntax of CTL∗

Negation normal form

ψ ::= q | ¬q | ψ ∧ ψ | ψ ∨ ψ | Xψ |
�

��H
HH

ψUψ |
�

��H
HH

ψRψ | Eψ | Aψ

where q ∈ P are propositional constants

This talk: replace fixpoints ψUψ, ψRψ by Fψ, Gψ.

Syntax of CTL∗

Negation normal form

ψ ::= q | ¬q | ψ ∧ ψ | ψ ∨ ψ | Xψ | Fψ | Gψ | Eψ | Aψ

where q ∈ P are propositional constants

This talk: replace fixpoints ψUψ, ψRψ by Fψ, Gψ.

Interpretation

Transition systems

TS T = (S,→, λ) with

◮ (S,→) directed, total graph

◮ λ : S → 2P labeling function

Interpretation

Transition systems

TS T = (S,→, λ) with

◮ (S,→) directed, total graph

◮ λ : S → 2P labeling function

Path π: sequence (si)i∈N = s0, s1, . . . of states respecting edges

Interpretation

Transition systems

TS T = (S,→, λ) with

◮ (S,→) directed, total graph

◮ λ : S → 2P labeling function

Path π: sequence (si)i∈N = s0, s1, . . . of states respecting edges

Notations: πi = si, si+1, . . .

Semantics

Semantics of Formulas

◮ T , π |= q iff q ∈ λ(π(0))

◮ T , π |= ¬q iff q 6∈ λ(π(0))

◮ T , π |= ψ1 ∧ ψ2 iff T , π |= ψ1 and T , π |= ψ2

◮ T , π |= ψ1 ∨ ψ2 iff T , π |= ψ1 or T , π |= ψ2

◮ T , π |= Xψ iff T , π1 |= ψ

◮ T , π |= Fψ iff T , πi |= ψ for some i ∈ N

◮ T , π |= Gψ iff T , πi |= ψ for all i ∈ N

◮ T , π |= Eψ iff T , π̃ |= ψ for some π̃ with π(0) = π̃(0)

◮ T , π |= Aψ iff T , π̃ |= ψ for all π̃ with π(0) = π̃(0)

State and Path Formulas

State and Path Formulas

A formula is a state formula iff X, F and G only occur under an E or
an A. Otherwise the formula is a path formula.

Property

For any state formula ϕ, any paths π and π′ in some TS T we
have:

T , π |= ϕ iff T , π′ |= ϕ

provided that π(0) = π′(0).

Notation:
T , s |= ϕ abbreviates T , π |= ϕ for a path π starting with s.

Satisfiability Problem

Satisfiability

Given a CTL∗ state formula ϑ, decide whether there is a TS
T = (S,→, λ) and a state s∗ ∈ S s.t.

T , s∗ |= ϕ

Satisfiability Problem

Satisfiability

Given a CTL∗ state formula ϑ, decide whether there is a TS
T = (S,→, λ) and a state s∗ ∈ S s.t.

T , s∗ |= ϕ

as opposed to the model checking problem

Model Checking

Given a CTL∗ state formula ϕ and TS T = (S,→, λ) and a state
s∗ ∈ S, decide whether

T , s∗ |= ϕ

Satisfiability Problem

Satisfiability

Given a CTL∗ state formula ϑ, decide whether there is a TS
T = (S,→, λ) and a state s∗ ∈ S s.t.

T , s∗ |= ϕ

as opposed to the model checking problem

Model Checking

Given a CTL∗ state formula ϕ and TS T = (S,→, λ) and a state
s∗ ∈ S, decide whether

T , s∗ |= ϕ

note: there is no strong relationship between satisfiability and
model checking decision procedures (in general)!

Running Example

Consider the formula
AFGp ∧ EGEF¬p

Running Example

Consider the formula
AFGp ∧ EGEF¬p

The following TS is a model of it.

p

¬p

p

Overview

Emerson-Jutla Method (’84)

◮ emptiness test of a tree automaton accepting all models

◮ drawbacks: no implementation, unintuitive proof structure,
constant branching degree

Reynolds’ Tableaux (’09)

◮ exhaustive tableau-search restricted by small model property

◮ drawbacks: fairly slow in practice, no intrinsic detection of
unfulfilled eventualities

Our System

◮ existence of infinite tableaux with global conditions

◮ drawbacks: requires automata deterministation for checking
global conditions

Table of contents

1 Syntax and Semantic of CTL∗

2 Emerson-Jutla Method

3 Reynolds’ Tableaux

4 Infinite Tableaux

5 Experimental Results

Emerson et. al. – Overview

Given a CTL∗-formula ϑ,

◮ normalise ϑ to a normal form ψ,

ψ ::= Eλ | Aλ | AGEλ | ψ ∧ ψ | ψ ∨ ψ | p | ¬p

where λ is a LTL-formula,

◮ construct a tree automaton which recognises tree-models of
ψ, and

◮ test automaton for emptiness.

Emerson et. al. – Normalisation

Given a CTL∗-formula ϑ,

1. transform ϑ into negation form.

2. replace a subformula Qλ, Q ∈ {E, A}, by a fresh variable, say p.

3. attach ∧“AG(p↔ Qλ)” to ϑ.

“AG(q ↔ Eλ)” ≡ AGE(q → λ) ∧ AG(¬q → ¬λ)

“AG(q ↔ Aλ)” ≡ AG(q → λ) ∧ AGE(¬q → ¬λ)

4. iterate 2.–3. as long as possible.

Emerson et. al. – Tree Automaton

Let Bλ be a non-det. Büchi automaton for λ, (exp. size)

and Dλ be a det. parity or Rabin automaton for λ. (2-exp. size)

A tree automata for ϕ

Eλ: Simulate Bλ on a guessed path.

Aλ: Simulate Dλ on all paths.

Note: implicit quantifier in Bλ does not commute
with the path quantifier.

AGEλ: start a simulation of Bλ everywhere.

ϕ: follow the Boolean connectives.

Note: The connectives apply to the root only.

Emerson et. al. – Running Example

1. Normalize AFGp ∧ EGEF¬p:
AFGp ∧ EGq ∧ AGE(q =⇒ F¬p) ∧ AG(F¬p =⇒ q)

2. Build non-det. Büchi automata BGq and Bq =⇒ F¬p

3. Build det. Rabin automata DFGp and DG(F¬p =⇒ q)

4. Turn all four automata into determinstic tree automata

5. Use a crossproduct construction to get a tree automaton for
the initial formula

6. Apply an emptiness test

Emerson et. al. – Conclusion

Corollary

The decision procedure by Emerson, Sistla and Jutla is in
2EXPTIME.

However, Emerson noted that . . .

“. . . [o]ne drawback to the use of automata is that, due
to the delicate combinatorial constructions involved,
there is usually no clear relationship between the
structure of the automaton and the candidate formula.”

(E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, volume B: Formal Models and Semantics, chapter 16, pages 996–1072. Elsevier and MIT Press, New

York, USA, 1990.)

Emerson et. al. – Conclusion

Corollary

The decision procedure by Emerson, Sistla and Jutla is in
2EXPTIME.

However, Emerson noted that . . .

“. . . [o]ne drawback to the use of automata is that, due
to the delicate combinatorial constructions involved,
there is usually no clear relationship between the
structure of the automaton and the candidate formula.”

(E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, volume B: Formal Models and Semantics, chapter 16, pages 996–1072. Elsevier and MIT Press, New

York, USA, 1990.)

another drawback: fixed branching degree of final tree automaton

Table of contents

1 Syntax and Semantic of CTL∗

2 Emerson-Jutla Method

3 Reynolds’ Tableaux

4 Infinite Tableaux

5 Experimental Results

Reynolds’ Tableaux

Structure
◮ finite tableaux with back-loops

◮ nodes labelled with colours: a set of hues

◮ hues – Hintikka-style sets – correspond to fullpaths in the
intended model

◮ edges in a tableau correspond to proceeding in time by one
step

◮ successors of a node depend on the contained intended
fullpaths

Reynolds’ Tableaux (cont.)

Correctness
◮ local conditions: node correctness and successor correctness

◮ global conditions: eventualities in hue threads have to be
fulfilled

Theorem: Reynolds’ tableau system is sound and complete.

Reynolds’ Tableau for AFGp ∧ EGEF¬p

h0, h1

h2

h3

Relevant Hues

h0 : {AFGp ∧ EGEF¬p, AFGp, FGp, EF¬p, Gp, p, EGEF¬p, GEF¬p}

h1 : {AFGp ∧ EGEF¬p, AFGp, FGp, EF¬p, F¬p, p, EGEF¬p, FAGp}

h2 : {EGF¬p ∨ AFAGp, AFGp, FGp, EF¬p, F¬p,¬p, AFAGp, FAGp}

h3 : {EGF¬p ∨ AFAGp, AFGp, FGp, Gp, p, AFAGp, FAGp, AGp}

Reynolds’ Tableau for AFGp ∧ EGEF¬p

p

¬p

p

Relevant Hues

h0 : {AFGp ∧ EGEF¬p, AFGp, FGp, EF¬p, Gp, p, EGEF¬p, GEF¬p}

h1 : {AFGp ∧ EGEF¬p, AFGp, FGp, EF¬p, F¬p, p, EGEF¬p, FAGp}

h2 : {EGF¬p ∨ AFAGp, AFGp, FGp, EF¬p, F¬p,¬p, AFAGp, FAGp}

h3 : {EGF¬p ∨ AFAGp, AFGp, FGp, Gp, p, AFAGp, FAGp, AGp}

Tableau Search

Algorithmic Method

◮ tableau-building

◮ loop checking

◮ backtracking

Tableau Search

Algorithmic Method

◮ tableau-building

◮ loop checking

◮ backtracking

Good Loops

◮ witness the fact that every eventually in the hue thread is
satisfied after a finite number of steps

◮ checked by a model-checking style algorithm

Tableau Search (cont.)

Bad Loops

◮ occurring repetition but looping back results in unfulfilled
eventualities

◮ solution: extend the branch instead of looping back

◮ problem: when do we stop to extend unfulfilled branches?

Tableau Search (cont.)

Bad Loops

◮ occurring repetition but looping back results in unfulfilled
eventualities

◮ solution: extend the branch instead of looping back

◮ problem: when do we stop to extend unfulfilled branches?

When to stop?

◮ currently: use small model property to restrict the length of
the branches

◮ but: small model property yields doubly exponential bound

Performance in practice

based on Reynolds’ prototype implementation

◮ comparably slow as unprofitable branches are solely detected
by hitting the length restriction

◮ running example: longer than one day; our system requires
less than a second

Table of contents

1 Syntax and Semantic of CTL∗

2 Emerson-Jutla Method

3 Reynolds’ Tableaux

4 Infinite Tableaux

5 Experimental Results

A Tableau for CTL∗

A tableau for ϑ is a tree which imitates a potential model of ϑ.

A Tableau for CTL∗

A tableau for ϑ is a tree which imitates a potential model of ϑ.

A pre-tableau for a formula ϑ is an infinite tree s.th.

◮

Example: {A{¬p ∨ q}, E{Xp, Fq}, ¬p, ¬q}.
Sloppy writing: A(¬p ∨ q) or E(Xp,Π), e.g.

it is finitely branching,

◮ each node is labelled with a goal (as a set),

AΣ1 , . . . , AΣn , EΠ1 , . . . , EΠm , Λ

set of literals in ϑ

blocks

A Tableau for CTL∗

A tableau for ϑ is a tree which imitates a potential model of ϑ.

A pre-tableau for a formula ϑ is an infinite tree s.th.

◮

Example: {A{¬p ∨ q}, E{Xp, Fq}, ¬p, ¬q}.
Sloppy writing: A(¬p ∨ q) or E(Xp,Π), e.g.

it is finitely branching,

◮ each node is labelled with a goal (as a set),

A Σ1 , . . . , A Σn , E Π1 , . . . , E Πm , Λ

set of subformulas of ϑ
(as a conjunction)

set of subformulas of ϑ
(as a disjunction)

A Tableau for CTL∗

A tableau for ϑ is a tree which imitates a potential model of ϑ.

A pre-tableau for a formula ϑ is an infinite tree s.th.

◮

Example: {A{¬p ∨ q}, E{Xp, Fq}, ¬p, ¬q}.
Sloppy writing: A(¬p ∨ q) or E(Xp,Π), e.g.

it is finitely branching,

◮ each node is labelled with a goal (as a set),

AΣ1, . . . , AΣn, EΠ1, . . . , EΠm, Λ

︸ ︷︷ ︸
∧n

i=1 A(
∨

Σi) ∧
∧m

i=1 E(
∧

Πi) ∧
∧

Λ

A Tableau for CTL∗

A tableau for ϑ is a tree which imitates a potential model of ϑ.

A pre-tableau for a formula ϑ is an infinite tree s.th.

◮ it is finitely branching,

◮ each node is labelled with a goal (as a set),

AΣ1, . . . , AΣn, EΠ1, . . . , EΠm, Λ

◮ nodes are locally consistent, i.e.
◮ does not contain a literal together with its negation, and
◮ does not contain A∅.

◮ root is labelled with E{ϑ},

◮ nodes follow the following rules . . .

Exemplary Rules

E(ϕ,Π),Φ | E(ψ,Π),Φ
(E∨)

E(ϕ ∨ ψ,Π),Φ

E(ϕ,ψ,Π),Φ
(E∧)

E(ϕ ∧ ψ,Π),Φ

E(ψ,Π),Φ | E(X(Fψ),Π),Φ
(EF)

E(Fψ,Π),Φ

A(ψ, X(Fψ),Σ),Φ
(AF)

A(Fψ,Σ),Φ

EΠ1, AΣ1, . . . , AΣm,Φ . . . EΠn, AΣ1, . . . , AΣm,Φ
(X1)

EXΠ1, . . . , EXΠn, AXΣ1, . . . , AXΣm,Λ,Φ

Traces and Threads

Traces
◮ A trace is an infinite sequence of connected blocks.

◮ A trace is an A- resp. E- trace iff the block quantifier
eventually remains A resp. E.

Thread
◮ A thread is an infinite sequence of connected formulas.

◮ A thread is an F- resp. G-thread iff there is some ψ s.t. the
thread finally alternates between Fψ or XFψ (resp. G. . .).

Tableau

Pre-tableaux are insufficient – an informal dicussion
◮ In the intended model

◮ every formula on a F-thread is false, and
◮ every formula on a G-thread is true.

◮ Blocks in an E-trace is understood as a conjunction.
◮ Avoid F-threads.

◮ Blocks in an A-trace is understood as a disjunction.
◮ Assure a G-thread.

Definiton

A tableau for ϑ is a pre-tableau for ϑ iff on every branch we have

◮ every E-trace does not contain an F-thread, and

◮ every A-trace contains a G-thread.

Such traces and branches are called good.

Successful Tableau for AFGp ∧ EGEF¬p

A(Gp, XFGp)

A(Gp, FGp)
(X0)

p, A(XGp, XFGp)

A(p, XFGp), A(XGp, XFGp)

A(Gp, XFGp)

A(FGp), A(Gp, FGp)
(X0)

A(XFGp), A(XGp, XFGp),¬p

A(p, XFGp), A(XGp, XFGp),¬p

A(Gp, XFGp), E(¬p)

A(Gp, FGp), E(F¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(Gp, FGp), E(GEF¬p)
(X1)

p, A(XGp, XFGp), E(XF¬p), E(XGEF¬p)

A(p, XFGp), A(XGp, XFGp), E(F¬p), E(XGEF¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(FGp), E(GEF¬p)

E(AFGp, EGEF¬p)

E(AFGp ∧ EGEF¬p)

p

¬p

p

|= AFGp ∧ EGEF¬p

Successful Tableau for AFGp ∧ EGEF¬p

A(Gp, XFGp)

A(Gp, FGp)
(X0)

p, A(XGp, XFGp)

A(p, XFGp), A(XGp, XFGp)

A(Gp, XFGp)

A(FGp), A(Gp, FGp)
(X0)

A(XFGp), A(XGp, XFGp),¬p

A(p, XFGp), A(XGp, XFGp),¬p

A(Gp, XFGp), E(¬p)

A(Gp, FGp), E(F¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(Gp, FGp), E(GEF¬p)
(X1)

p, A(XGp, XFGp), E(XF¬p), E(XGEF¬p)

A(p, XFGp), A(XGp, XFGp), E(F¬p), E(XGEF¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(FGp), E(GEF¬p)

E(AFGp, EGEF¬p)

E(AFGp ∧ EGEF¬p)

Successful Tableau for AFGp ∧ EGEF¬p

A(Gp, XFGp)

A(Gp, FGp)
(X0)

p, A(XGp, XFGp)

A(p, XFGp), A(XGp, XFGp)

A(Gp, XFGp)

A(FGp), A(Gp, FGp)
(X0)

A(XFGp), A(XGp, XFGp),¬p

A(p, XFGp), A(XGp, XFGp),¬p

A(Gp, XFGp), E(¬p)

A(Gp, FGp), E(F¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(Gp, FGp), E(GEF¬p)
(X1)

p, A(XGp, XFGp), E(XF¬p), E(XGEF¬p)

A(p, XFGp), A(XGp, XFGp), E(F¬p), E(XGEF¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(FGp), E(GEF¬p)

E(AFGp, EGEF¬p)

E(AFGp ∧ EGEF¬p)

Decision Procedure

Given a CTL∗-formula ϑ, decide whether ϑ is satisfiable.

Decision Procedure

Given a CTL∗-formula ϑ, decide whether
there is a tableau for ϑ

(((((((hhhhhhhϑ is satisfiable.

Decision Procedure

Given a CTL∗-formula ϑ, decide whether
there is a tableau for ϑ

(((((((hhhhhhhϑ is satisfiable.

Idea: treat a tableau as a parity game.

Reduction to Parity Games

The tableaux as a game

◮ Nodes are the goals for ϑ.

◮ Proponent (player 0) chooses a rule application
if neither (X0) nor (X1) is applicable.

◮ Opponent (player 1) chooses a rule application and a premise
if (X0) or (X1) is applicable.

Reduction to Parity Games

The tableaux as a game

◮ Nodes are the goals for ϑ.

◮ Proponent (player 0) chooses a rule application
if neither (X0) nor (X1) is applicable.

◮ Opponent (player 1) chooses a rule application and a premise
if (X0) or (X1) is applicable.

Problem

This game defines a pre-tableaux but not a tableaux.

Observation

The property separating pre-tableau and tableaux is ω-regular.

Table of contents

1 Syntax and Semantic of CTL∗

2 Emerson-Jutla Method

3 Reynolds’ Tableaux

4 Infinite Tableaux

5 Experimental Results

Implementation – Our vs. Reynold

Note: Reynold’s implementation is a proof-of-concept in Java but
compiled with gcj.

◮ Formula (AG(p→ EXr) ∧ AG(r → EXp)) → (p→ EG(Fp ∧ Fr))

formula negated formula

Reynold > 10h > 10h
Ours 0s 15s

◮ Formula AG
(
(p ∧ X¬p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ Xp ∧ q ∧ ¬r) ∨

(¬p ∧ Xp ∧ ¬q ∧ r)
)

∧E(Fq ∧ Fr)

formula negated formula

Reynold 17s > 10h
Ours 0s 0s

Concluding Comparison

Aspect / Method Emerson et. al. Reynolds ours
Concept tree-automata tableau tableau

Worst-case complexity 2EXPTIME 2EXPTIME 2EXPTIME
Implementation available no not public yes

Model construction yes yes yes
Finite representation by rabin small. mod. p. parity

Out-degree fix., lin. bounded var., lin. bounded var., lin. bounded
Req. small model property no yes no
Derives small model prop. yes no yes

Needs Büchi determ. yes no yes

	Syntax and Semantic of CTL
	Emerson-Jutla Method
	Reynolds' Tableaux
	Infinite Tableaux
	Experimental Results
	Concluding Comparison

