Decision Procedures for CTL*

Oliver Friedmann and Markus Latte

Dept. of Computer Science, University of Munich, Germany

Abstract. We give an overview over three serious attempts to devise
an effective decision method for CTL*, namely Emerson and Jutla’s
automata-theoretic decision procedure, Reynolds’ tableau search method
and our recent approach based on an infinite tableau system with natural
rules and with global conditions on the branches.

1 Introduction

The full branching-time temporal logic CTL* is an important tool for the speci-
fication and verification of reactive systems [7] and of agent-based systems [9],
for program synthesis [11], etc. Emerson and Halpern have introduced CTL* [2]
as a formalism which supersedes both the branching-time logic CTL and the
linear-time logic LTL. As much as this has led to an easy unification of CTL and
LTL, it has also proved to be quite a difficulty in obtaining decision procedures
for this logic.

In this paper we present an overview over three serious attempts to devise
an effective decision method for CTL*. The first was automata-theoretic [4],
requiring the determinisation of w-word automata resulting from linear-time
formulas. A series of improvements in this part has eventually led to Emerson and
Jutla’s automata-theoretic decision procedure [3]. The second serious attempt
was Reynolds’ tableau method [12] based on finite tableaux with loops and every
node labeled with sets of Hintikka-like sets. Third, we present our infinite tableau
system [6] with natural rules and with global conditions on the branches.

The rest of the paper is organised as follows. Sect. 2 recalls CTL*. Sect. 3
describes the decision method by Emerson and Jutla [3], Sect. 4 outlines the
recent tableau method by Reynolds [12] and Sect. 5 presents our (joint work
with Martin Lange) new infinite-tableaux method [6]. Sect. 6 highlights the
advantages and disadvantages of the presented approaches to effectively decide
CTL* satisfiability.

2 CTL*

Let P be a countably infinite set of propositional constants. A transition system
is a tuple 7 = (S, —, \) with (S, —) being a directed graph, S being a set of
states, and \ : S — 2% being a labeling function. We assume transition systems
to be total, i.e. every state has at least one successor. A path 7 in 7 is an infinite



sequence of states sg, 51, ... s.t. 8; — 8,41 for all 5. With 7% we denote the suffix
of 7 starting with state sg, and 7(k) denotes si in this case.
Branching-time temporal formulas are given by the following grammar.

o u= qloeleAe]|Xp|plp|Ep

where ¢ € P. Formulas of the form ¢ or —q are called literals. The size |¢| of a

formula ¢ is defined as usual, i.e. as the size of the set of subformulas in ¢.
Other propositional constructs like tt, ff, V, — are derived as usual, and so are

the temporal ones @Ry := —(—pU—)), Gp = £ffRep, Fp = ttUyp, and Ap := —E-p.
These formulas are interpreted over paths m of a TS 7 = (S, s*, —, \).

T,m=q iff ¢ € A(7(0))

T,mE - it T, 7wl

T,rEeny iff TimEpand T, 1=y

T,7m = Xp if 7.7l

T, rEpup iff IkeNT 7 EvandVj<k:7T,70 ¢
7,7 E=Ep ifft 3n’, st. 7’(0) =7(0) and 7,7’ = ¢

It is well-known and easy to see that every formula is equivalent to one in positive
normal form. CTL* is the set of all branching-time formulas which are state
formulas. A CTL* formula ¢ is satisfiable if there is a transition system 7 s.t.
7,7 | ¢ for some path 7.

3 Emerson-Jutla-Method

Let ¢ be a CTL*-formula. The decision procedure by Emerson et. al. [5,3]
consists of three parts. First, ¢ is transformed into a certain normal form. Second,
they construct a tree automaton which accepts—roughly speaking—all tree-like
models of ¢ and, finally, an emptiness-test is applied for this automaton.

The said normal form is a disjunctive normal form built on top of formulas
of the type A\, EX and AGEX where A stands for an LTL-formula, i.e. a CTL*-
formula without any path quantifier. After turning ¢ into positive normal form,
every inconveniently quantified subformula is pulled out. For instance, we have
©[EA/p] = ¢ A AGE(p — A) A AG(—p — — ). The size of the resulting formula, say
1, is linear in |p|. So, the transformation introduces new propositional variables.
Any model of ¢ can be extended to a model of ¥. Vice versa, a model of % is
a model of . It is known that for a LTL-formula A, there is non-deterministic
Biichi automaton (on w-words) which accepts exactly all runs which model A. The
size of such an automaton is exponential in |A|. As the existential path quantifier
commutes with the nondeterminism, we can construct a tree automaton which
accepts the models of ¥ using deterministic automata for each LTL-formula
A which occur as A\ in ¢. A non-deterministic automaton for an universally
quantified formula is insufficient because its runs might even differ on the common
prefix of different branches.

Emerson et. al. use deterministic Street automata [5] to handle LTL-formulas.
Alternatively, one could also use deterministic parity automata [10] for instance.



In both settings, the kind of acceptance condition for the deterministic automaton
for the LTL-subformulas also determines the acceptance condition class of the
tree automaton. The size of the respective tree automaton is doubly exponen-
tial in |¢|, and its index is exponential in |¢|. The runtime of the respective
emptiness tests are polynomial in the size and exponential in the index of the
tree automaton. Therefore, this method leads to a decision procedure with an
optimal [15] worst-case time complexity, that is, doubly exponential in |p|. How-
ever, the determinization of Biichi automata has a drawback, as Emerson [1]
notes himself: ... due to the delicate combinatorial constructions involved, there
1s usually no clear relationship between the structure of the automaton and the
candidate formula.”

4 Reynolds’ Tableaux

Reynolds’ recent decision method [12] is based on finite tableaux. Satisfiability is
then expressed in terms of the existence of a tableau for a given CTL* formula.
The nodes in these tableaux are labeled with sets of sets of formulas. The inner
sets — called hues — essentially form a Hintikka-style closure of subformulas and
correspond to a full path in some model of the given formula. The collection of
the hues of one node — called a colour — captures all hues at the hypothetical
world associated with the node of the tableau that correspond to different full
paths. Successor colours ¢’ of a node are required to be consistent with their
parent colour c in the sense that every hue h’ in ¢’ is a hypothetical successor
world of some hue A in c.

Finiteness is obtained through looping back: the so-called “good” loops
essentially witness the fact that a greatest fixpoint is unfolded infinitely often
in a thread of hues while every occurring eventuality is satisfied after a finite
number of steps. On the other hand, “bad” loops tell the tableau-searcher that it
is reasonable to stop to dive more deeply into an unexpanded branch with no
good loops yet.

Tableau-search then relies on tableau-building, loop-checking and backtrack-
ing. Good loops are detected by a model-checking-style algorithm that can be
performed in polynomial time. Regarding bad loops, Reynolds says that “... we
are only able to give some preliminary results on mechanisms for tackling rep-
etition.”. In fact, instead of detecting bad loops directly, Reynolds just limits
the allowed length of a branch without good loop by the small model property
obtained from [4] which is of doubly exponential complexity.

In terms of worst-case complexity — which is known to be doubly exponential
for CTL* satisfiability —, Reynolds method is optimal. However, as the detection
of bad loops is realized by branch-length limitation, even small unsatisfiable
formulas can lead to an extremely large search space. Finally, Reynolds reports
of a prototype implementation of his tableau decision procedure [12]. This
implementation is, however, not publicly available, and tests are only performed
on single short formulas such that no asymptotic behaviour can be inferred from
those results.



5 Infinite Tableaux

Our recent approach [6] is formulated as a calculus of infinite tableaux with
natural rules and with global conditions on their branches. Each node in a
tableau is labeled with a so-called sequent which is a set of consistent literals
and so-called blocks: a block is a path-quantified set of subformulas of the CTL*
formula for which satisfiability is to be decided. The intended interpretation of
an E- resp. A-quantified set is an E- resp. A-quantification over the conjunction
resp. disjunction of all formulas contained in the block. The sequent then is to
be interpreted as the conjunction over all contained blocks and literals.

The tableau-rules are straight-forward: for every kind of formula occurring in
one of the path-quantified blocks, there is a corresponding rule that essentially
decomposes the formula into the immediate subformulas and proceeds with these
while being locally sound and complete. Rules that are to be applied to fixpoint
formulas simply replace them by their unfoldings. The only branching rules
are the so-called modal rules that can only be applied iff every formula in a
path-quantified block is of the form X¢. For every occurring E-quantified block,
there is a distinct subgoal that consists of the respective E-quantified block and
every A-quantified block with all formulas X¢ being replaced by ¢. Applying the
tableau-rules backwardly results in a possibly infinite tree with local correctness
in the sense that the sequent of a node is satisfiable iff all successors are as well.

Additionally, there are global conditions that are to be satisfied on every
infinite branch to handle the satisfaction of eventualities after a finite number
of steps. Every infinite sequence of connected blocks in a branch is called trace.
Given a trace, every infinite sequence of connected formulas in the trace is called
thread. Note that every trace is eventually either labeled with E or A and every
thread is eventually solely unfolding an unique least or greatest fixpoint. We say
that a trace is bad iff it does not contain a greatest fixpoint thread or it contains
a least fixpoint thread and is eventually labeled with E. A successful tableau for
a given formula now is a tableau-style tree as described before s.t. every infinite
branch does not contain a bad trace.

The non-termination of the tableaux raises the question after an effective
decision procedure based on this calculus, and it is only here that our method uses
automata-theoretic machinery. Branches that do not satisfy the global condition
are recognizable by nondeterministic Biichi automata, and we can then use
determinisation and complementation in order to reduce the question of existence
of a tableau to the problem of solving a doubly exponentially large parity game.

6 Comparison

We compare the three introduced methods with each other with respect to several
aspects—c.f. Fig. 1. Every method admits a decision procedure. In the case of an
satisfiable formula, the procedure also provides a model.

Usually the branching of a model capture a degree of non-determinism which
arises either from an abstraction of the execution of a program or from the



Aspect / Method Emerson et. al. Reynolds ours

Concept tree-automata tableau tableau
Worst-case complexity 2EXPTIME 2EXPTIME 2EXPTIME
Implementation available no not public yes

Model construction yes yes yes

Finite representation by rabin small. mod. p. parity
Out-degree fix., lin. bounded wvar., lin. bounded var., lin. bounded
Req. small model property no yes no
Derives small model prop. yes no yes

Needs Biichi determ. yes no yes

Fig. 1. Comparison of three decision methods for satisfiability of CTL*-formulas

interaction with the program’s environment. Hence, in the case of a program
synthesis one might be interested in models which branches as rarely as possible.

Interestingly, the decision methods of Emerson et. al. and ours require the
determinization of Biichi word automata. Several approaches are available [5, 13,
8,14, 10] leading to theoretical optimal decision procedures. However, these apply
sophisticated and non-standard data structures which increases the program’s
complexity. Therefore, it is wishful to find a tableau which does not need the de-
terminization of Biichi automata. Finally, both methods produce a tree-automata
which is then tested for emptiness. Our approach does not use tree-automata as
such—even though one may argue that the constructed parity games represent
tree automata. However, the crucial difference is the separation between the
use of tableau-machinery for the characterisation of satisfiability and the use
of automata-machinery only to obtain a decision procedure. In particular, we
do not translate LTL-formulas into Biichi automata. The other way around,
almost all parts of Emerson’s tree automaton can be rephrased as a game on
sets of subformulas. Only the case which requires the determinization can not be
translated directly.

Concludingly, we think that Emerson/Jutla’s procedure is not the best candi-
date to give rise to a practical implementation due the extremely high out-degree
of the involved tree automata. Maybe that is one of the reasons why there is no
implementation of this decision procedure available (at least to our knowledge).

Reynolds’ implementation—which is not publicly available yet—seems to
be greatly outperformed by ours. For example, the formula AG(EXp A EX—p) A
AG(GpV (—=r)U(r A—p)) apparently cannot be checked for satisfiability by Reynolds’
implementation anymore whereas ours takes 0.04s for this task. Essentially, the
reason why we claim that our system is more qualified to be utilized in practicate
is that while the depth of Reynolds’ tableaux is limited by a doubly-exponential
function in the size of the formula, our systems stops exploring tableaux whenever
a configuration of a sequent and an automaton state reappears. Hence, our way of
loop checking is much more involved in the actual structure of all the eventualities.



References

1.

10.

11.

12.

13.

14.

15.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 16,
pages 996-1072. Elsevier and MIT Press, New York, USA, 1990.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On
branching versus linear time temporal logic. J. of the ACM, 33(1):151-178, 1986.
E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of
programs. SIAM Journal on Computing, 29(1):132-158, 2000.

E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Information
and Control, 61(3):175-201, 1984.

. E. Allen Emerson and A. Prasad Sistla. Deciding branching time logic. In STOC

’84: Proceedings of the sizteenth annual ACM symposium on Theory of computing,
pages 14-24, New York, NY, USA, 1984. ACM.

Oliver Friedmann, Markus Latte, and Martin Lange. A Decision Procedure for
CTL* Based on Tableaux and Automata. In Proc. of the 5th Int. Joint Conference
on Automated Reasoning, Edinburgh, UK, 2010. To appear.

. D. M. Gabbay and A. Pnueli. A sound and complete deductive system for CTL*

verification. Logic Journal of the IGPL, 16(6):499-536, 2008.

. D. Kéhler and Th. Wilke. Complementation, disambiguation, and determinization

of Biichi automata unified. In Proc. 85th Int. Coll. on Automata, Languages and
Programming, ICALP’08, volume 5125 of LNCS, pages 724-735. Springer, 2008.

. X. Luo, K. Su, A. Sattar, Q. Chen, and G. Lv. Bounded model checking knowledge

and branching time in synchronous multi-agent systems. In Proc. 4th Int. Conf. on
Auton. Agents and Multiagent Syst., AAMAS’05, pages 1129-1130. ACM, 2005.
N. Piterman. From nondeterministic Biichi and Streett automata to deterministic
parity automata. In Proc. 21st Symp. on Logic in Computer Science, LICS’06,
pages 255—-264. IEEE Computer Society, 2006.

A. Pnueli and R. Rosner. A framework for the synthesis of reactive modules. In
Proc. Int. Conf. on Concurrency, volume 335 of LNCS, pages 4-17. Springer, 1988.
M. Reynolds. A tableau for CTL*. In Proc. 16th. Int. Symp. on Formal Methods,
FM’09, volume 5850 of LNCS, pages 403-418. Springer, 2009. Long version availabe
as technical report of the University of Western Australia.

S. Safra. On the complexity of w-automata. In Proc. 29th Symp. on Foundations
of Computer Science, FOCS’88, pages 319-327. IEEE, 1988.

S. Schewe. Tighter bounds for the determinisation of Biichi automata. In Proc.
12th Int. Conf. on Foundations of Software Science and Computation Structures,
FOSSACS’09, volume 5504 of LNCS, pages 167-181. Springer, 2009.

M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal
logics of programs. In Proc. 17th Symp. on Theory of Computing, STOC’85, pages
240-251, Baltimore, USA, 1985. ACM.



