Zeckendorf family identities generalized

Darij Grinberg

June 11, 2018, brief version

Abstract. In [WooZei09], Philip Matchett Wood and Doron Zeilberger have constructed identities for the Fibonacci numbers f_n of the form

$$\begin{aligned} &1f_n = f_n \text{ for all } n \ge 1; \\ &2f_n = f_{n-2} + f_{n+1} \text{ for all } n \ge 3; \\ &3f_n = f_{n-2} + f_{n+2} \text{ for all } n \ge 3; \\ &4f_n = f_{n-2} + f_n + f_{n+2} \text{ for all } n \ge 3; \\ &\text{etc.}; \\ &kf_n = \sum_{s \in S_k} f_{n+s} \text{ for all } n > \max \{-s \mid s \in S_k\}, \end{aligned}$$

where S_k is a fixed "lacunar" set of integers ("lacunar" means that no two elements of this set are consecutive integers) depending only on k. (The condition $n > \max\{-s \mid s \in S_k\}$ is only to make sure that all addends f_{n+s} are well-defined. If the Fibonacci sequence is properly continued to the negative, this condition drops out.)

In this note we prove a generalization of these identities: For any family $(a_1, a_2, ..., a_p)$ of integers, there exists one and only one finite lacunar set *S* of integers such that every *n* (high enough to make the Fibonacci numbers in the equation below well-defined) satisfies

$$f_{n+a_1} + f_{n+a_2} + \dots + f_{n+a_p} = \sum_{s \in S} f_{n+s}.$$

The proof uses the Fibonacci-approximating properties of the golden ratio. It would be interesting to find a purely combinatorial proof.

This is a brief version of my note [Grinbe11]. For a long version, which gives more details in the proofs, see [Grinbe11].

1. The main result

The purpose of this note is to establish a generalization of the so-called *Zeckendorf family identities* which were discussed in [WooZei09]. Before we can state it, we need a few definitions:

Definition 1.1. A subset *S* of \mathbb{Z} is called *lacunar* if it satisfies $(s + 1 \notin S \text{ for every } s \in S)$.

In other words, a subset *S* of \mathbb{Z} is lacunar if and only if it contains no two consecutive integers.

Definition 1.2. The *Fibonacci sequence* $(f_1, f_2, f_3, ...)$ is a sequence of positive integers defined recursively by the initial values $f_1 = 1$ and $f_2 = 1$ and the recurrence relation $(f_n = f_{n-1} + f_{n-2} \text{ for all } n \in \mathbb{N} \text{ satisfying } n \ge 3)$.

(Here and in the following, \mathbb{N} denotes the set $\{0, 1, 2, \ldots\}$.)

Remark 1.3. Many authors define the Fibonacci sequence slightly differently: They define it as a sequence $(f_0, f_1, f_2, ...)$ of nonnegative integers defined recursively by the initial values $f_0 = 0$ and $f_1 = 1$ and the recurrence relation $(f_n = f_{n-1} + f_{n-2} \text{ for all } n \in \mathbb{N} \text{ satisfying } n \ge 2)$. Thus, this sequence begins with a 0, unlike the Fibonacci sequence defined in our Definition 1.2. However, starting at its second term $f_1 = 1$, this sequence takes precisely the same values as the Fibonacci sequence defined in our Definition 1.2 (because both sequences satisfy $f_1 = 1$ and $f_2 = 1$, and from here on the recurrence relation ensures that their values remain equal). So it differs from the latter sequence only in the presence of one extra term $f_0 = 0$ at the front.

The Fibonacci sequence is one of the best known integer sequences from combinatorics. It has had conferences, books and a journal devoted to it. By way of example, let us only mention Vorobiev's book [Vorobi02], which is entirely concerned with Fibonacci numbers, and Benjamin's and Quinn's text [BenQui03] on bijective proofs, which includes many identities for Fibonacci numbers.

In [WooZei09], Wood and Zeilberger discuss bijective proofs of the so-called *Zeck-endorf family identities*. These identities are a family of identities for Fibonacci numbers (one for each positive integer); the first seven of these identities are

$$1f_n = f_n \text{ for all } n \ge 1;$$

$$2f_n = f_{n-2} + f_{n+1} \text{ for all } n \ge 3;$$

$$3f_n = f_{n-2} + f_{n+2} \text{ for all } n \ge 3;$$

$$4f_n = f_{n-2} + f_n + f_{n+2} \text{ for all } n \ge 3;$$

$$5f_n = f_{n-4} + f_{n-1} + f_{n+3} \text{ for all } n \ge 5;$$

$$6f_n = f_{n-4} + f_{n+1} + f_{n+3} \text{ for all } n \ge 5;$$

$$7f_n = f_{n-4} + f_{n+4} \text{ for all } n \ge 5.$$

In general, for each positive integer k, the k-th Zeckendorf family identity expresses kf_n (for each sufficiently large integer n) as a sum of the form $\sum_{s \in S} f_{n+s}$, where S is a

finite lacunar subset of \mathbb{Z} . Of course, the subset *S* does not depend on *n*. Our main theorem is the following:

Theorem 1.4 (generalized Zeckendorf family identities). Let *T* be a finite set, and let a_t be an integer for every $t \in T$.

Then, there exists one and only one finite lacunar subset *S* of \mathbb{Z} such that¹

$$\left(\sum_{t\in T} f_{n+a_t} = \sum_{s\in S} f_{n+s} \text{ for every } n \in \mathbb{Z} \text{ which} \\ \text{ satisfies } n > \max\left(\{-a_t \mid t\in T\} \cup \{-s \mid s\in S\}\right) \right)$$

Remark 1.5. 1. The *Zeckendorf family identities* from [WooZei09] are the result of applying Theorem 1.4 to the case when all a_t are = 0.

2. The condition $n > \max(\{-a_t \mid t \in T\} \cup \{-s \mid s \in S\})$ in Theorem 1.4 serves only to ensure that the Fibonacci numbers f_{n+a_t} for all $t \in T$ and f_{n+s} for all $s \in S$ are well-defined. (If we would define the Fibonacci numbers f_n for integers $n \le 0$ by extending the recurrence relation $f_n = f_{n-1} + f_{n-2}$ "to the left", then we could drop this condition.)

The proof we shall give for Theorem 1.4 is not combinatorial. It will use inequalities and the properties of the golden ratio; in a sense, its underlying ideas come from analysis (although it will not actually use any results from analysis).

2. Basics on the Fibonacci sequence

We begin with some lemmas and notations:

We denote by \mathbb{N} the set $\{0, 1, 2, \ldots\}$. Also, we denote by \mathbb{N}_2 the set $\{2, 3, 4, \ldots\} = \mathbb{N} \setminus \{0, 1\}$.

Also, let $\phi = \frac{1+\sqrt{5}}{2}$. This number ϕ is the famous *golden ratio*. It satisfies $\phi \approx 1.618...$ and $\phi^2 = \phi + 1$.

We recall some basic and well-known facts about the Fibonacci sequence:

Lemma 2.1. Let *S* be a finite lacunar subset of \mathbb{N}_2 . Then, $\sum_{t \in S} f_t < f_{\max S+1}$.

Proof. WLOG assume that the set *S* is nonempty (else, the lemma follows from our convention that max $\emptyset = 0$). Write the set *S* in the form $\{s_1, s_2, \ldots, s_k\}$ with $s_1 < 0$

¹Here and in the following, max \emptyset is understood to be 0.

 $s_2 < \cdots < s_k$. Every $i \in \{1, 2, \dots, k-1\}$ satisfies $s_i + 1 \le s_{i+1} - 1$ (because the set *S* is lacunar, so s_{i+1} cannot be $s_i + 1$, whence $s_{i+1} > s_i + 1$ and thus $s_{i+1} - 1 \ge s_i + 1$), so that

$$f_{s_i+1} \le f_{s_{i+1}-1} \tag{1}$$

(since the Fibonacci sequence $(f_1, f_2, f_3, ...)$ is weakly increasing). Thus,

$$\begin{split} \sum_{t \in S} f_t &= \sum_{i=1}^k \underbrace{f_{s_i}}_{\substack{=f_{s_i+1} - f_{s_i-1} \\ (\text{since } f_{s_i+1} = f_{s_i} + f_{s_i-1})}}_{\substack{=f_{s_i+1} - f_{s_i-1} \\ (\text{since } f_{s_i+1} = f_{s_i} + f_{s_i-1})}} &= \sum_{i=1}^k \left(f_{s_i+1} - f_{s_i-1} \right) = \sum_{i=1}^k f_{s_i+1} - \sum_{i=1}^k f_{s_i-1} \\ &= \left(\sum_{i=1}^{k-1} \underbrace{f_{s_i+1}}_{\leq f_{s_i+1} - 1} + f_{s_k+1}}_{(\text{by }(1))} \right) - \left(f_{s_1-1} + \sum_{i=2}^k f_{s_i-1} \right) \\ &\leq \left(\sum_{i=1}^{k-1} f_{s_i+1} - 1 + f_{s_k+1} \right) - \left(f_{s_1-1} + \sum_{i=2}^k f_{s_i-1} \right) \\ &= \left(\sum_{i=2}^k f_{s_i-1} + f_{s_k+1} \right) - \left(f_{s_1-1} + \sum_{i=2}^k f_{s_i-1} \right) \\ &\quad (\text{here, we substituted } i \text{ for } i+1 \text{ in the first sum}) \\ &= f_{s_k+1} - f_{s_1-1} < f_{s_k+1} \quad (\text{since } f_{s_1-1} > 0) \\ &= f_{\max S+1} \end{split}$$

(since $s_k = \max S$), which proves Lemma 2.1. (An alternative proof proceeds by strong induction over max *S*; it uses $f_{\max S+1} = f_{\max S} + f_{\max S-1}$ in the induction step.)

Lemma 2.2 (existence part of the Zeckendorf theorem). Let $n \in \mathbb{N}$. Then, there exists a finite lacunar subset *T* of \mathbb{N}_2 such that $n = \sum_{t \in T} f_t$.

Proof. Strong induction over *n*. The case n = 0 needs to be treated separately. In the induction step for n > 0, the main idea is to let t_1 be the maximal $\tau \in \mathbb{N}_2$ satisfying $f_{\tau} \leq n$ (this exists because $f_2 = 1 \leq n$ and because the Fibonacci sequence is increasing and unbounded from above), and to apply Lemma 2.2 to $n - f_{t_1}$ instead of *n*. (This yields a finite lacunar subset T' of \mathbb{N}_2 satisfying $n - f_{t_1} = \sum_{t \in T'} f_t$; now, it remains to be shown that the set $T' \cup \{t_1\}$ is still lacunar. To check this, observe that $n < f_{t_1+1}$, so that $n - f_{t_1} < f_{t_1+1} - f_{t_1} = f_{t_1-1}$, which shows that no addend f_t of the sum $\sum_{t \in T'} f_t$ can be f_{t_1-1} or larger.) The details are left to the reader (and can be found in [Grinbe11]).

Lemma 2.3 (uniqueness part of the Zeckendorf theorem). Let $n \in \mathbb{N}$, and let T and T' be two finite lacunar subsets of \mathbb{N}_2 such that $n = \sum_{t \in T} f_t$ and $n = \sum_{t \in T'} f_t$. Then, T = T'.

Proof. Strong induction over *n*. In the induction step for n > 0, use Lemma 2.1 to show that max $T < \max T' + 1$ and max $T' < \max T + 1$; these together result in max $T = \max T'$. Hence, the sets *T* and *T'* have an element in common, and we can reduce the situation to one with a smaller *n* by removing this common element from both sets.

Lemmata 2.2 and 2.3 together yield the following theorem:

Theorem 2.4 (Zeckendorf theorem). Let $n \in \mathbb{N}$. Then, there exists one and only one finite lacunar subset *T* of \mathbb{N}_2 such that $n = \sum_{t \in T} f_t$.

Theorem 2.4 is a classical result that can be found in various places (e.g., [Hender16]). Hoggatt proved a generalization of Theorem 2.4 in [Hoggat72].

Definition 2.5. Let $n \in \mathbb{N}$. Theorem 2.4 shows that there exists one and only one finite lacunar subset *T* of \mathbb{N}_2 such that $n = \sum_{t \in T} f_t$. We will denote this set *T* by Z_n . Thus, $n = \sum_{t \in Z_n} f_t$.

3. Inequalities for the golden ratio

Next, we state a completely straightforward (and well-known, cf. [BenQui03, Chapter 9, Corollary 34]) theorem, which shows that the Fibonacci sequence grows roughly exponentially (with the exponent being the golden ratio ϕ):

Theorem 3.1. For every positive integer *n*, we have $|f_{n+1} - \phi f_n| = \frac{1}{\sqrt{5}} (\phi - 1)^n$.

Proof. Binet's formula (see, e.g., [BenQui03, Identity 240] or [Vorobi02, (1.20)]) yields $f_n = \frac{\phi^n - \phi^{-n}}{\sqrt{5}}$ and $f_{n+1} = \frac{\phi^{n+1} - \phi^{-(n+1)}}{\sqrt{5}}$; the rest is computation.

Let us show yet another lemma for later use:

Lemma 3.2. Let *S* be a finite lacunar subset of \mathbb{N}_2 . Then, $\sum_{s \in S} (\phi - 1)^s \le \phi - 1$.

Proof of Lemma 3.2. Since *S* is a lacunar subset of \mathbb{N}_2 , the smallest element of *S* is at least 2, the second smallest element of *S* is at least 4 (since it is larger than the smallest element by at least 2), the third smallest element of *S* is at least 6 (since it is larger than the second smallest element by at least 2), and so on. Since $\mathbb{N} \to \mathbb{R}$, $s \mapsto (\phi - 1)^s$ is a weakly decreasing function (as $0 \le \phi - 1 \le 1$), we thus have

$$\sum_{s \in S} (\phi - 1)^s \le \sum_{s \in \{2, 4, 6, \dots\}} (\phi - 1)^s = \sum_{t \in \{1, 2, 3, \dots\}} (\phi - 1)^{2t} = \phi - 1$$

(by the formula for the sum of the geometric series, along with some computations). This proves Lemma 3.2. $\hfill \Box$

4. Proving Theorem 1.4

Let us now come to the proof of Theorem 1.4. First, we formulate the existence part of this theorem:

Theorem 4.1 (existence part of the generalized Zeckendorf family identities). Let *T* be a finite set, and let a_t be an integer for every $t \in T$.

Then, there exists a finite lacunar subset *S* of \mathbb{Z} such that

$$\left(\sum_{t\in T} f_{n+a_t} = \sum_{s\in S} f_{n+s} \text{ for every } n \in \mathbb{Z} \text{ which} \\ \text{ satisfies } n > \max\left(\{-a_t \mid t\in T\} \cup \{-s \mid s\in S\}\right) \right).$$

Before we start proving this, let us introduce a notation:

Definition 4.2. Let *K* be a subset of \mathbb{Z} , and let $a \in \mathbb{Z}$. Then, K + a will denote the subset $\{k + a \mid k \in K\}$ of \mathbb{Z} .

Clearly, (K + a) + b = K + (a + b) for any two integers *a* and *b*. Also, K + 0 = K. Finally, if *K* is a lacunar subset of \mathbb{Z} , and if $a \in \mathbb{Z}$, then K + a is lacunar as well.

Proof of Theorem 4.1. Choose a high enough integer *N*. Here, "high enough" means that *N* should satisfy $N \in \mathbb{N}_2$ and $N > \max\{-a_t \mid t \in T\}$ and

$$(\phi - 1)^N \sum_{t \in T} (\phi - 1)^{a_t} + (\phi - 1) < 1.$$
⁽²⁾

(Such an *N* can indeed be found².)

²*Proof.* We have $(\phi - 1)^N \to 0$ for $N \to \infty$ (since $0 < \phi - 1 < 1$). Therefore, the left hand side of (2) tends to $\phi - 1$ as $N \to \infty$. Thus, for all sufficiently high N, the left hand side of (2) will be < 1, because $\phi - 1 < 1$. So, if we take N sufficiently high, then (2) will hold. Of course, our other two requirements on N (namely, $N \in \mathbb{N}_2$ and $N > \max\{-a_t \mid t \in T\}$) can also be achieved by taking N sufficiently high.

Let $\nu = \sum_{t \in T} f_{N+a_t}$. Then, Z_{ν} is a finite lacunar subset of \mathbb{N}_2 satisfying $\nu = \sum_{t \in Z_{\nu}} f_t$. Hence, Lemma 3.2 yields

$$\sum_{s\in Z_{\nu}} \left(\phi-1\right)^s \le \phi-1. \tag{3}$$

Define a subset *S* of \mathbb{Z} by $S = Z_{\nu} + (-N)$. Then, *S* is a finite lacunar subset of \mathbb{Z} (since Z_{ν} is a finite lacunar subset of \mathbb{Z}). Furthermore, from $S = Z_{\nu} + (-N)$, we obtain $Z_{\nu} = S + N$. Thus, the map $S \to Z_{\nu}$, $s \mapsto N + s$ is a bijection. This allows us to substitute N + s for *t* in sums over all $t \in Z_{\nu}$; we thus obtain

$$\sum_{t \in Z_{\nu}} f_t = \sum_{s \in S} f_{N+s} \quad \text{and}$$
$$\sum_{t \in Z_{\nu}} (\phi - 1)^t = \sum_{s \in S} (\phi - 1)^{N+s}. \tag{4}$$

Hence,

 $\sum_{t \in T} f_{N+a_t} = \nu = \sum_{t \in Z_{\nu}} f_t = \sum_{s \in S} f_{N+s},$ (5)

while the equality (4) yields

$$\sum_{s \in S} (\phi - 1)^{N+s} = \sum_{t \in Z_{\nu}} (\phi - 1)^{t} = \sum_{s \in Z_{\nu}} (\phi - 1)^{s} \le \phi - 1$$
(6)

(by (6)).

So, we have chosen a high N and found a finite lacunar subset S of \mathbb{Z} which satisfies $\sum_{t \in T} f_{N+a_t} = \sum_{s \in S} f_{N+s}$. But Theorem 4.1 is not proven yet: Theorem 4.1 requires us to prove that there exists *one* finite lacunar subset S of \mathbb{Z} which works for *every* N while at the moment we cannot be sure yet whether different N's

for *every* N, while at the moment we cannot be sure yet whether different N's wouldn't produce *different* sets S. And, in fact, different N's *can* produce different sets S, but (fortunately!) only if the N's are too small. As we have taken N high enough, the set S that we obtained turns out to be *universal*, i.e., it satisfies

$$\left(\begin{array}{c}\sum\limits_{t\in T}f_{n+a_t}=\sum\limits_{s\in S}f_{n+s} \text{ for every } n\in\mathbb{Z} \text{ which}\\\text{satisfies }n>\max\left(\{-a_t\mid t\in T\}\cup\{-s\mid s\in S\}\right)\end{array}\right).$$
(7)

We are now going to prove this.

In order to prove (7), we need two assertions:

Assertion 1: If some $n \in \mathbb{Z}$ satisfies $n \ge N$ and $\sum_{t \in T} f_{n+a_t} = \sum_{s \in S} f_{n+s}$, then $\sum_{t \in T} f_{(n+1)+a_t} = \sum_{s \in S} f_{(n+1)+s}$.

Assertion 2: If some $n \in \mathbb{Z}$ satisfies $\sum_{t \in T} f_{n+a_t} = \sum_{s \in S} f_{n+s}$ and $\sum_{t \in T} f_{(n+1)+a_t} = \sum_{s \in S} f_{(n+1)+s}$, then $\sum_{t \in T} f_{(n-1)+a_t} = \sum_{s \in S} f_{(n-1)+s}$ (if $n-1 > \max(\{-a_t \mid t \in T\} \cup \{-s \mid s \in S\})).$

Obviously, Assertion 1 yields (by induction) the equality $\sum_{t \in T} f_{n+a_t} = \sum_{s \in S} f_{n+s}$ for every $n \ge N$ (the induction base follows from (5)), and Assertion 2 then proves it for the remaining values of n (by backwards induction, or, to be more precise, by an induction step from n + 1 and n to n - 1). Thus, once both Assertions 1 and 2 are proven, (7) will follow and thus Theorem 4.1 will be proven.

Assertion 2 follows from comparing the equalities

$$\sum_{t \in T} \underbrace{f_{(n-1)+a_t}}_{=f_{n+a_t-1}} = \sum_{t \in T} f_{n+a_t+1} - \sum_{t \in T} f_{n+a_t} = \sum_{t \in T} f_{(n+1)+a_t} - \sum_{t \in T} f_{n+a_t}$$

and

$$\sum_{s \in S} \underbrace{f_{(n-1)+s}}_{\substack{=f_{n+s-1} \\ =f_{n+s+1}-f_{n+s}}} = \sum_{s \in S} f_{n+s+1} - \sum_{s \in S} f_{n+s} = \sum_{s \in S} f_{(n+1)+s} - \sum_{s \in S} f_{n+s}$$

(whose right hand sides are equal by the assumptions of Assertion 2); thus, it only remains to prove Assertion 1.

So let us prove Assertion 1. Here we are going to use that *N* is high enough (because otherwise, Assertion 1 wouldn't hold). We have $\sum_{t \in T} f_{n+a_t} = \sum_{s \in S} f_{n+s}$ by assumption, so that $\sum_{t \in T} f_{n+a_t} - \sum_{s \in S} f_{n+s} = 0$. Thus,

$$\sum_{t \in T} f_{(n+1)+a_t} - \sum_{s \in S} f_{(n+1)+s} = \sum_{t \in T} f_{(n+1)+a_t} - \sum_{s \in S} f_{(n+1)+s} - \phi \left(\sum_{t \in T} f_{n+a_t} - \sum_{s \in S} f_{n+s} \right)$$
$$= \sum_{t \in T} \left(f_{(n+1)+a_t} - \phi f_{n+a_t} \right) - \sum_{s \in S} \left(f_{(n+1)+s} - \phi f_{n+s} \right)$$
$$= \sum_{t \in T} \left(f_{n+a_t+1} - \phi f_{n+a_t} \right) - \sum_{s \in S} \left(f_{n+s+1} - \phi f_{n+s} \right),$$

so that

$$\begin{aligned} \left| \sum_{t \in T} f_{(n+1)+a_t} - \sum_{s \in S} f_{(n+1)+s} \right| &= \left| \sum_{t \in T} \left(f_{n+a_t+1} - \phi f_{n+a_t} \right) - \sum_{s \in S} \left(f_{n+s+1} - \phi f_{n+s} \right) \right| \\ &\leq \sum_{t \in T} |f_{n+a_t+1} - \phi f_{n+a_t}| + \sum_{s \in S} |f_{n+s+1} - \phi f_{n+s}| \qquad \text{(by the triangle inequality)} \\ &= \sum_{t \in T} \frac{1}{\sqrt{5}} \left(\phi - 1 \right)^{n+a_t} + \sum_{s \in S} \frac{1}{\sqrt{5}} \left(\phi - 1 \right)^{n+s} \qquad \text{(by Theorem 3.1)} \\ &< \sum_{t \in T} \underbrace{(\phi - 1)^{n+a_t}}_{(\text{since } n \ge N \text{ and } 0 < \phi - 1 < 1)} + \sum_{s \in S} \underbrace{(\phi - 1)^{n+s}}_{(\text{since } n \ge N \text{ and } 0 < \phi - 1 < 1)} \qquad \left(\operatorname{since } \frac{1}{\sqrt{5}} < 1 \right) \\ &\leq \sum_{t \in T} (\phi - 1)^{N+a_t} + \sum_{s \in S} (\phi - 1)^{N+s} \leq (\phi - 1)^N \sum_{t \in T} (\phi - 1)^{a_t} + (\phi - 1) < 1 \\ &= \underbrace{(\phi - 1)^N \sum_{t \in T} (\phi - 1)^{a_t}}_{(by (6))} \underbrace{(\phi - 1)^N \sum_{t \in T} (\phi - 1)^{a_t} + (\phi - 1) < 1}_{(by (6))} \end{aligned}$$

(by (2)). This leads to $\left|\sum_{t \in T} f_{(n+1)+a_t} - \sum_{s \in S} f_{(n+1)+s}\right| = 0$ (since $\left|\sum_{t \in T} f_{(n+1)+a_t} - \sum_{s \in S} f_{(n+1)+s}\right|$ is a nonnegative integer). In other words, $\sum_{t \in T} f_{(n+1)+a_t} = \sum_{s \in S} f_{(n+1)+s}$. This completes the proof of Assertion 1, and, with it, the proof of Theorem 4.1.

All that remains now is the (rather trivial) uniqueness part of Theorem 1.4:

Lemma 4.3 (uniqueness part of the generalized Zeckendorf family identities). Let *T* be a finite set, and let a_t be an integer for every $t \in T$. Let *S* be a finite lacunar subset of \mathbb{Z} such that

$$\left(\begin{array}{c}\sum_{t\in T}f_{n+a_t}=\sum_{s\in S}f_{n+s} \text{ for every } n\in \mathbb{Z} \text{ which}\\\text{ satisfies }n>\max\left(\{-a_t\mid t\in T\}\cup\{-s\mid s\in S\}\right)\end{array}\right).$$
(8)

Let S' be a finite lacunar subset of \mathbb{Z} such that

$$\sum_{t \in T} f_{n+a_t} = \sum_{s \in S'} f_{n+s} \text{ for every } n \in \mathbb{Z} \text{ which}$$

satisfies $n > \max\left(\{-a_t \mid t \in T\} \cup \{-s \mid s \in S'\}\right)$ (9)

Then, S = S'.

Proof of Lemma 4.3. Let

$$n = \max\left(\{-a_t \mid t \in T\} \cup \{-s \mid s \in S\} \cup \{-s \mid s \in S'\}\right) + 2.$$
(10)

Then, *n* satisfies $n > \max(\{-a_t \mid t \in T\} \cup \{-s \mid s \in S\})$. Thus, (8) yields

$$\sum_{t \in T} f_{n+a_t} = \sum_{s \in S} f_{n+s} = \sum_{t \in S+n} f_t$$

(here, we substituted *t* for n + s, since the map $S \to S + n$, $s \mapsto n + s$ is a bijection). Similarly, $\sum_{t \in T} f_{n+a_t} = \sum_{t \in S'+n} f_t$. Since the sets S + n and S' + n are both lacunar (since so are *S* and *S'*) and finite (since so are *S* and *S'*), and are subsets of \mathbb{N}_2 (by (10)), we can now conclude from Lemma 2.3 (applied to $\sum_{t \in T} f_{n+a_t}$, S + n and S' + n instead of *n*, *S* and *S'*) that S + n = S' + n, so that S = S'. This proves Lemma 4.3.

Proof of Theorem 1.4. Now, Theorem 1.4 is clear, since the existence follows from Theorem 4.1 and the uniqueness from Lemma 4.3. \Box

References

- [BenQui03] Arthur T. Benjamin and Jennifer J. Quinn, *Proofs that Really Count: The Art of Combinatorial Proof,* The Mathematical Association of America, 2003.
- [Hender16] Nik Henderson, What is Zeckendorf's Theorem?, 23 July 2016. https://math.osu.edu/sites/math.osu.edu/files/henderson_ zeckendorf.pdf
- [Hoggat72] V. E. Hoggatt, Jr., Generalized Zeckendorf theorem, The Fibonacci Quarterly 10 (1972), Issue 1, pp. 89–94. https://www.fq.math.ca/Scanned/10-1/hoggatt2.pdf
- [Vorobi02] Nicolai N. Vorobiev, *Fibonacci numbers*, translated from the Russian by Mircea Martin, Springer 2002.
- [WooZei09] Philip Matchett Wood, Doron Zeilberger, A translation method for finding combinatorial bijections, Annals of Combinatorics 13 (2009), pp. 383-402. http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ trans-method.html