Math 332: Undergraduate Abstract Algebra II, Winter 2025: Midterm 1

Please solve at most 3 of the 6 problems! No collaboration is allowed on the midterm.

Darij Grinberg

January 30, 2025

1 Exercise 1

1.1 Problem

(a) Is the map

$$\mathbb{Z}^{2\times 2} \to \mathbb{Z}^{2\times 2},$$
$$A \mapsto A^T$$

(which sends each 2×2 -matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ to its transpose $A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$) a ring morphism?

(b) Is the map

$$\mathbb{Z}^{2\times2} \to \mathbb{Z}^{2\times2},$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & c \\ b & a \end{pmatrix}$$

a ring morphism?

Keep in mind that claims should be proved.

1.2 SOLUTION

• • •

2 Exercise 2

2.1 Problem

Let R be a ring. Let a and b be two units of R such that a + b is a unit as well.

(a) Prove that $a^{-1} + b^{-1}$, too, is a unit, and its inverse is

$$(a^{-1} + b^{-1})^{-1} = a \cdot (a+b)^{-1} \cdot b = b \cdot (a+b)^{-1} \cdot a.$$

- **(b)** Show on an example that $(a^{-1} + b^{-1})^{-1}$ can differ from $ab \cdot (a+b)^{-1}$.
 - 2.2 SOLUTION

...

3 Exercise 3

3.1 Problem

Let R be a ring. If A, B, C, D are four subsets of R, then the notation $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ shall denote the set of all 2×2 -matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in R^{2 \times 2}$ with $a \in A$, $b \in B$, $c \in C$ and $d \in D$. (For instance, $\begin{pmatrix} \mathbb{N} & 2\mathbb{Z} \\ 2\mathbb{Z} & \mathbb{N} \end{pmatrix}$ is the set of all 2×2 -matrices whose diagonal entries are nonnegative integers and whose off-diagonal entries are even integers.)

- (a) Let I be a subset of R. Prove that I is an ideal of R if and only if $\begin{pmatrix} R & I \\ \{0\} & R \end{pmatrix}$ is a subring of $R^{2\times 2}$.
- **(b)** Does the same claim hold for $\begin{pmatrix} R & I \\ I & R \end{pmatrix}$ instead of $\begin{pmatrix} R & I \\ \{0\} & R \end{pmatrix}$?
- (c) Does the same claim hold for $\begin{pmatrix} R & I \\ R & R \end{pmatrix}$ instead of $\begin{pmatrix} R & I \\ \{0\} & R \end{pmatrix}$?
- (d) Does the same claim hold for $\begin{pmatrix} R & R \\ R & I \end{pmatrix}$ instead of $\begin{pmatrix} R & I \\ \{0\} & R \end{pmatrix}$?

For the sake of brevity, you need not give proofs for parts (b), (c) and (d).

3.2 SOLUTION

...

4 Exercise 4

4.1 Problem

Let R be a finite ring. Assume that its size |R| is either a prime number p or a product pq of two (not necessarily distinct!) prime numbers p and q. Our goal is to show that R is commutative.

Consider the abelian group (R, +, 0). If u_1, u_2, \ldots, u_k are any elements of R, then $\langle u_1, u_2, \ldots, u_k \rangle$ shall denote the subgroup of this abelian group (R, +, 0) generated by the elements u_1, u_2, \ldots, u_k . (Explicitly, this subgroup consists of all sums of the form $a_1u_1 + a_2u_2 + \cdots + a_ku_k$ with $a_1, a_2, \ldots, a_k \in \mathbb{Z}$.)

Let $x, y \in R$. Consider the following chain of subgroups of (R, +, 0):

$$0 \le \langle 1 \rangle \le \langle x, 1 \rangle \le R.$$

(The symbol \leq means "subgroup of".)

- (a) Prove that at least one of the three "\le " signs in this chain must be an "\in" sign.
- (b) Prove that xy = yx if the first " \leq " sign is a "=" sign.
- (c) Prove that xy = yx if the second " \leq " sign is a "=" sign.
- (d) Prove that xy = yx if the third " \leq " sign is a "=" sign.
- (e) Conclude that R is commutative.

4.2 HINT

In part (a), recall Lagrange's theorem about subgroups, and observe that a number m of the form p or pq cannot have a nontrivial chain of three divisors $1 \mid d \mid e \mid m$. Parts (b), (c) and (d) are easy in their own ways.

4.3 SOLUTION

...

5 Exercise 5

5.1 Problem

Consider the ring $\mathbb{R}^{2\times 2}$ of all 2×2 -matrices with real entries.

Define two subsets \mathcal{P} and \mathcal{M} of $\mathbb{R}^{2\times 2}$ by

$$\mathcal{P} := \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\} \quad \text{and} \quad \mathcal{M} := \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

- (a) Show that \mathcal{P} and \mathcal{M} are commutative subrings of $\mathbb{R}^{2\times 2}$.
- (b) Prove that \mathcal{P} is not an integral domain.
- (c) Prove that \mathcal{M} is a field.

5.2 SOLUTION

...

6 Exercise 6

6.1 Problem

Let R be a ring. For any two subsets A and B of R, we define a subset A + B of R by

$$A+B:=\left\{ a+b \;\mid\; a\in A \text{ and } b\in B \right\}.$$

Which of the following three claims are true? (Prove the true ones and give counterexamples to the false ones.)

- (a) If I and J are two ideals of R, then I+J is again an ideal of R.
- (b) If A and B are two subrings of R, then A + B is again a subring of R.
- (c) If I is an ideal of R, and if S is a subring of R, then S + I is a subring of R.

. . .

REFERENCES

[23wa] Darij Grinberg, Math 332 Winter 2023 notes: An introduction to the algebra of rings and fields, 17 January 2025. https://www.cip.ifi.lmu.de/~grinberg/t/23wa/23wa.pdf