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1. Rings and fields

1.1. Defining rings

1.1.1. The definition

Definition 1.1.1. A ring means a set R equipped with

• two binary operations (i.e., maps from R × R to R) that are called addi-
tion and multiplication and are denoted by + and ·, and

• two elements of R that are called zero and unity and are denoted by 0
and 1,

such that the following properties (the ring axioms) hold:

1. (R,+, 0) is an abelian group. In other words:

a) The operation + is associative (i.e., a + (b + c) = (a + b) + c for all
a, b, c).

b) The element 0 is a neutral element for + (that is, a + 0 = 0 + a = a
for all a).

c) Each element a ∈ R has an inverse for the operation + (i.e., an
element b ∈ R such that a + b = b + a = 0).

d) The operation + is commutative (i.e., a + b = b + a for all a, b).

2. (R, ·, 1) is a monoid. In other words:

a) The operation · is associative (i.e., a · (b · c) = (a · b) · c for all a, b, c).

b) The element 1 is a neutral element for · (that is, a · 1 = 1 · a = a for
all a).

We do not require commutativity of ·.

3. The distributive laws hold in R: That is, for all a, b, c ∈ R, we have

a · (b + c) = a · b + a · c;
(b + c) · a = b · a + c · a.

4. We have a · 0 = 0 · a = 0 for all a ∈ R.

The zero of R and the unity of R are called 0 and 1 because they behave
like the numbers 0 and 1; but they don’t have to be these numbers. In case
of ambiguity, we fall back to writing 0R and 1R for them.

The unity of R is also known as the identity of R or the one of R.
The product a · b is often written ab.
The inverse of an element a ∈ R in the group (R,+, 0) is called the additive

inverse of a, and is denoted by −a.
The sum a + (−b) is abbreviated a − b and called the difference of a and

b.
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Definition 1.1.2. A ring R is said to be commutative if its multiplication is
commutative (i.e., we have ab = ba for all a, b).

1.1.2. Some examples

• The sets Z, Q, R and C (endowed with the usual addition, the usual
multiplication, the usual 0 and the usual 1) are commutative rings.

(Note that we never required the existence of multiplicative inverses.)

• The set N := {0, 1, 2, . . .} of nonnegative integers is not a ring, since it has
no additive inverses (except for 0). Nevertheless it almost fits the bill, as
it satisfies all the other ring axioms. Such objects are called semirings.

• We can define a commutative ring Z′ as follows:

We define a binary operation ×̃ on the set Z by setting

a ×̃ b := −ab for all (a, b) ∈ Z × Z.

Now, let Z′ be the set Z, endowed with the usual addition + and the
unusual multiplication ×̃ and the usual 0Z′ = 0 and the unusual 1Z′ =
−1. Then it is easy to check that this Z′ is again a commutative ring. But
in fact, this ring Z′ is just a copy of the original ring Z of integers, but
with every integer k renamed as −k. To make this more precise, we need
the notion of a ring isomorphism, which allows us to say that our ring
Z′ is isomorphic to Z via the ring isomorphism

Z → Z′, k 7→ −k.

• The quotient rings Z/n for n ∈ Z are further examples of rings. For
instance,

Z/3 =
{

0, 1, 2
}

, with 1 + 1 = 2 and 2 + 2 = 4 = 1.

• The polynomial rings

Q [x] = {all polynomials in the indeterminate x over Q} ;
Z [x] = {all polynomials in the indeterminate x over Z} ;
R [x] = {all polynomials in the indeterminate x over R} ;

Q [x, y] = {all polynomials in the indeterminates x, y over Q} .

And many more along these lines. We will see them in a later chapter.
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• The set of all functions from Q to Q is a commutative ring, where addition
and multiplication are defined pointwise:

( f + g) (x) = f (x) + g (x) for all f , g : Q → Q and x ∈ Q;
( f · g) (x) = f (x) · g (x) for all f , g : Q → Q and x ∈ Q,

where the zero is the “constant-0” function and where the unity is the
“constant-1” function.

The same construction works for functions from Q to R, or from R to Q,
or from N to Q.

More generally, if R is a ring, and if S is any set, then the set of all func-
tions from S to R is a ring (with +, ·, 0 and 1 defined as above). This new
ring is commutative if R is.

When we specify a ring, we don’t need to prove its 0 and its 1; we only need
to ensure that they exist.

Some more examples of rings:

• The ring H of quarternions:

H = {a + bi + cj + dk | a, b, c, d ∈ R}

with addition being the boring one:

(a + bi + cj + dk) +
(
a′ + b′i + c′ j + d′k

)
=
(
a + a′

)
+
(
b + b′

)
i +
(
c + c′

)
j +
(
d + d′

)
k

and multiplication being given by distributivity and

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = −1.

and the requirement that real numbers commute with everything (so ai =
ia and so on when a ∈ R). This is not a commutative ring.

• There are many rings “between” Q and R. For instance, let

S =
{

all real numbers of the form a + b
√

5 with a, b ∈ Q
}

=

{
3 = 3 + 0

√
5, 2 + 5

√
5, 7 − 8

√
5,

23
6

+ 19
√

5, 2
√

5, . . .
}

.
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This is a ring (with the usual addition, multiplication, 0 and 1). To prove
this, we note that the ring axioms (except the existence of additive in-
verses) are satisfied for S because they are satisfied for R. The existence
of additive inverses because

−
(

a + b
√

5
)
= (−a) + (−b)

√
5 ∈ S.

It remains to prove “closure” – i.e., to prove that the operations + and ·
on S are actually maps from S × S to S. In other words, we must prove
that every x, y ∈ S satisfy x + y ∈ S and xy ∈ S. We can do this by hand:(

a + b
√

5
)
+
(

c + d
√

5
)
= (a + c) + (b + d)

√
5;(

a + b
√

5
) (

c + d
√

5
)
= ac + ad

√
5 + bc

√
5 + bd

√
5
√

5︸ ︷︷ ︸
=5

= ac + ad
√

5 + bc
√

5 + 5bd

= (ac + 5bd) + (ad + bc)
√

5.

So S is a commutative ring.

• We could define a different ring structure on the same set S: specifically,
a ring that, as a set, is identical with S, but has a different choice of
multiplication and unity. Namely, we define a binary operation ∗ on S by(

a + b
√

5
)
∗
(

c + d
√

5
)
= ac + bd

√
5 for all a, b, c, d ∈ Q.

To make sure that this is well-defined, we would need to check that each
x ∈ S can be written as a + b

√
5 for unique a, b ∈ Q, but this is quite

easy using the irrationality of
√

5. It is also easy to check that the set
S, equipped with the usual addition +, the unusual multiplication ∗, the
usual zero 0 and the unusual unity 1 +

√
5, is a commutative ring. It is

not the same ring as S, not even isomorphic to S.

• Let S3 be the set of all real numbers of the form a + b 3
√

5 with a, b ∈ Q.
Is this a ring (endowed with the usual addition, the usual multiplication,
the usual 0 and the usual 1)?

No, because multiplication is not a binary operation on S3:(
a + b 3

√
5
) (

c + d 3
√

5
)
= ac + ad 3

√
5 + bc 3

√
5 + bd 3

√
25.

There is no way to rewrite the RHS here in the form u + v 3
√

5 with u, v ∈
Q. (Proving this is not that easy, but doable.)
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• For any n ∈ N, the set Rn×n of all n × n-matrices with real entries (en-
dowed with matrix addition, matrix multiplication, the zero matrix and
the identity matrix) is a ring. It is not commutative unless n ≤ 1, since
usually AB ̸= BA for matrices.

More generally: If R is any ring, and if n ∈ N, then the set Rn×n of all
n × n-matrices with entries in R (endowed with matrix addition, matrix
multiplication, the zero matrix and the identity matrix) is a ring. This is
called the n× n-matrix ring over R; it is denoted by Rn×n or Mn (R). Note
that Rn×n is not commutative even for n = 1 if R itself is not commutative.

From now on, we will omit the words “endowed with the usual addition,
...”: Any ring with a reasonable addition, multiplication etc. is understood to
be endowed with these operations unless we declare otherwise.

• The zero ring is the ring consisting of a single element 0. This element
serves both as zero and as unity. (So 0 = 1 in this ring.) Both operations
+ and · are given by 0 + 0 = 0 · 0 = 0. The zero ring is commutative.

More generally, a trivial ring means a ring with only one element. Any
trivial ring is just the zero ring with its element 0 renamed.

• Let n be an integer.

Consider the relation “congruent modulo n” on the set Z. It is defined by

a ≡ b mod n ⇐⇒ n | a − b.

This relation (for fixed n) is an equivalence relation. Its equivalence classes
are called the residue classes of integers modulo n. Explicitly for each
integer a, the residue class that contains a is

{all integers that are congruent to a modulo n}
= {all integers that differ from a by a multiple of n}
= {. . . , a − 3n, a − 2n, a − n, a, a + n, a + 2n, a + 3n, . . .} .

We denote this class by a. Two integers a and b satisfy a = b if and only if
a ≡ b mod n. Thus, working with residue classes of integers modulo n is
like working with integers but pretending that n is 0. The set of all these
residue classes is called Z/n (or Z/nZ or Zn).

These residue classes can be added and multiplied by the following rules:

a + b = a + b;

a · b = a · b.

This turns the set Z/n into a commutative ring with zero 0 and unity 1.
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Note that

|Z/n| =
{
|n| , if n ̸= 0;
∞, if n = 0.

Note that the residue classes in Z/0 are all distinct: No two integers are
congruent modulo 0 unless they are equal; thus each residue class is just
a singleton: a = {a}.

Examples: In Z/12, we have

6 · 7 = 6 · 7 = 42 = 6 since 42 ≡ 6 mod 12;

6 · 8 = 6 · 8 = 48 = 0 since 48 ≡ 0 mod 12.

In Z/15, we have

6 · 7 = 6 · 7 = 42 = 12 since 42 ≡ 12 mod 15;

6 · 8 = 6 · 8 = 48 = 3 since 48 ≡ 3 mod 15.

• Consider a 4-element set with four elements 0, 1, a, b. We endow this set
with two operations + and · defined by the following tables of values:

x + y y = 0 y = 1 y = a y = b

x = 0 0 1 a b

x = 1 1 0 b a

x = a a b 0 1

x = b b a 1 0

x · y y = 0 y = 1 y = a y = b

x = 0 0 0 0 0

x = 1 0 1 a b

x = a 0 a b 1

x = b 0 b 1 a

.

For example, aa = b and ab = 1. It can be checked in finite time (and a lot
of patience) that this really satisfies all the ring axioms, and thus makes
a ring. It is a commutative ring. We will soon learn a conceptual way to
define this ring (and more general rings like this): it is the field of order
4.

• The ring of dual numbers, which are pairs (a, b) of real numbers with
addition being entrywise:

(a, b) + (c, d) = (a + c, b + d) ,

and multiplication being defined by

(a, b) (c, d) = (ac, ad + bc) .

The ring axioms are easy to check. What is interesting is the meaning of
this ring: Write (a, b) as a + bε. Then, addition is

(a + bε) + (c + dε) = (a + c) + (b + d) ε.
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Multiplication is

(a + bε) (c + dε) = ac + (ad + bc) ε.

This is what you get multiplying out the LHS and throwing away the bdε2

term. So in a sense, ε acts like a first-order infinitesimal: ε2 = 0. Formally,
of course, ε is just the pair (0, 1).

For example,
(a + bε)n = an + nan−1bε.

More generally, for any polynomial f , we have

f (a + bε) = f (a) + f ′ (a) bε.

1.2. Calculating in rings

1.2.1. What works

Intuitively, the elements of a commutative ring are “numbers in a wider sense”
– i.e., objects that behave like numbers. So we expect all the standard rules for
numbers to apply more generally in any commutative ring. In a noncommu-
tative ring, things are trickier since the rule ab = ba can fail and therefore all
the other rules downstream from it can also fail. Let us be more explicit about
what rules we expect to hold.

If a1, a2, . . . , an are any n elements of a ring, then the sum a1 + a2 + · · ·+ an is
well-defined (i.e., its value does not depend on the order and the parenthesiza-
tion). More generally, any finite sum of the form ∑

s∈S
as (where S is a finite set)

is well-defined whenever the addends as belong to a ring. This fact is known
as generalized commutativity. For rigorous proofs, see some references in the
notes.

If our ring is commutative, then the same holds for finite products of the form
∏

s∈S
as. If the ring is noncommutative, then ∏

s∈S
as usually does not make sense

unless the factors as just happen to commute. Nevertheless, a product with a
well-specified order, such as a1a2 · · · an, makes sense even in a noncommutative
ring. This fact is known as generalized associativity. Again, see references for
proofs. An empty product is defined to be the unity of the underlying ring,
whereas an empty sum is defined to be the zero.

There is also a generalized distributivity law saying

a (b1 + b2 + · · ·+ bn) = ab1 + ab2 + · · ·+ abn

and so on.
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In any ring, subtraction satisfies the rules you would expect: For any a, b, c ∈
R, we have

(−a) b = a (−b) = − (ab) ;
(−a) (−b) = ab;

(−1) a = −a;
a (b − c) = ab − ac;
(a − b) c = ac − bc.

Next, we define some more definitions.
If n is an integer, and a is an element of a ring R, then we define an element

na of R by

na :=


a + a + · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 , if n < 0.

Note that this defines multiplying (aka scaling) an element of R by an integer.
This is not the same as multiplying two elements of R with each other. (How-
ever, if R does contain Z as a subset, then usually the two operations agree,
unless the multiplication on R has been rigged to differ from multiplication of
numbers like in our Z′ example above.)

If n is a nonnegative integer, and a is an element of a ring R, then we define
an element an of R by

an := aa · · · a︸ ︷︷ ︸
n times

.

In particular, a0 = (empty product) = 1R by definition.
These scaling and exponentiation operations behave like you would expect,

with a couple caveats. For scaling, there are no caveats: We always have

(n + m) a = na + ma;
n (a + b) = na + nb;
(nm) a = n (ma) ;
(−1) a = −a

for a, b ∈ R and n, m ∈ Z. For exponentiation, we always have

an+m = an · am;

anm = (an)m
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for a ∈ R and n, m ∈ N. Moreover, if a, b ∈ R commute (i.e., satisfy ab = ba),
then

(ab)n = anbn;

aibj = bjai;

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k (the binomial theorem)

for any n, i, j ∈ N. These are not generally true if a, b do not commute (pitfall!).
Also,

1n
R = 1R for any n ∈ N;

0n
R = 0R for any n > 0;

00
R = 1R.

All of this is proved just like for numbers, except that sometimes commutativity
needs to be used explicitly rather than tacitly.

1.2.2. What doesn’t work

But rings can be weird:

• It is not always true that a ̸= 0 and b ̸= 0 imply ab ̸= 0. We have seen
counterexamples in Z/12. There are also counterexamples in R2×2.

• It is not always true that ab = 1 implies ba = 1. Counterexamples to this
are hard to find (for example, ab = 1 =⇒ ba = 1 holds for any finite ring,
any field, any integral domain, any matrix ring over a field, ...), but they
exist.

1.3. Subrings

1.3.1. Definition

Groups have subgroups; vector spaces have subspaces. For rings, expect the
same:

Definition 1.3.1. Let R be a ring. A subring of R means a subset S of R such
that

• we have a + b ∈ S for all a, b ∈ S (that is, S is closed under addition);

• we have ab ∈ S for all a, b ∈ S (that is, S is closed under multiplication);
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• we have −a ∈ S for all a ∈ S (that is, S is closed under negation);

• we have 0 ∈ S (where the 0 means the zero of R);

• we have 1 ∈ S (where the 1 means the unity of R).

These five conditions are called the subring axioms.

Proposition 1.3.2. Let S be a subring of a ring R. Then, S itself automatically
is a ring (with its operations + and · obtained by restricting the correspond-
ing operations of R, and with the 0 and 1 inherited from R).

1.3.2. Examples

• From the classical construction of the number systems,

Z ⊆ Q ⊆ R ⊆ C.

Each of these inclusions is a “subring”: that is, Z is a subring of Q, which
in turn is a subring of R, and so on.

• You can extend this chain further to the right: C is a subring of H (the
Hamilton quaternions).

• Can you extend this chain to the left? Does Z have any subrings besides
itself?

No, because if S is a subring of Z, then 1 ∈ S (by one of the subring
axioms), hence n ∈ S for each positive integer n (since n = 1+ 1+ · · ·+ 1),
thus −n ∈ S for each positive integer n (since S is closed under negation),
and so all integers belong to S.

• Are there rings between Z and Q ? What about

1
2

Z =
{n

2
| n ∈ Z

}
?

This is not a subring, since it is not closed under multiplication (
1
2
· 1

2
=

1
4

).
We can, however, fix this by extending it: Consider instead

B2 =
{ a

2k | a ∈ Z and k ∈ N
}

.

This is a subring of Q that contains Z as a subring, so we have

Z ⊆ B2 ⊆ Q.

Similarly you can define B3 and B4(= B2) and B5 and so on.
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• Are there rings between Q and R ? A lot, such as

S =
{

a + b
√

5 | a, b ∈ Q
}

(called Q
[√

5
]
). Another example is the ring

Q
[√

2
]
=
{

a + b
√

2 | a, b ∈ Q
}

.

Another example is the ring

Q
[

3
√

2
]
=
{

a + b 3
√

2 + c 3
√

4 | a, b, c ∈ Q
}

(exercise: check that this really is a subring of R !). Another is

Q [π] =
{

a + bπ + cπ2 + dπ3 + · · · | a, b, c, d, . . . ∈ Q

and only finitely many of a, b, c, d, . . . are ̸= 0}
= { f (π) | f is a polynomial with rational coefficients} .

(You need all polynomials here – there is no a-priori bound on the degree
after which no new values will appear, since π is transcendental.)

• What about rings between R and C ? There are none. The only subrings
of C that contain R are R and C themselves. The easiest way to see this
is by realizing that any such subring would be an R-vector subspace of C

that contains R; but dim C = 2, so the only such subspaces are R and C.

• There are rings between Z and C that are neither sub- nor superrings of
Q and R.

A particularly important one is Z [i], the ring of Gaussian integers.

A Gaussian integer is a complex number of the form a + bi, where a, b ∈
Z (and i =

√
−1). For instance, 3 + 5i or 7 − 9i but not

2
3
+ 5i.

It is easy to see that Z [i] is a subring of C and contains Z as a subring.
But it neither contains nor is contained in any of Q and R.

Visually, Gaussian integers are the lattice points of a square lattice (i.e.,
the points with both coordinates integers) in the plane.

There are also Gaussian rationals, called Q [i], and defined as a+ bi where
a, b ∈ Q.

• Recall the ring of functions from Q to Q. Similarly, there is a ring of
functions from R to R. The latter ring has a subring that consists of all
continuous functions from R to R. Another subring consists of all smooth
functions from R to R (= infinitely often differentiable).
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• Let n ∈ N, and let R be any ring. Recall the matrix ring

Rn×n =

all n × n-matrices


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n

 with ai,j ∈ R

 .

Some of its subrings are:

– the subring

Rn≤n =

all n × n-matrices


a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

... . . . ...
0 0 · · · an,n

 with ai,j ∈ R


=
{

all upper-triangular matrices in Rn×n} ;

– the subring

Rn≥n =

all n × n-matrices


a1,1 0 · · · 0
a2,1 a2,2 · · · 0

...
... . . . ...

an,1 an,2 · · · an,n

 with ai,j ∈ R


=
{

all lower-triangular matrices in Rn×n} ;

– the subring

Rn=n =

all n × n-matrices


a1,1 0 · · · 0
0 a2,2 · · · 0
...

... . . . ...
0 0 · · · an,n

 with ai,j ∈ R


=
{

all diagonal matrices in Rn×n} ;

– the subring

RIn = {aIn | a ∈ R}

=

all n × n-matrices


a 0 · · · 0
0 a · · · 0
...

... . . . ...
0 0 · · · a

 with a ∈ R


= {all scalar multiples of the identity matrix} .
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– many, many more.

On the other hand,

Rn×n
symm =

all symmetric n × n-matrices


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n

 with ai,j ∈ R


is not a subring of Rn×n (unless n ≤ 1 or R is trivial), since the product of

two symmetric matrix is generally not symmetric:
(

0 1
1 0

)(
1 0
0 0

)
=(

0 0
1 0

)
.

1.4. Zero divisors and integral domains

Definition 1.4.1. An element of a ring R is said to be nonzero if it is ̸= 0R.

Definition 1.4.2. Let R be a commutative ring. A nonzero element a ∈ R is
said to be a zero divisor if there exists a nonzero b ∈ R such that ab = 0.

For example, in the ring Z/6, both elements 2 and 3 are zero divisors, since
2 · 3 = 6 = 0.

Definition 1.4.3. Let R be a commutative ring. Assume that 0 ̸= 1 in R (that
is, 0R ̸= 1R). We say that R is an integral domain if all nonzero a, b ∈ R
satisfy ab ̸= 0.

In other words, a commutative ring with 0 ̸= 1 is an integral domain if and
only if it has no zero divisors.

Examples:

• The rings Z, Q, R and C are integral domains. So would be the ring H if
it was commutative.

• The ring Z/n is an integral domain if and only if n is 0 or a prime or
minus a prime. We will prove this later.

• The ring S =
{

a + b
√

5 | a, b ∈ Q
}

is an integral domain (being a sub-

ring of the integral domain R), but the ring S′ =
{

a + b
√

5 | a, b ∈ Q
}

with the multiplication ∗ is not.
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• The ring of all functions from Q to Q is not an integral domain, since
we can find two functions that are not identically 0 but whose product is
identically 0.

Most rings of functions have this behavior! Even a “nice” function ring
such as the ring of smooth functions from R to R. Only once you get to
holomorphic or analytic functions do you get an integral domain.

1.5. Units and fields

1.5.1. Units and inverses

By definition, any ring R has an addition, a subtraction and a multiplication.
But a division may or may not be possible, depending on what you want to
divide by. Even in Q, you cannot divide by 0. In the ring Z, you can divide
every integer by 1 and −1, but other divisions may or may not work. In fact,
in any ring R, you can divide any element by 1 and by −1. Let us give such
elements (which you can divide every element by) a name:

Definition 1.5.1. Let R be a ring.
(a) An element a ∈ R is said to be a unit of R (or invertible in R) if there

exists a b ∈ R such that ab = ba = 1. In this case, b is unique and is known
as the inverse (or reciprocal, or multiplicative inverse) of a, and is denoted
by a−1.

(b) We let R× denote the set of all units of R.

Some comments:

• Of course, 1 here means 1R.

• “Unity” and “unit” are not the same: A ring usually has many units, but
only one unity. (Of course, the unity is a unit.)

• We required ab = ba = 1 rather than ab = 1 only. When R is commutative,
ab = 1 suffices.

• Why is b unique? If there were two such b’s, say b1 and b2, then we would
have b1 ab2︸︷︷︸

=1

= b1, so that b1 = b1a︸︷︷︸
=1

b2 = b2.

Some examples of units:

• The units of the ring Q are the nonzero elements of Q. This is because

each nonzero r ∈ Q has a reciprocal
1
r
∈ Q.

Similarly, the same holds for R and for C and for H.
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• The units of the ring Z are 1 and −1. Not 2, because
1
2

/∈ Z.

• The units of the ring Rn×n are the invertible n × n-matrices.

• In the ring of all functions from Q to Q (with pointwise + and ·), the units
are those functions that never take the value 0.

Now what about the units of Z/n ?

Proposition 1.5.2. Let n ∈ Z. Then:
(a) The units of the ring Z/n are precisely the residue classes a where

a ∈ Z is coprime to n.
(b) Let a ∈ Z. Then, a is a unit of Z/n if and only if a is coprime to n.

Proof. It suffices to show part (b).
(b) We prove the “if” (⇐=) and “only if” (=⇒) directions separately:
⇐=: Assume that a ∈ Z is coprime to n. We must prove that a is a unit of

Z/n.
Since a is coprime to n, we have gcd (a, n) = 1. But Bezout’s theorem yields

that there exist x, y ∈ Z such that xa + yn = gcd (a, n). Consider these x, y.
Thus, xa + yn = gcd (a, n) = 1. In other words, xa − 1 = −yn ≡ 0 mod n.

Thus xa ≡ 1 mod n. Therefore, x · a = xa = 1 in Z/n. Since Z/n is com-
mutative, this entails that x is an inverse of a. So a has an inverse, i.e., is a
unit.
=⇒: Assume that a is a unit of Z/n. We must prove that a is coprime to n.
Since a is a unit, it has an inverse x. Thus, x ∈ Z and xa ≡ 1 mod n.

Hence, gcd (xa, n) = gcd (1, n) (by the property of gcds saying that gcd (α, β) =
gcd (γ, β) whenever α ≡ γ mod β). Of course, gcd (1, n) = 1. So gcd (xa, n) =
gcd (1, n) = 1. Therefore, gcd (a, n) = 1 as well (since gcd (a, n) | a | xa and
gcd (a, n) | n and thus gcd (a, n) | gcd (xa, n) = 1). In other words, a is coprime
to n. Thus the proof is done.

Examples:

• The units of the ring Z/12 are 1, 5, 7, 11, since the numbers a ∈ {0, 1, . . . , 11}
that are coprime to 12 are 1, 5, 7, 11.

• The units of the ring Z/5 are 1, 2, 3, 4.

• The only unit of the ring Z/2 is 1.

• A trivial ring has only one unit, namely its unity (which is also its zero).
This is the only case when 0R is a unit.

Some general facts about units follow:
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Theorem 1.5.3. Let R be a ring. Then, the set R× = {all units of R} is a
multiplicative group. That is: (R×, ·, 1) is a group.

Proof. We must show the following facts:

1. The unity 1 of R belongs to R×.

2. If a, b ∈ R×, then ab ∈ R×.

3. If a ∈ R×, then a has an inverse of R×.

All the group axioms are then inherited from R×. So let us prove these three
facts:

Proof of Fact 1: Well, 1 is its own inverse: 1 · 1 = 1.
Proof of Fact 2: Let a, b ∈ R×. Why is ab ∈ R× ? Because we can explicitly

construct an inverse for it: namely, we claim that b−1a−1 is an inverse of ab. To
wit,

b−1 a−1 · a︸ ︷︷ ︸
=1

b = b−1b = 1 and

a b · b−1︸ ︷︷ ︸
=1

a−1 = aa−1 = 1.

Proof of Fact 3: Let a ∈ R×. Then, a has an inverse a−1 ∈ R. We must show
that a−1 ∈ R×. But this is clear, since a itself is an inverse of a−1 (this follows
from the same equalities aa−1 = a−1a = 1 that say that a−1 is an inverse of a).

So the proof is complete.

As consequences of the above proof, we obtain the following facts:

Theorem 1.5.4 (Shoe-sock theorem). Let R be a ring. Let a, b be two units of
R. Then, ab is a unit of R, and its inverse is

(ab)−1 = b−1a−1.

Theorem 1.5.5. Let R be a ring. Let a be a unit of R. Then, a−1 is a unit of R,
and its inverse is

(
a−1)−1

= a.

Of course, we will use these without mentioning.

1.5.2. Fields

As we have seen, many rings (such as Z) have few units, but many other rings
(such as Q or R) have many. The latter kind of ring has a name:
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Definition 1.5.6. Let R be a commutative ring. Assume that 0 ̸= 1 in R. Then,
R is said to be a field if every nonzero element of R is a unit.

Examples:

• The rings Q, R and C are fields. The ring Z is not (since 2 is not a unit,
for example).

• The ring S = Q
[√

5
]
=
{

a + b
√

5 | a, b ∈ Q
}

is a field. Indeed, if a +

b
√

5 is a nonzero element of S, then a + b
√

5 is a unit, since its inverse is(
a + b

√
5
)−1

=
1

a + b
√

5
=

a − b
√

5(
a − b

√
5
) (

a + b
√

5
)

=
a − b

√
5

a2 − 5b2 =
a

a2 − 5b2 +
−b

a2 − 5b2

√
5 ∈ S.

Strictly speaking, this relies on the fact that a2 − 5b2 ̸= 0, which is true
because otherwise 5 would be a square of a rational number (which it is
not:

√
5 is irrational).

• The Hamilton quaternions H would be a field if they were commutative.
A noncommutative ring R with 0 ̸= 1 whose all nonzero elements are
units is called a division ring or a skew-field. So H is a skew-field.

• Let n be a positive integer. Then, Z/n is a field if and only if n is prime.
(See below for a proof.)

1.6. Fields and integral domains: some connections

Proposition 1.6.1. (a) Every field is an integral domain.
(b) Every finite integral domain is a field.

Proof. (a) Easy: If ab = 0 and a, b ̸= 0, then you can multiply by a−1b−1 to
obtain 1 = 0, which is absurd.

(b) Pigeonhole principle. Jurij argued that each nonzero a ∈ R must have
an inverse, because it has two equal powers ai = aj (with i < j), which then
entails ai (1 − aj−i) = 0, and because R is an integral domain, you can cancel ai

to obtain 1 − aj−i = 0, which entails that aj−i−1 is an inverse of a.
I have a different argument in the lecture notes, but it also uses the pigeon-

hole principle.



Math 332 Winter 2025 diary, version March 14, 2025 page 19

Of course, part (b) does not hold without the word “finite”, since Z is an
integral domain but not a field. Other examples of this nature are polynomial
rings (see later).

Corollary 1.6.2. Let n be a positive integer. Then,

(Z/n is an integral domain) ⇐⇒ (Z/n is a field) ⇐⇒ (n is prime) .

Proof. Since Z/n is finite, the first ⇐⇒ sign follows immediately from the pre-
vious proposition. As for the second ⇐⇒ sign, it is not much harder:
⇐=: If n is prime, then all the numbers 1, 2, . . . , n − 1 are coprime to n, so

that their residue classes 1, 2, . . . , n − 1 are units of Z/n, and this means that
Z/n is a field.
=⇒: Read this argument backwards.

The group of units (Z/n)× of the ring Z/n is a rather interesting object. It
is an abelian group, but is it cyclic? Not always. For instance, (Z/12)× ={

1, 5, 7, 11
}

is isomorphic to Z2 × Z2 (the Klein four-group), which is not cyclic.
When is it cyclic?

1.6.1. Division

As we know, rings have addition, subtraction and multiplication, but not always
division. Nevertheless, when b is a unit of a ring R, and a is any element of R,
it makes sense to define

a
b

to be ab−1.

When R is noncommutative, this is rather misleading: firstly because b−1a
has an equally claim at being

a
b

; secondly because familiar rules like
a
b
· c

d
=

ac
bd

no longer hold.
When R is commutative, however, all is fine, so we do make this definition:

Definition 1.6.3. Let R be a commutative ring. Let a ∈ R and b ∈ R× =

{units of R}. Then,
a
b

is defined to be the element ab−1 = b−1a ∈ R. This
is also written as a/b, and is called the quotient of a by b. The operation

(a, b) 7→ a
b

is called division.

In particular, when R is a field, we can divide by any nonzero element.
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Proposition 1.6.4. Division satisfies the rules you would expect: If R is a
commutative ring, and if a, c ∈ R and b, d ∈ R×, then

a
b
+

c
d
=

ad + bc
bd

;
a
b
· c

d
=

ac
bd

;

a
b
⧸

c
d
=

ad
bc

(
if c ∈ R×) .

And, of course, division undoes multiplication: i.e., we have the equivalence( a
b
= c
)
⇐⇒ (a = bc) whenever b is a unit.

Proof. Easy consequences of associativity and distributivity and commutativ-
ity(!).

1.7. Ring morphisms

1.7.1. Definition and examples

In modern mathematics, whenever you define some type of objects, it isn’t long
until you also define a notion of morphisms between these objects:

• Between vector spaces, you have linear maps.

• Between topological spaces, you have continuous maps.

• Between groups, you have group morphisms (= homomorphisms).

All these notions have a commonality: They are a type of maps that re-
spect/preserve certain structures. So let us define a similar concept for rings:

Definition 1.7.1. Let R and S be two rings.
(a) A ring homomorphism (or, for short: a ring morphism) from R to S

means a map f : R → S that

• respects addition: that is, f (a + b) = f (a) + f (b) for all a, b ∈ R;

• respects multiplication: that is, f (ab) = f (a) · f (b) for all a, b ∈ R;

• respects the zero: that is, f (0R) = 0S;

• respects the unity: that is, f (1R) = 1S (contra Volcic, also contra Dum-
mit/Foote).
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(b) A ring isomorphism from R to S means an invertible ring morphism
f : R → S whose inverse f−1 : S → R is also a ring morphism.

(c) The rings R and S are said to be isomorphic (this is written R ∼= S, or
sometimes R ≈ S) if there exists a ring isomorphism f : R → S.

Examples:

• Let n ∈ Z. The map

π : Z → Z/n,
a 7→ a

(that sends each integer a to its residue class a = a + nZ modulo n) is a
ring morphism, because any a, b ∈ Z satisfy

a + b = a + b, ab = a · b, 0 = 0Z/n, 1 = 1Z/n.

• The map

Z → Z,
a 7→ 2a

is not a ring morphism. It respects addition and zero. It does not respect
unity or multiplication (e.g., it sends 2 to 4 but 2 · 2 to 8 rather than 4 · 4).

• The map

Z → Z,
a 7→ 0

is not a ring morphism. It does not respect unity, although it respects
everything else.

• The map

Z → Z,

a 7→ a2

is not a ring morphism. It does not respect addition, although it respects
everything else.

• The identity map id : Z → Z is a ring morphism. It is the only ring
morphism from Z to Z. Indeed, if f is any ring morphism from Z to
Z, then f (1) = 1 (since f respects the unity), thus f (n) = n for each
n > 0 (because f (n) = f (1 + 1 + · · ·+ 1) = f (1) + f (1) + · · ·+ f (1) =
1 + 1 + · · ·+ 1 = n) but also f (0) = 0 (since f respects the zero) and thus
f (−1) = −1 (since f (−1) + f (1) = f ((−1) + 1) = f (0) = 0) and thus
f (n) = n also for negative n (exercise), so that f (n) = n for all integers
n; but this means f = id.
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• Consider the map

f : C → R2×2,

a + bi 7→
(

a b
−b a

)
for all a, b ∈ R.

This map f is a ring morphism. Indeed, it clearly respects addition and
zero and unity (since f (1 + 0i) = I2). To show that it respects multiplica-
tion. So let z, w ∈ C. We want to show that f (zw) = f (z) · f (w).

Write z and w as z = a + bi and w = c + di. Then,

zw = (a + bi) (c + di) = (ac − bd) + (ad + bc) i.

So

f (zw) =

(
ac − bd ad + bc

− (ad + bc) ac − bd

)
.

In contrast,

f (z) · f (w) =

(
a b
−b a

)
·
(

c d
−d c

)
=

(
ac − bd ad + bc
−ad − bc ac − bd

)
.

The RHSs of these equalities are clearly equal; hence, so are the LHSs.
Thus, f (zw) = f (z) · f (w), qed.

Since f is injective, we can use the image f (z) of a complex number z as
a “stand-in” for z.

This is not an isolated phenomenon. “Likewise”, there is an injective ring
morphism

g : H → R4×4,

a + bi + cj + dk 7→


a −b −c −d
b a −d c
c d a −b
d −c b a

 .

Several more rings we will study later can be “represented” by matrices,
in the sense that we can find injective morphisms from these rings to
matrix rings, and thus we can work with matrices instead of with abstract
objects.

• The map

R2×2 → R,
A 7→ det A

is not a ring morphism, since it fails to respect addition (det (A + B) ̸=
det A + det B), even though it respects everything else. Actually, this can-
not be helped: There exist no ring morphisms from R2×2 to R.
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• Let S be a subring of a ring R. Let i : S → R be the canonical inclusion;
this is simply the map that sends each element a ∈ S to itself. Then,
i is a ring morphism. Indeed, it respects addition, because i (a + b) =
i (a) + i (b) is just saying that a + b = a + b. Similarly, it respects all the
other features.

• Let R be a ring. Let S be any set. Recall that the maps from S to R form a
ring (with pointwise + and ·). We call this ring RS. Fix any s ∈ S. Then,
the map

RS → R,
g 7→ g (s)

is a ring morphism. Indeed, it respects addition because ( f + g) (s) =
f (s) + g (s) for any f , g ∈ RS (and this is because we defined addition in
RS this way!). Similarly for all the other requirements.

1.7.2. Basic properties of ring morphisms

The composition of two ring morphisms is again a ring morphism. In other
words:

Proposition 1.7.2. Let R, S, T be three rings. Let f : S → T and g : R → S be
two ring morphisms. Then, f ◦ g : R → T is a ring morphism.

Proof. Same as for groups.

The following proposition slightly simplifies proving that a map is a ring
morphisms:

Proposition 1.7.3. Let R and S be two rings. Let f : R → S be a map that
respects addition. Then, f respects the zero.

Proof. We have 0R = 0R + 0R, so f (0R) = f (0R + 0R) = f (0R) + f (0R). Now
subtract f (0R) and obtain 0S = f (0R), qed.

Thus, the “respects the zero” axiom can be removed from the definition of a
ring morphism.

By the way, the definition of a ring morphism can be restated as follows: A
ring morphism is a map f : R → S between two rings R and S that is a group
morphism from (R,+, 0) to (S,+, 0) and a monoid morphism from (R, ·, 1) to
(S, ·, 1).

By definition, ring morphisms preserve the basic structures of a ring (+, ·, 0
and 1). As a consequence, they also preserve all the structures that are derived
from these basic structures:
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Proposition 1.7.4. Let R and S be two rings. Let f : R → S be a ring mor-
phism. Then:

(a) The map f respects finite sums: i.e., we have

f (a1 + a2 + · · ·+ an) = f (a1) + f (a2) + · · ·+ f (an)

for any a1, a2, . . . , an ∈ R.
(b) The map f respects finite products: i.e., we have

f (a1a2 · · · an) = f (a1) · f (a2) · · · · · f (an)

for any a1, a2, . . . , an ∈ R.
(c) The map f respects differences: i.e., we have

f (a − b) = f (a)− f (b) for all a, b ∈ R.

(d) The map f respects inverses: i.e., if a is a unit of R, then f (a) is a unit
of S, with inverse ( f (a))−1 = f

(
a−1).

(e) The map f respects integer multiples: i.e., if a ∈ R and n ∈ Z, then
f (na) = n f (a).

(f) The map f respects powers: i.e., if a ∈ R and n ∈ N, then f (an) =
( f (a))n.

Proof. LTTR.

1.7.3. The image of a ring morphism

Recall that the image of a map f : R → S is defined to be the set

Im f := f (R) = { f (r) | r ∈ R} .

This makes sense for any map between any sets. For a ring morphism, it is
particularly nice, because it is a subring of S. Namely:

Proposition 1.7.5. Let R and S be two rings. Let f : R → S be a ring mor-
phism. Then, Im f = f (R) is a subring of S.

Proof. For instance, Im f is closed under addition, since f (a)+ f (b) = f (a + b).
The other subring axioms are similar.

Thus, for example, the set of all 2 × 2-matrices of the form
(

a b
−b a

)
is a

subring of R2×2, because it is the image of the above-defined ring morphism

f : C → R2×2,

a + bi 7→
(

a b
−b a

)
for all a, b ∈ R.
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1.7.4. Basic properties of ring isomorphisms

By definition, in order to prove that some map f is a ring isomorphism, you
have to check (1) that f is a ring morphism, (2) that f has an inverse, and (3) that
this inverse f−1 is also a ring morphism. In truth, (3) is unnecessary, because
of the following:

Proposition 1.7.6. Let R and S be two rings. Let f : R → S be an invertible
ring morphism. Then, f is a ring isomorphism.

Proof. We need to show that f−1 is a ring morphism as well. So we need to
show that f−1 (c + d) = f−1 (c) + f−1 (d) for all c, d ∈ S, and likewise for
multiplication, zero and unity. But this is not hard: Set a = f−1 (c) and b =
f−1 (d) and recall that f is a ring morphism, so f (a + b) = f (a) + f (b) =
c + d (by the definitions of a and b), and thus a + b = f−1 (c + d), so that
f−1 (c + d) = a + b = f−1 (c) + f−1 (d).

Proposition 1.7.7. Let R, S and T be three rings. Let f : S → T and g : R → S
be two ring isomorphisms. Then, f ◦ g : R → T is a ring isomorphism as
well.

Proposition 1.7.8. The inverse f−1 : S → R of a ring isomorphism f : R → S
is a ring isomorphism.

Corollary 1.7.9. The relation ∼= for rings is an equivalence relation.

The most useful property of ring isomorphisms is the following “meta-theorem”:

Isomorphism principle for rings: Let R and S be two isomorphic
rings. Then, any “ring-theoretic” property of R (that is, any property
that does not refer to specific elements, but can be stated entirely in
terms of ring operations) that holds for R must also hold for S.

What is a ring-theoretic property? Here are some examples and non-examples:

• “The ring R has 15 elements”: yes.

• “The ring R is commutative”: yes.

• “The ring R is a field”: yes.

• “The ring R is a subring of R”: no.

• “There is an injective ring morphism from R to R”: yes.

• “There exists a field F and a ring morphism from R to F”: yes.

• “The ring R is an integral domain”: yes.
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• “For any a, b, c ∈ R, we have 3abc (a + b + c) = 0 (where 0 is the zero of
R)” : yes.

• “The center of R has 10 elements”: yes.

• “There exist two nonzero elements a, b ∈ R such that a2 + b2 = 0”: yes.

• “The set R is contains the complex number i =
√
−1”: no.

Clearly, an isomorphism can destroy properties that are not ring-theoretical,
just since it can send elements to different elements.

1.8. Ideals and kernels

1.8.1. Kernels

In linear algebra, you learn that linear maps have images (= ranges = column
spaces) and kernels (= nullspaces); both are vector subspaces.

In ring theory, ring morphisms also have images and kernels. Images are
subrings, but kernels are not (unless, like Jurij, you allow rings to be nonunital).

Let us recall the definition of a kernel:

Definition 1.8.1. Let R and S be two rings. Let f : R → S be a ring morphism.
Then, the kernel of f is defined to be the set

Ker f := {r ∈ R | f (r) = 0S} .

This is a subset (but usually not a subring) of R.

Examples:

• Let n ∈ Z. The kernel of the ring morphism

π : Z → Z/n,
a 7→ a

is the set nZ = {all multiples of n}.

• Let R be a ring. Let S be any set. Recall the ring RS of all functions from
S to R (with pointwise + and ·). Fix an element s ∈ S. Then, the kernel
of the ring morphism

RS → R,
f 7→ f (s)

is the set of all functions f ∈ RS that vanish at s.

• The kernel of an injective ring morphism f : R → S is always {0R}.
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1.8.2. Ideals

Kernels of ring morphisms are not always subrings, but here is what they are:

Definition 1.8.2. Let R be a ring. An ideal of R means a subset I of R such
that

• we have a + b ∈ I for any a, b ∈ I (that is, I is closed under addition);

• we have ab ∈ I and ba ∈ I for any a ∈ R and b ∈ I (that is, I is closed
under multiplication by arbitrary elements of R – not just within itself);

• we have 0 ∈ I (where 0 means 0R).

These three requirements are called the ideal axioms. The second is called
absorption. Note that they imply that I is a nonunital subring of R. In particu-
lar, I must be an additive subgroup of R (that is, a subgroup of (R,+, 0)).

Theorem 1.8.3. Let R and S be two rings. Let f : R → S be a ring morphism.
Then, Ker f is an ideal of R.

Proof. Let us check the absorption axiom (as the other two are similar).
Let a ∈ R and b ∈ Ker f . We must show that ab ∈ Ker f and ba ∈ Ker f .
By assumption, b ∈ Ker f , so that f (b) = 0. Now, since f is a ring morphism,

f (ab) = f (a) · f (b)︸︷︷︸
=0

= 0,

so that ab ∈ Ker f . Similarly, ba ∈ Ker f , and we are done.

We will soon see that this theorem has a converse: Any ideal of R can be
written as the kernel of a ring morphism from R to some other ring. Thus,
ideals and kernels are “the same thing, viewed from different angles”.

1.8.3. Principal ideals

The simplest way to construct ideals in a commutative ring is by fixing an
element and taking all its multiples:

Proposition 1.8.4. Let R be a commutative ring. Let u ∈ R. We define uR to
be the set {ur | r ∈ R}. The elements of this set uR are called the multiples
of u (in R).

Then, uR is an ideal of R. This ideal is known as a principal ideal of R. In
particular, 0R = {0} and 1R = R are therefore principal ideals of R.

Proof. We must prove that uR is an ideal of R. So let’s check the ideal axioms:
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• Closure under addition: ua + ub = u (a + b).

• Absorption: (ua) · b = u (ab) and b · (ua) = u (ba), the latter by commuta-
tivity. (Actually, it would suffice that u commutes with every element of
R, meaning that u is central.)

• Zero: 0 = u · 0.

For example, 2Z = {all even integers} is a principal ideal of Z.
Principal ideals can also be defined for noncommutative rings, but this is

more complicated. The simple definition uR = {ur | r ∈ R} works nicely
when u lies in the center of R.

1.8.4. Other examples of ideals

In the classical number rings Z, Q, R, C, all ideals are principal (this will be
proved below). Ideals get more interesting when the ring R is more compli-
cated:

• Consider the set of all polynomials

f ∈ Q [x, y]
= {polynomials with rational coefficients in x, y}

that have constant term 0. This set is an ideal of Q [x, y] (why?), but not a
principal ideal (why?).

• Consider the set of all polynomials f ∈ Z [x] whose constant term is even.
This set is an ideal of Z [x], but not a principal ideal.

1.9. Quotient rings

What follows is one of the most abstract topics in this course: the definition of
quotient rings, and their basic properties.

Recall the idea behind modular arithmetic: By passing from the integers to
their residue classes mod n (for a given n ∈ Z), we are essentially equating
n with 0, so that two integers become “equal” if they differ by a multiple of
n. Thus, the residue classes mod n are “what remains” of the integers after
equating n with 0. They form the ring Z/n.

The same passage can be made in greater generality: We can start with any
commutative ring R and any element u of R, and we can equate u with 0 in R.
“What remains” of R is called the quotient ring R/u.
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Even more generally: For any ring R and any ideal I of R, we can equate all
the elements of I with 0. The result is a new ring, called the quotient ring R/I.
If I is a principal ideal uR, then R/I is just R/u.

This was the rough idea behind quotient rings. We will now define them
rigorously.

1.9.1. Quotient groups

We don’t have to reinvent the wheel: You have already seen residue classes in
a first course on groups; in that context, they are known as “cosets”. We will
only need to turn them into a ring.

Let me recall the definition of cosets:

• If H is a subgroup of a group G, then the left cosets of H in G are the
subsets

gH := {gh | h ∈ H} for all g ∈ G.

There is one left coset gH for each g ∈ G; but different g’s often lead to
the same gH. Thus, there are usually fewer left cosets than elements of G.
The set of all left cosets of H is called G/H.

• If G is an abelian group, then we can also rewrite gH as Hg and refer
to our left cosets as right cosets, or just simply as cosets. We will apply
this theory to the case when G is the additive group (R,+, 0) of a ring R,
which of course is abelian, so we will just speak of cosets. But we should
call them g + H rather than gH because the group operation is now +. So
they now have the form

g + H := {g + h | h ∈ H} for all g ∈ R.

• Let G be an additive group (i.e., it is abelian, and its binary operation is
called +). Then, the cosets of H in G are denoted by g + H rather than
gH. We can define an addition on these cosets by setting

(g1 + H) + (g2 + H) = g1 + g2 + H for all g1, g2 ∈ G.

This turns G/H (that is, the set of all these cosets g + H) into an addi-
tive group with neutral element 0G + H. This group G/H is called the
quotient group of G by H.

• Best-known example: Z/nZ, also called Z/n. This is the quotient group
of the additive group Z by its subgroup nZ = {all multiples of n}. The
cosets here are known as residue classes modulo n. This quotient Z/n is
called the cyclic group of order n, at least when n is positive.

This construction accounts for the addition on Z/n, but not for the mul-
tiplication.
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1.9.2. Quotient rings

Now, piggybacking on the construction of quotient groups we just recalled,
we shall define a similar concept of quotient rings (generalizing Z/n, now
including its multiplication). Instead of subgroups, we will now use ideals:

Definition 1.9.1. Let I be an ideal of a ring R. Then, I is a subgroup of
the additive group (R,+, 0). Thus, the quotient group R/I is a well-defined
additive group. Its elements are the cosets r + I for r ∈ R. These cosets are
called the residue classes modulo I. A coset r + I is also denoted by r or [r]
or [r]I or r mod I. (We will only use the notations r + I and r.)

Note that the addition on R/I is defined by

(a + I) + (b + I) = a + b + I for all a, b ∈ R.

Now, we define a multiplication on R/I by setting

(a + I) (b + I) = ab + I for all a, b ∈ R.

(We will prove below that this is well-defined.)
The set R/I, equipped with the addition and the multiplication we just

introduced, and with the zero 0 + I and the unity 1 + I, is a ring (as we will
soon see). This ring is called the quotient ring of R by the ideal I, and is
denoted by R/I. It is pronounced “R modulo I”.

Note that the rules

(a + I) + (b + I) = a + b + I for all a, b ∈ R

and
(a + I) (b + I) = ab + I for all a, b ∈ R

can be rewritten in the more familiar form

a + b = a + b for all a, b ∈ R;

a · b = ab for all a, b ∈ R.

Before we prove the above definition (well, the claims made therein), let us
see a few examples:

• Let n ∈ Z. Then, the set nZ = {all multiples of n} is an ideal of Z (a
principal ideal, in fact). The quotient ring Z/nZ is exactly the ring Z/n
of residue classes modulo n. So our definition of R/I is a generalization
of Z/n, replacing the integers by the ring R and replacing the multiples
of n by the elements of I.
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• Two stupid general examples:

Recall that every ring R has at least the ideals {0R} and R. What are the
respective quotient rings?

– The quotient ring R/ {0R} is isomorphic to R. Indeed, each residue
class modulo {0R} has the form r + {0R} = {r}, which is a 1-element
set. Hence, there is an obvious bijection from R to R/ {0R} that sends
each element r to {r}. This is a ring isomorphism.

– The quotient ring R/R is a trivial ring, i.e., isomorphic to the zero
ring. Indeed, there is only one residue class, say 0 + R, which con-
tains all the elements of R, so that the quotient ring R/R has just one
element.

• Let R be the ring Z [i] = {a + bi | a, b ∈ Z} of Gaussian integers. Con-
sider its principal ideal

3R = {3r | r ∈ R}
= {3a + 3bi | a, b ∈ Z}
= {c + di | c, d ∈ Z are multiples of 3} .

What is the quotient ring R/3R ? The elements of this ring have the form

a + bi with a, b ∈ {0, 1, 2}

(do not mistake the line over the a + bi for the “complex conjugate” nota-
tion). In fact, any Gaussian integer can be reduced to a Gaussian integer of
the form a + bi with a, b ∈ {0, 1, 2} by subtracting appropriate Gaussian-
integer multiples of 3 from its real part and from its imaginary part:

5 + 8i = 2 + 2i, since (5 + 8i)− (2 + 2i) = 3 + 6i = 3 (1 + 2i) ∈ 3R.

In other words,

R/3R =
{

0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i
}

.

It is easy to see that these 9 elements are actually distinct (for instance,
the difference (2 + i)− 2i = 2 − 2i is not a Gaussian-integer multiple of 3,
so we have 2 + i ̸= 2i).

Furthermore, it is easy to see that all of these 9 elements, except for 0, are
units of R/3R. Thus, R/3R is a field with 9 elements.

Let us do some computations in this field:

2 + i + 2 + 2i = (2 + i) + (2 + 2i) = 4 + 3i = 1;

2 + i · 2 + 2i = (2 + i) (2 + 2i) = 2 + 6i = 2;

2 + i · 1 + i = (2 + i) (1 + i) = 1 + 3i = 1.
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If we replace 3 by any other positive integer n, then the quotient ring
R/nR will be a finite ring with n2 elements. But it will not always be a
field. For instance, for n = 5, we have

1 + 2i · 1 − 2i = (1 + 2i) (1 − 2i) = 1 + 4 = 5 = 0 in R/5R,

which shows that 1 + 2i and 1 − 2i cannot be units (since they are nonzero).
So R/5R is not a field.

We will learn more about when R/nR is a field later on.

• Again take R = Z [i], but now consider the quotient ring R/ ((1 + i) R).
How many elements does it have? The answer is 2, but the reason is
not that obvious, since we need to understand which Gaussian integers
belong to (1 + i) R.

Here is one way to prove the answer:

1. Observe: 2 ∈ (1 + i) R (because 2 = (1 + i) (1 − i)). Thus, every
Gaussian integer can be reduced to a Gaussian integer of the form
a + bi with a, b ∈ {0, 1} by adding an element of (1 + i) R.

2. Thus, R/ ((1 + i) R) =
{

0, 1, i, 1 + i
}

.

3. Furthermore, 1 = i (since 1− i = −i (1 + i) ∈ (1 + i) R) and 1 + i = 0
(since 1 + i ∈ (1 + i) R).

4. Thus, R/ ((1 + i) R) =
{

0, 1
}

.

5. Finally, 0 ̸= 1, since 0 − 1 is not a multiple of 1 + i (because
0 − 1
1 + i

=

−1
1 + i

= −1
2
+

1
2

i /∈ R). So R/ ((1 + i) R) consists of the two distinct

elements 0 and R.

Actually, R/ ((1 + i) R) ∼= Z/2 as a ring.

Can we analyze R/ ((7 + 5i) R) likewise? How many elements does this
have? Tricky question. Start with

(7 + 5i) (7 − 5i) = 72 + 52 = 74,

so at least we know that every element of R/ ((7 + 5i) R) can be written
as a + bi with a, b ∈ {0, 1, . . . , 73}. But what then? This will be an exercise
later on, once we’ve learned a few more things about rings.

More examples appear in the text. For now, let me quickly go over the proof
of well-definedness of quotient rings:
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Theorem 1.9.2. Let R be a ring, and let I be an ideal of R. Then, the quotient
ring R/I is a well-defined ring.

Proof. We need to show two things:

1. that the operations + and · on R/I are well-defined;

2. that they satisfy the ring axioms.

Part 2 is straightforward (all the ring axioms are inherited from R: for exam-
ple, a ·

(
b · c

)
=
(

a · b
)
· c follows from a · (b · c) = (a · b) · c).

So we only need to do Part 1. For the operation +, we already know from
group theory that it is well-defined. Thus, we only need to prove it for the
operation ·.

Recall that the operation · was defined by

(a + I) (b + I) = ab + I for all a, b ∈ R.

Thus, “well-defined” means that the right hand side ab + I depends not on the
specific elements a and b but only on their cosets a + I and b + I. In other
words, it means that if we write a given coset x as x = a1 + I = a2 + I for two
elements a1, a2 ∈ R, and if we write a given coset y as y = b1 + I = b2 + I for
two elements b1, b2 ∈ R, then a1b1 + I = a2b2 + I (so that we get the same value
for xy no matter which of our presentations of x and y we are using).

So let us prove this. We must show that a1b1 + I = a2b2 + I.
(For comparison: When R = Z and I = nZ, then we are proving that a1 ≡

a2 mod n and b1 ≡ b2 mod n imply a1b1 ≡ a2b2 mod n. This is a classical fact in
elementary number theory, and can be proved e.g. by

a1b1 ≡ a1b2

since a1b1 − a1b2 = a1 (b1 − b2)︸ ︷︷ ︸
∈nZ

∈ nZ


≡ a2b2 mod n

since a1b2 − a2b2 = (a1 − a2)︸ ︷︷ ︸
∈nZ

b2 ∈ nZ

 .

)
In the general case (R and I arbitrary), we argue similarly: We have

a1b1 + I = a1b2 + I

since a1b1 − a1b2 = a1 (b1 − b2)︸ ︷︷ ︸
∈I

(since b1+I=b2+I)

∈ I (by the absorption axiom). We have

a1b2 + I = a2b2 + I
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since a1b2 − a2b2 = (a1 − a2)︸ ︷︷ ︸
∈I

b2 ∈ I (by the absorption axiom). So altogether

a1b1 + I = a1b2 + I = a2b2 + I,

as desired. (See the notes for a slightly different proof.)
So we have shown that · is well-defined. As we said, this completes the

proof.

1.9.3. More examples of quotient rings

Here are some more examples of quotient rings.

• As we recall, if R is a ring and n ∈ N is an integer, then

Rn≤n = {all upper-triangular n × n-matrices with entries in R}

=




a1,1 a1,2 · · · a1,n
a2,2 · · · a2,n

. . . ...
an,n

 | ai,j ∈ R for all i ≤ j


(where empty spaces stand for entries that are 0) is a ring.

Consider the special case R = Q and n = 3 for simplicity. Thus,

Rn≤n = Q3≤3 =


 a b c

0 d e
0 0 f

 | a, b, c, d, e, f ∈ Q

 .

I claim that the subset

Q3<3 = {all strictly upper-triangular 3 × 3-matrices with entries in Q}

=


 0 b c

0 0 e
0 0 0

 | b, c, e ∈ Q


is an ideal of Q3≤3. To see this, we verify absorption: a b c

0 d e
0 0 f

 0 x y
0 0 z
0 0 0

 =

 0 ax ay + bz
0 0 dz
0 0 0

 ;

 0 x y
0 0 z
0 0 0

 a b c
0 d e
0 0 f

 =

 0 dx xe + f y
0 0 f z
0 0 0

 .
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Alternatively (and more generally), we can prove this by observing that
when we multiply two triangular matrices, their diagonal entries just get
multiplied: a b c

0 d e
0 0 f

 a′ b′ c′

0 d′ e′

0 0 f ′

 =

 aa′ bd′ + ab′ be′ + c f ′ + ac′

0 dd′ e f ′ + de′

0 0 f f ′

 .

So if one of the matrices has zeros on its diagonal, then so will the product.

Now what is the quotient ring Q3≤3/Q3<3 ? The elements of this quotient
ring are cosets

A = A + Q3<3 for A ∈ Q3≤3.

For instance, if A =

 1 2 3
0 4 5
0 0 6

, then

A =

 1 2 3
0 4 5
0 0 6

+ Q3<3

=

 1 2 3
0 4 5
0 0 6

+


 0 b c

0 0 e
0 0 0

 | b, c, e ∈ Q


=


 1 2 3

0 4 5
0 0 6

+

 0 b c
0 0 e
0 0 0

 | b, c, e ∈ Q


=


 1 2 + b 3 + c

0 4 5 + e
0 0 6

 | b, c, e ∈ Q


=


 1 x y

0 4 z
0 0 6

 | x, y, z ∈ Q


=

 1 Q Q

0 4 Q

0 0 6

 ,

where the Qs mean “you can put arbitrary elements of Q here”. So you

can think of A =

 1 Q Q

0 4 Q

0 0 6

 as a “matrix” in which the three entries

above the diagonal are undetermined. Formally, it is a set of matrices.

The rules for adding and multiplying such “partly determined matrices”
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are what you would expect: a Q Q

0 b Q

0 0 c

+

 d Q Q

0 e Q

0 0 f

 =

 a + d Q Q

0 b + e Q

0 0 c + f

 ;

 a Q Q

0 b Q

0 0 c

 d Q Q

0 e Q

0 0 f

 =

 ad Q Q

0 be Q

0 0 c f

 .

These equalities look exactly like the rules for adding and multiplying
diagonal matrices: a 0 0

0 b 0
0 0 c

+

 d 0 0
0 e 0
0 0 f

 =

 a + d 0 0
0 b + e 0
0 0 c + f

 ;

 a 0 0
0 b 0
0 0 c

 d 0 0
0 e 0
0 0 f

 =

 ad 0 0
0 be 0
0 0 c f

 .

So the quotient ring Q3≤3/Q3<3 is isomorphic to the ring

Q3=3 = {diagonal 3 × 3-matrices over Q} .

Formally, the map

Q3≤3/Q3<3 → Q3=3, a Q Q

0 b Q

0 0 c

 7→

 a 0 0
0 b 0
0 0 c


is a ring isomorphism.

• Here is a slightly more interesting example. Again consider the ring Q3≤3

of upper-triangular 3 × 3-matrices over Q, but now take the smaller ideal

Q3<<3 =


 0 0 y

0 0 0
0 0 0

 | y ∈ Q


of Q3≤3. What is the quotient ring Q3≤3/Q3<<3 ? A residue class A =
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A + Q3<<3 in this ring looks as follows:

A =

 a b c
0 d e
0 0 f

+ Q3<<3

=

 a b c
0 d e
0 0 f

+


 0 0 y

0 0 0
0 0 0

 | y ∈ Q


=


 a b c + y

0 d e
0 0 f

 | y ∈ Q


=

 a b Q

0 d e
0 0 f

 (with notation as before) .

The rules for adding and multiplying these residue classes are a b Q

0 d e
0 0 f

+

 a′ b′ Q

0 d′ e′

0 0 f ′

 =

 a + a′ b + b′ Q

0 d + d′ e + e′

0 0 f + f ′

 ;

 a b Q

0 d e
0 0 f

 a′ b′ Q

0 d′ e′

0 0 f ′

 =

 aa′ ab′ + bd′ Q

0 bb′ de′ + e f ′

0 0 cc′

 .

This is no longer a subring of Q3×3 in disguise. Indeed, if we replace the
Qs by 0s, then we get a b 0

0 d e
0 0 f

 a′ b′ 0
0 d′ e′

0 0 f ′

 =

 aa′ ab′ + bd′ be′

0 bb′ de′ + e f ′

0 0 cc′


̸=

 aa′ ab′ + bd′ 0
0 bb′ de′ + e f ′

0 0 cc′

 ,

so that our “partly determined matrices” do not multiply like some kind
of actual fully-determined 3× 3-matrices. And so the quotient ring Q3≤3/Q3<<3

is a genuinely new ring, not just a subring in disguise.

• There are many more complicated examples. In our quotient rings above,
the Qs were mutually independent. But there can be partially determined
matrices whose undetermined entries nevertheless must satisfy some kind
of relation; we cannot just denote them by Qs any more.
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1.9.4. The canonical projection

Back a few lectures ago, we said that the kernel of any ring morphism is an
ideal. Now we will prove the converse: Any ideal is a kernel. Even better:

Theorem 1.9.3. Let R be a ring. Let I be an ideal of R. Consider the map

π : R → R/I,
r 7→ r = r + I.

This map π is a surjective ring morphism with kernel I.

This map π is called the canonical projection from R to R/I.

Proof. We need to prove that:

1. the map π is a ring morphism (i.e., respects addition, multiplication, zero
and unity);

2. the map π is surjective;

3. we have I = Ker π.

Part 1 is straightforward: To show that π respects multiplication, we must
check that π (ab) = π (a) · π (b). In light of the definition of π, this rewrites as
ab = a · b (aka ab + I = (a + I) · (b + I)). But this is true since we defined the ·
on R/I by this exact formula. Similarly, π respects all the other things.

Part 2 is trivial: Each element of R/I is a residue class, so by definition it has
the form r for some r ∈ R.

Remains Part 3. For this, we observe that

Ker π = {r ∈ R | π (r) = 0R/I}
=
{

r ∈ R | r = 0
}

= {r ∈ R | r + I = 0 + I}
= {r ∈ R | r − 0 ∈ I}
= {r ∈ R | r ∈ I} = I.

For example, if we take R = Z and I = 2Z, then the canonical projection
π : Z → Z/2 is the map that sends each even integer to 0 and each odd integer
to 1. In other words, it assigns to each integer its parity (as an element of Z/2).
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1.9.5. The universal property of quotient rings

When trying to understand a quotient ring R/I, it can be helpful to construct
ring morphisms into and out of it.

Constructing a morphism α : S → R/I into a quotient ring R/I is generally
easy (we just did so in the above proof).

Constructing a morphism β : R/I → S out of a quotient ring R/I is harder:
Not only do you have to specify β (r) for each residue class r, but you also
need to make sure that this value β (r) depends only on the class r and not on
the chosen representative r. This is called “well-definedness”, and often takes
some work to verify, since one and the same residue class can be written as r
for different r’s.

This can be done by hand, but it is work. The universal property of quotient
rings is a theorem that does some of this work for you. It gives a way to define
a ring morphism β : R/I → S by providing a ring morphism f : R → S
and showing that f (I) = 0 (that is, f sends all elements of I to 0). Once
you have done this part, the theorem automatically gives you a ring morphism
f ′ : R/I → S that sends each residue class r ∈ R/I to f (r). Here is the precise
statement:

Theorem 1.9.4 (Universal property of quotient rings). Let R be a ring. Let I
be an ideal of R.

Let S be a ring. Let f : R → S be a ring morphism. Assume that f (I) = 0
(that is, f (i) = 0 for all i ∈ I). Then, the map

f ′ : R/I → S,
r 7→ f (r)

is well-defined (i.e., the value f (r) depends only on the residue class r and
not on r itself) and is a ring morphism.

Before we prove this, an example:

• Consider the canonical projections

π6 : Z → Z/6,
r 7→ r + 6Z

and

π3 : Z → Z/3,
r 7→ r + 3Z.

(We don’t write r for the residue classes, because that would give the same
notation r to the two different classes r + 6Z and r + 3Z).
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Then, π3 (6Z) = 0 (since all multiples of 6 are multiples of 3). Therefore,
the universal property stated above (applied to R = Z and I = 6Z and
π = π3) shows that the map

π′
3 : Z/6 → Z/3,
r + 6Z 7→ r + 3Z

is a ring morphism. Explicitly, this morphism π′
3 sends

the mod-6 residue classes 0, 1, 2, 3, 4, 5

to the mod-3 residue classes 0, 1, 2, 3, 4, 5

(that is, to the mod-3 residue classes 0, 1, 2, 0, 1, 2).

More generally, if n and m are two integers such that m | n, then there is
a ring morphism

Z/n → Z/m,
r = r + nZ 7→ r = r + mZ.

This follows from the universal property, applied to R = Z, I = nZ,
S = Z/m and f = πm : Z → Z/m.

Incidentally, this accounts for all ring morphisms that go between quotient
ring of Z. That is: For two integers n and m, there is a ring morphism
from Z/n to Z/m if and only if m | n. In that case, there is only one,
namely the one we just found. Proving this is a nice exercise.

Proof of the universal property of quotient rings. First, we must show that f ′ is well-
defined (i.e., the formula f ′ (r) = f (r) does not assign two different output
values to the same input).

That is: We must show that if two elements a, b ∈ R satisfy a = b in R/I, then
f (a) = f (b).

So let a, b ∈ R be two elements such that a = b in R/I. This assumption
a = b in R/I is just saying that a − b ∈ I. Hence, f (a − b) ∈ f (I) = 0, so
that f (a − b) = 0. But f is a ring morphism, thus respects differences. So
f (a)− f (b) = f (a − b) = 0. In other words, f (a) = f (b).

So we have shown that f ′ is well-defined. We still need to show that f ′ is
a ring morphism. In other words, we must show that f ′ respects addition,
multiplication, zero and unity. Let me show that f ′ respects multiplication; the
rest is analogous.

So we must show that f ′ (xy) = f ′ (x) · f ′ (y) for all x, y ∈ R/I.
Fix x, y ∈ R/I. Write the residue classes x, y as x = a and y = b for some

a, b ∈ R. Then, xy = a · b = ab, so that the definition of f ′ yields

f ′ (xy) = f ′
(

ab
)
= f (ab) = f (a) · f (b) (since f is a ring morphism) .
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Comparing this with

f ′ (x) · f ′ (y) = f ′ (a) · f ′
(

b
)
= f (a) · f (b)

(
by the definition of f ′

)
,

we obtain f ′ (xy) = f ′ (x) · f ′ (y), just as we wanted to prove. So we have shown
that f ′ respects multiplication. With similar arguments for the other axioms, we
conclude that f ′ is a ring morphism.

So we have proved the universal property of quotient rings. For various
reasons, it is helpful to have a restatement of this property that does not talk
about elements but instead “implicitly” describes f ′ by an equality:

Theorem 1.9.5 (Universal property of quotient rings, abstract/element-free
form). Let R be a ring. Let I be an ideal of R. Let π : R → R/I be the
canonical projection.

Let S be a ring. Let f : R → S be a ring morphism. Assume that f (I) = 0
(that is, f (i) = 0 for all i ∈ I). Then, there is a unique ring morphism
f ′ : R/I → S such that

f = f ′ ◦ π.

Proof. The previous version of the universal property shows that there is a
unique ring morphism f ′ : R/I → S that satisfies

f ′ (r) = f (r) for all r ∈ R.

Now I claim that this latter condition is equivalent to

f = f ′ ◦ π.

Indeed, we have the following chain of equivalences:(
f = f ′ ◦ π

)
⇐⇒

(
f (r) =

(
f ′ ◦ π

)
(r) for all r ∈ R

)
⇐⇒

(
f (r) = f ′ (π (r)) for all r ∈ R

)
⇐⇒

(
f (r) = f ′ (r) for all r ∈ R

)
(since π (r) = r)

⇐⇒
(

f ′ (r) = f (r) for all r ∈ R
)

.

The equality f = f ′ ◦ π can be restated as “the diagram on the whiteboard
(or in the lecture notes) commutes / is commutative”. In general, a diagram
is a bunch of sets (drawn as nodes) and a bunch of maps between these sets
(drawn as arrows). In our case, the sets are R, R/I and S, and the maps are f ,
f ′ and π. We say that a diagram commutes (or is commutative) if, for any two
nodes in the diagram, all ways of going from the first to the second node result
in the same composed map.
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1.9.6. Injectivity means zero kernel

Taking a break from these abstractions, let us prove a simple lemma about
injectivity of ring morphisms:

Lemma 1.9.6. Let R and S be two rings. Let f : R → S be a ring morphism.
Then, f is injective if and only if Ker f = {0R}.

Proof. ⇐=: Assume that Ker f = {0R}. Let a, b ∈ R be such that f (a) = f (b).
We want to show that a = b. Since f respects differences, we have f (a − b) =
f (a)− f (b) = 0 (since f (a) = f (b)). In other words, a − b ∈ Ker f = {0R}, so
that a − b = 0R and thus a = b.

This shows that f is injective.
=⇒: Assume that f is injective. If a ∈ Ker f , then f (a) = 0S = f (0R), so

that a = 0R by injectivity of f . So we conclude that Ker f ⊆ {0R}. Thus,
Ker f = {0R} (since 0R ∈ Ker f ).

Similar lemmas (with the same proof) hold for group morphisms and vector
space morphisms (= linear maps).

1.9.7. The First Isomorphism Theorem for sets

The next topic is again more abstract. We will state and prove the First Iso-
morphism Theorem for rings. But first, we state its analogue for sets, which is
really basic and merely serves as a simile.

Consider a map f : R → S from some set R to some set S. Then, I claim that
there is a bijection (= bijective map) hiding inside f .

I mean that we can write f as a composition f = ι ◦ f ′ ◦ π of

• a surjection π from R to a certain set of equivalence classes;

• a bijection f ′ between this set and the image f (R) of f ;

• the inclusion ι from f (R) into S.

The set of equivalence classes is

R/ f := {equivalence classes of elements of R under ∼} ,

where ∼ is the equivalence relation given by

(a ∼ b) ⇐⇒ ( f (a) = f (b)) .

The surjection π : R → R/ f simply sends each r ∈ R to its equivalence class
r. The bijection f ′ : R/ f → f (R) is given by f ′ (r) = f (r) for all r ∈ R (just
as in the universal property). This is a bijection, since the taking of equiva-
lence classes gets rid of the non-injectivity of f , whereas the restriction of the
codomain to f (R) instead of S ensures that our map becomes surjective. The
formal proof is not much harder. Let us state the result as a theorem:
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Theorem 1.9.7 (First Isomorphism Theorem for sets). Let R and S be two
sets, and let f : R → S be any map.

Let ∼ be the binary relation on the set R defined by

(a ∼ b) ⇐⇒ ( f (a) = f (b)) .

(a) This relation ∼ is an equivalence relation.
Let us refer to this relation ∼ as f -equivalence, and to its equivalence

classes as f -classes. Let R/ f denote the set of all f -classes. For any r ∈ R,
we let r denote the f -class that contains r.

(b) The image f (R) is a subset of S.
(c) The map

f ′ : R/ f → f (R) ,
r 7→ f (r)

is well-defined and bijective.
(d) Let π : R → R/ f denote the canonical projection (i.e., the map that

sends each r to r). Let ι : f (R) → S denote the canonical inclusion (i.e., the
map that sends each s to s). Then, the map f ′ in part (c) satisfies

f = ι ◦ f ′ ◦ π.

In other words, the diagram

R
f

//

π
��

S

R/ f
f ′
// f (R)

ι

OO

is commutative.

1.9.8. The First Isomorphism Theorem for rings

Now let us extend the above theorem to rings.

Theorem 1.9.8 (First Isomorphism Theorem for rings, elementwise form).
Let R and S be two rings, and let f : R → S be a ring morphism. Then:

(a) The kernel Ker f is an ideal of R. Thus, R/ Ker f is a quotient ring of R.
As a set, R/ Ker f is precisely the set R/ f defined in the previous theorem.
The f -classes are precisely the cosets of Ker f .

(b) The image f (R) := { f (r) | r ∈ R} of f is a subring of S.
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(c) The map

f ′ : R/ Ker f → f (R) ,
r 7→ f (r)

is well-defined and is a ring isomorphism.
(d) This map f ′ is precisely the map f ′ defined in the previous theorem.
(e) Let π : R → R/ Ker f denote the canonical projection (i.e., the map

that sends each r to r). Let ι : f (R) → S denote the canonical inclusion (i.e.,
the map that sends each s to s). Then, the map f ′ in part (c) satisfies

f = ι ◦ f ′ ◦ π.

In other words, the diagram

R
f

//

π
��

S

R/ Ker f
f ′
// f (R)

ι

OO

is commutative.
(f) We have R/ Ker f ∼= f (R) as rings.

Proof. (a) We have to show that the f -classes are precisely the cosets of Ker f .
For each a ∈ R, we have

(the f -class that contains a)
= {b ∈ R | f (a) = f (b)}
= {b ∈ R | f (a)− f (b) = 0}
= {b ∈ R | f (a − b) = 0} (since f respects differences)
= {b ∈ R | a − b ∈ Ker f }
= {b ∈ R | a + Ker f = b + Ker f }
= {b ∈ R | b lies in the same coset of Ker f as a}
= (the coset of Ker f that contains a) .

So the f -classes are precisely the cosets of Ker f . Thus, R/ f = R/ Ker f as sets.
Of course, R/ Ker f is a ring, since Ker f is an ideal of R (by what we proved a
while ago). Thus, part (a) is proved.

(b) Done before.
(c) Since we know that R/ Ker f = R/ f , we see that our map

f ′ : R/ Ker f → f (R) ,
r 7→ f (r)
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is precisely the map

f ′ : R/ f → f (R) ,
r 7→ f (r)

that was proved to be well-defined and bijective in the previous theorem. It
remains to prove that f ′ is a ring isomorphism. Since f ′ is bijective, it suffices
to show that f ′ is a ring morphism. This is easy (e.g., it respects multiplication
since f ′

(
a · b

)
= f ′

(
ab
)

= f (ab) = f (a) f (b) = f ′ (a) f ′
(

b
)

), but actually
is also a particular case of the universal property of quotient rings (applied to
I = Ker f , which is allowed since f (Ker f ) = 0). So part (c) is proved.

(d) This was already done in the proof of part (c).
(e) This is just part (e) of the previous theorem.
(f) Follows from (c).

As our proof has shown, the First Isomorphism Theorem (for rings) is merely
a partial (i.e., less general) improvement on the universal property of quotient
rings: The latter yields a ring morphism from R/I, while the former produces
a ring isomorphism from R/ Ker f .

Here are some examples for using the First Isomorphism Theorem:

• Consider the map

f : Q4≤4 → Q2≤2,
a b c d
0 u v w
0 0 x y
0 0 0 z

 7→
(

u v
0 x

)
,

which removes the “outer shell” from an upper-triangular matrix. This
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map f is a ring morphism; for instance, it respects multiplication because

f




a b c d
0 u v w
0 0 x y
0 0 0 z




a′ b′ c′ d′

0 u′ v′ w′

0 0 x′ y′

0 0 0 z′




= f


aa′ bu′ + ab′ cx′ + bv′ + ac′ ad′ + cy′ + dz′ + bw′

0 uu′ vx′ + uv′ vy′ + wz′ + uw′

0 0 xx′ xy′ + yz′

0 0 0 zz′


=

(
uu′ vx′ + uv′

0 xx′

)
=

(
u v
0 x

)(
u′ v′

0 x′

)

= f


a b c d
0 u v w
0 0 x y
0 0 0 z

 · f


a′ b′ c′ d′

0 u′ v′ w′

0 0 x′ y′

0 0 0 z′

 .

The kernel of this morphism f is

Ker f =




a b c d
0 u v w
0 0 x y
0 0 0 z

 ∈ Q4≤4 |
(

u v
0 x

)
= 0


=




a b c d
0 0 0 w
0 0 0 y
0 0 0 z

 ∈ Q4≤4

 .

So you can conclude right away that this Ker f is an ideal of Q4≤4. More-
over, the image f

(
Q4≤4) is the whole Q2≤2. The First Isomorphism The-

orem yields a ring isomorphism

f ′ : Q4≤4/ Ker f → f
(

Q4≤4
)

,

r 7→ f (r) .

In other words, it yields a ring isomorphism

f ′ : Q4≤4/ Ker f → Q2≤2,
a b c d
0 u v w
0 0 x y
0 0 0 z

 7→
(

u v
0 x

)
.

In particular, Q4≤4/ Ker f ∼= Q2≤2.
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• Polynomials provide a great source of examples for the First Isomorphism
Theorem. The typical example will look as follows:

(a polynomial ring) / (an ideal) ∼= (a ring of numbers) .

For example,

R [x]︸ ︷︷ ︸
the ring of polynomials

in x with real coefficients

/
(

x2 + 1
)

︸ ︷︷ ︸
I really mean the

principal ideal (x2+1)R[x]
here

∼= C.

Informally, this is saying that if you are working with polynomials in an
indeterminate x with real coefficients, but you equate the polynomial x2 +
1 to zero, then you obtain the complex numbers. Even more informally,
the complex numbers are obtained from the real numbers by “adjoining
a root of x2 + 1”, that is, conjuring an element i satisfying i2 + 1 = 0 out
of thin air and computing with it. We will make this precise later.

1.10. Direct products of rings

1.10.1. Direct products of two rings

Here is a way to generate a new ring out of two existing rings (proof straight-
forward):

Proposition 1.10.1. Let R and S be two rings. Then, the Cartesian product

R × S = {(r, s) | r ∈ R and s ∈ S}

becomes a ring if we endow it with the entrywise addition

(r, s) +
(
r′, s′

)
=
(
r + r′, s + s′

)
and the entrywise multiplication

(r, s)
(
r′, s′

)
=
(
rr′, ss′

)
and the zero (0R, 0S) and the unity (1R, 1S).

Definition 1.10.2. This ring is denoted by R × S, and is called the direct
product of R and S.
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1.10.2. Direct products of any number of rings

More generally, we can define the direct product R1 × R2 × · · · × Rn of any
n rings R1, R2, . . . , Rn, and even better, the direct product ∏

i∈I
Ri of any family

(finite or infinite) of rings Ri:

Proposition 1.10.3. Let I be a set. Let (Ri)i∈I be a family of rings (i.e., let Ri
be a ring for each i ∈ I). Then, the Cartesian product

∏
i∈I

Ri =
{

all families (ri)i∈I with ri ∈ Ri for each i ∈ I
}

becomes a ring if we endow it with the entrywise addition

(ri)i∈I + (si)i∈I = (ri + si)i∈I

and the entrywise multiplication

(ri)i∈I (si)i∈I = (risi)i∈I

and the zero
(
0Ri

)
i∈I and the unity

(
1Ri

)
i∈I .

Definition 1.10.4. This ring is called the direct product of the rings Ri, and
is denoted by ∏

i∈I
Ri.

In particular:

• If I = {1, 2, . . . , n}, then ∏
i∈I

Ri is also denoted by R1 × R2 × · · · × Rn,

and its elements (ri)i∈{1,2,...,n} are written as (r1, r2, . . . , rn).

• If all the rings Ri are the same ring R, then ∏
i∈I

Ri is also denoted by RI .

This is actually just the ring of all functions from I to R (with pointwise
+ and ·), which we have seen before among our first examples of rings.

• If n ∈ N, and if R is a ring, then the ring R{1,2,...,n} = R × R × · · · × R︸ ︷︷ ︸
n times

is just called Rn.

• If I = {1, 2, 3, . . .}, then the families (ri)i∈I can be written as infinite
sequences (r1, r2, r3, . . .).

• If I = Z, then the families (ri)i∈I can be written as “infinite-both-ways
sequences” (. . . , r−2, r−1, r0, r1, r2, . . .).
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1.10.3. Examples

• The ring Z3 = Z × Z × Z consists of all triples (r, s, t) of integers. Addi-
tion and multiplication are entrywise: e.g.,

(r, s, t) ·
(
r′, s′, t′

)
=
(
rr′, ss′, tt′

)
.

This ring is not an integral domain, since (0, 1, 2) · (1, 0, 0) = (0, 0, 0).

• If R, S and T are three rings, then the direct products

R × S × T, R × (S × T) , (R × S)× T

are not the same! They are not even the same set, since their elements
have the respective forms

(r, s, t) , (r, (s, t)) , ((r, s) , t) ;

these forms clearly “carry the same information” but are organized dif-
ferently.

However, these three direct products are isomorphic. The isomorphisms
go as follows:

R × S × T → R × (S × T) ,
(r, s, t) 7→ (r, (s, t))

and

R × S × T → (R × S)× T,
(r, s, t) 7→ ((r, s) , t) .

So we say that the direct product operation (on rings) is “associative up
to isomorphism”. It is also “commutative up to isomorphism”.

• Complex numbers are defined as pairs of real numbers. Thus, C is R × R

as a set (since a + bi = (a, b)), even as an additive group, but not as a
ring! This is because (a, b) · (c, d) ̸= (ac, bd) in C. Instead, (a, b) · (c, d) =
(ac − bd, ad + bc).

Actually, C is not isomorphic to R × R as rings, since C is a field but
R×R is not (R×R is not even an integral domain, because (1, 0) · (0, 1) =
(0, 0)).

• Let R be any ring. Let n ∈ N. Let Rn=n be the set of all diagonal n × n-
matrices over R. That is,

Rn=n =




a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an

 | a1, a2, . . . , an ∈ R

 .
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Then, Rn=n is a subring of Rn×n. Moreover, Rn=n ∼= Rn as rings (where
Rn is a direct product, as defined above). Specifically, the map

Rn → Rn=n,

(a1, a2, . . . , an) 7→


a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an


is a ring isomorphism.

Note: A direct product of commutative rings is commutative.

1.10.4. Direct products and idempotents

Direct products are closely related to idempotents. Recall that idempotents in
a ring R are elements r ∈ R satisfying r2 = r. Two idempotents that always
exist are 0 and 1, but some rings have more. For instance, (0, 1, 0, 1, 1, 1, 0)
is an idempotent in a direct product of seven rings. So a direct product of k
nontrivial rings has at least 2k idempotents. Another example of an idempotent
is any idempotent matrix; these matrices are called projections.

I claim that idempotents can be used to reveal rings as direct products. More
precisely, central idempotents can do this.

One direction is clear: Given two rings R and S, the pairs a := (1R, 0S) and
b := (0R, 1S) are central idempotents in R × S. These idempotents allow you to
reconstruct the factors R and S back from the direct product R × S: namely, the
principal ideals

a (R × S) = {ax | x ∈ R × S}
= {(1R, 0S) (r, s) | (r, s) ∈ R × S}
= {(r, 0S) | (r, s) ∈ R × S}
= {(r, 0S) | r ∈ R} ∼= R

and b (R × S) ∼= S are themselves rings that are isomorphic to R and S. So the
central idempotents a and b allow us to decompose the direct product R × S
into its factors R and S. Actually, just a suffices, since a + b = (1R, 1S) = 1R×S
and thus b = 1R×S − a.

Conversely:

Proposition 1.10.5. Let e be a central idempotent in a ring R. Then, the
principal ideals eR = Re and (1 − e) R = R (1 − e) themselves are rings (with
addition, multiplication and zero inherited from R, and with unities e and
1 − e, respectively), and there is a ring isomorphism

(eR)× ((1 − e) R) → R,
(x, y) 7→ x + y.
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In particular, R ∼= (eR)× ((1 − e) R).

Note that this would not hold for non-central idempotents. For instance, the

matrix ring R2×2 has lots of idempotents (e.g.,
(

1 0
0 0

)
), but is not a nontrivial

direct product.
Let’s see an example: The ring Z/6 has idempotents 0, 1, 3, 4. These are the

trivial ones plus two more. All of them are central, since Z/6 is commutative.
So we should obtain an isomorphism from Z/6 to a direct product of nontrivial
rings! Using the idempotent e = 3, we obtain

3 (Z/6) =
{

0, 3
} ∼= Z/2;(

1 − 3
)
(Z/6) = 4 (Z/6) =

{
0, 4, 2

} ∼= Z/3.

Thus, the above proposition yields

Z/6 ∼= (Z/2)× (Z/3) as rings.

We will soon see how to generalize this.

1.11. Ideal arithmetic

Next, we shall define two ways to build new ideals from old:

Definition 1.11.1. Let I and J be two ideals of a ring R.
(a) Then, I + J denotes the subset

{i + j | i ∈ I and j ∈ J} of R.

(b) Next, we define a further subset I J of R, also denoted I · J. Unlike I + J,
this will not be defined as {ij | i ∈ I and j ∈ J}, since that would not be an
ideal.

Instead, I J = I · J will be defined as the set

{all finite sums of (I, J) -products} ,

where an (I, J)-product means a product ij with i ∈ I and j ∈ J.

Note that our definition of I J was more complicated than our definition of
I + J, since it involved the extra step of forming finite sums. This ensures that
I J is closed under addition. For I + J, this step was not necessary, since the set
{i + j | i ∈ I and j ∈ J} is already closed under addition:

(i1 + j1) + (i2 + j2) = (i1 + i2)︸ ︷︷ ︸
∈I

+ (j1 + j2)︸ ︷︷ ︸
∈J

.
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But this would not hold for {ij | i ∈ I and j ∈ J}.
A third way to combine ideals is taking their intersection: I ∩ J.
Here is a bunch of properties of these operations:

Proposition 1.11.2 (ideal arithmetic). Let R be a ring.
(a) Let I and J be two ideals of R. Then, I + J and I ∩ J and I J are ideals

of R as well.
(b) Let I and J be two ideals of R. Then, I J ⊆ I ∩ J ⊆ I ⊆ I + J and

I J ⊆ I ∩ J ⊆ J ⊆ I + J.
(c) The set of all ideals of R is a monoid with respect to the binary operation

+, with neutral element {0R}. That is,

(I + J) + K = I + (J + K) for any three ideals I, J, K of R;
I + {0R} = {0R}+ I = I for any ideal I of R.

(d) The set of all ideals of R is a monoid with respect to the binary opera-
tion ∩, with neutral element R. That is,

(I ∩ J) ∩ K = I ∩ (J ∩ K) for any three ideals I, J, K of R;
I ∩ R = R ∩ I = I for any ideal I of R.

(e) The set of all ideals of R is a monoid with respect to the binary opera-
tion ·, with neutral element R. That is,

(I J)K = I (JK) for any three ideals I, J, K of R;
IR = RI = I for any ideal I of R.

(f) Addition and intersection of ideals are commutative:

I + J = J + I and I ∩ J = J ∩ I.

(g) If R is commutative, then I J = J I for any ideals I and J of R.

This proposition shows that the operations +, ∩ and · on the set of all ideals
of R satisfy a lot of rules that resemble those of arithmetic. This is called ideal
arithmetic. But don’t get too relaxed: You cannot subtract ideals. In particular,
you cannot reconstruct I from J and I + J.

To see these things on an example, let us check what these operations give
for principal ideals of Z:

Proposition 1.11.3. Let n, m ∈ Z. Let I = nZ and J = mZ. Then:
(a) We have I J = nmZ.
(b) We have I ∩ J = lcm (n, m)Z.
(c) We have I + J = gcd (n, m)Z.
(d) We have I ⊆ J if and only if m | n.
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(e) We have I = J if and only if |n| = |m|.

Proof. (a) Let c ∈ nmZ. Then, c = nmd for some integer d. Then,

c = nmd = n︸︷︷︸
∈nZ=I

(md)︸ ︷︷ ︸
=mZ∈J

is an (I, J)-product, hence a finite sum of (I, J)-products. So c ∈ I J.
This shows that nmZ ⊆ I J.
Conversely, any (I, J)-product is a multiple of nm (since it is ij for some i = nk

and j = mℓ, and thus equals (nk) (mℓ) = nm (kℓ)). Hence, any finite sum of
(I, J)-products is a multiple of nm as well. In other words, it belongs to nmZ.
This shows that I J ⊆ nmZ. Combined with nmZ ⊆ I J, this yields I J = nmZ.

(b) We have

I ∩ J = {all elements of I that also belong to J}
= {all elements of nZ that also belong to mZ}
= {all multiples of n that also are multiples of m}
= {all common multiples of n and m}
= {all multiples of lcm (n, m)} = lcm (n, m)Z.

(c) We must show that I + J = gcd (n, m)Z.
Bezout’s theorem tells us that there exist two integers a and b such that na +

mb = gcd (n, m). Using these integers, we obtain

gcd (n, m) = na︸︷︷︸
∈I

+ mb︸︷︷︸
∈J

∈ I + J,

and consequently gcd (n, m)Z ⊆ I + J (because I + J is an ideal and thus closed
under taking multiples).

Remains to prove that I + J ⊆ gcd (n, m)Z. In other words, we must prove
that i + j ∈ gcd (n, m)Z for any i ∈ I and j ∈ J. Let us just do this: Let i ∈ I
and j ∈ J. Thus, i = nx and j = my for some integers x, y. Then,

i + j = n︸︷︷︸
=gcd(n,m)·z

x + m︸︷︷︸
=gcd(n,m)·w

y

= gcd (n, m) · zx + gcd (n, m) · wy
= gcd (n, m) · (zx + wy) ∈ gcd (n, m)Z,

qed.
(d), (e) LTTR.

We will soon see how this proposition can be generalized to a wider class of
rings (but not all rings).
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1.12. The Chinese Remainder Theorem

1.12.1. Introduction

Let us recall our ring isomorphism

Z/6 ∼= (Z/2)× (Z/3) .

This can be generalized:

Theorem 1.12.1 (The Chinese Remainder Theorem for two integers). Let n
and m be two coprime integers. Then,

Z/ (nm) ∼= (Z/n)× (Z/m) as rings.

More concretely, there is a ring isomorphism

Z/ (nm) → (Z/n)× (Z/m) ,
r 7→ (r, r) , or, to be precise:

r + nmZ 7→ (r + nZ, r + mZ) .

As usual, the notation r is confusing but practical, since it avoids the mention
of the modulus. Context can make it unambiguous.

Rather than prove this theorem directly, I will generalize it and prove it in
the general setting.

1.12.2. The Chinese Remainder Theorem for two ideals

We replace our two coprime integers n and m by two ideals I and J of an
arbitrary ring R. Instead of the coprimality we now require the ideals I and J
to be comaximal – meaning that they satisfy I + J = R. In fact, by the above
result nZ + mZ = gcd (n, m)Z, the coprimality of n and m is equivalent to the
comaximality of the principal ideals nZ and mZ.

Definition 1.12.2. Let I and J be two ideals of a ring R. We say that I and J
are comaximal if I + J = R.

Now we can generalize the Chinese Remainder Theorem above to ideals:

Theorem 1.12.3 (The Chinese Remainder Theorem for two ideals). Let I and
J be two comaximal ideals of a commutative ring R. Then:

(a) We have I ∩ J = I J.
(b) We have R/ (I J) ∼= (R/I)× (R/J).
(c) More concretely, there is a ring isomorphism

R/ (I J) → (R/I)× (R/J) ,
r 7→ (r, r) (that is, r + I J 7→ (r + I, r + J)) .
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Part (a) generalizes the fact that lcm (n, m) = ±nm for any two coprime
integers n and m; parts (b) and (c) generalize the above CRT for integers.

Let us now prove the generalized theorem. We will abbreviate products such
as (R/I) × (R/J) by removing the parentheses: R/I × R/J. Division goes
before multiplication.

Proof. We know that I and J are comaximal, i.e., we have I + J = R. Hence,
1 ∈ R = I + J. In other words, 1 = i + j for some i ∈ I and j ∈ J. Consider
these i and j.

(a) It is easy to see that I J ⊆ I ∩ J (since any (I, J)-product lies both in I and
in J, hence lies in I ∩ J, and of course the same must hold for the finite sums of
(I, J)-products). It remains to show that I ∩ J ⊆ I J.

Let a ∈ I ∩ J. Then,

a = 1︸︷︷︸
=i+j

·a = (i + j) · a = i︸︷︷︸
∈I

a︸︷︷︸
∈I∩J⊆J

+ j︸︷︷︸
∈J

a︸︷︷︸
∈I∩J⊆I

∈ I J + J I = I J (since R is commutative) .

So we have shown that a ∈ I J for each a ∈ I ∩ J. In other words, I ∩ J ⊆ I J. So
part (a) is proved.

(c) Define the map

f : R → (R/I)× (R/J) ,
r 7→ (r, r)

(where (r, r) means (r + I, r + J)). Easily, f is a ring morphism. Its kernel is

Ker f =
{

r ∈ R | (r, r) = 0(R/I)×(R/J)

}
= {r ∈ R | r = 0 in R/I, and r = 0 in R/J}
= {r ∈ R | r ∈ I, and r ∈ J}
= {r ∈ R | r ∈ I ∩ J}
= I ∩ J = I J (by part (a)) .

Now I claim that f is surjective, i.e., that the image of f is the whole ring
(R/I)× (R/J).

To prove this, recall again that 1 = i + j, so that 1 − i = j ∈ J. Hence, 1 = i in
R/J. In other words, i = 1 in R/J. Similarly, j = 1 in R/I. Therefore,

f (i) =
(
i, i
)
=
(
0R/I , 1R/J

)
and

f (j) =
(

j, j
)
=
(
1R/I , 0R/J

)
.

Now, for every x ∈ R and y ∈ R, we have

f (yi + xj) = f (y) f (i) + f (x) f (j) (since f is a ring morphism)

= (y, y)
(
0R/I , 1R/J

)
+ (x, x)

(
1R/I , 0R/J

)
= (0R/I , y) +

(
x, 0R/J

)
= (x, y) .
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This shows that every (x, y) ∈ R/I × R/J lies in the image of f . In other words,
f is surjective. That is,

f (R) = R/I × R/J.

The first isomorphism theorem for rings says that the map

f ′ : R/ Ker f → f (R) ,
r 7→ f (r)

is well-defined and is a ring isomorphism. In view of Ker f = I J and f (R) =
R/I × R/J and f (r) = (r, r), we can rewrite this as follows: The map

f ′ : R/I J → R/I × R/J,
r 7→ (r, r)

is well-defined and is a ring isomorphism. This proves part (c), and thus also
part (b).

1.12.3. Application to integers

Proof of the CRT for two integers. Let R = Z and I = nZ and J = mZ. Then,
something we proved a while ago says that I J = nmZ and I + J = gcd (n, m)︸ ︷︷ ︸

=1
(since n and m are coprime)

Z =

Z. So the ideals I and J are comaximal. Hence, the general CRT for two ideals
yields that

R/I J ∼= R/I × R/J, that is,
Z/nm ∼= Z/n × Z/m.

The specific isomorphism also follows from the general CRT.

If n and m are two integers, then the extended Euclidean algorithm provides
a quick way of computing integers x and y such that xn + ym = gcd (n, m).
Thus, the ideal equality nZ + mZ = gcd (n, m)Z can be realized by a pretty
efficient algorithm. This makes the CRT itself rather efficient, giving a quick
way of evaluating not just the isomorphism Z/nm → Z/n × Z/m (this one is
easy to compute) but also its inverse.

1.12.4. Interlude: Multiplying comaximal ideals

Our next goal is to extend the CRT from two ideals to k ideals for any k. To
do so, we need some auxiliary results about how comaximality behaves under
ideal multiplication.
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Recall the classical fact from number theory saying that if gcd (i, k) = 1 and
gcd (j, k) = 1, then gcd (ij, k) = 1 (for integers i, j, k). More generally, for any
three integers i, j, k, we have

gcd (ij, k) | gcd (i, k) gcd (j, k) .

We can generalize these facts to any ideals in any ring:

Proposition 1.12.4. Let I, J and K be three ideals of a ring R. Then:
(a) We have (I + K) (J + K) ⊆ I J + K.
(b) If I + K = R and J + K = R, then I J + K = R.

Proof. All three sets I + K and J + K and I J + K are ideals of R.
(a) It suffices to prove that any (I + K, J + K)-product lies in I J + K (since

the ideal (I + K) (J + K) consists of finite sums of such products, but I J + K is
closed under addition).

In other words, we must prove that xy ∈ I J + K for any x ∈ I + K and
y ∈ J + K. Let’s prove this.

Fix x ∈ I + K and y ∈ J + K. Since x ∈ I + K, we can write x as x = i + a with
i ∈ I and a ∈ K. Likewise, we can write y as y = j + b with j ∈ J and b ∈ K.
Using these i, a, j, b, we now have

xy = (i + a) (j + b) = ij︸︷︷︸
∈I J

+ ib︸︷︷︸
∈K

+ aj︸︷︷︸
∈K

+ ab︸︷︷︸
∈K

∈ I J + K + K + K︸ ︷︷ ︸
⊆K

(since K is an ideal)

⊆ I J + K,

as desired. So part (a) of the proposition is proved.
(b) Assume that I +K = R and J +K = R. But part (a) says that (I + K) (J + K) ⊆

I J + K. Hence, I J + K ⊇ (I + K)︸ ︷︷ ︸
=R

(J + K)︸ ︷︷ ︸
=R

= R︸︷︷︸
϶1

R = R, thus I J + K = R.

We can extend part (b) of this proposition to products of multiple ideals:

Proposition 1.12.5. Let I1, I2, . . . , Ik be k ideals of a ring R. Let K be a further
ideal of R. Assume that

Ii + K = R for each i ∈ {1, 2, . . . , k} .

Then, I1 I2 · · · Ik + K = R.

Proof. Induction on k. The base case (k = 0) relies on the empty product of 0
ideals being R (this is a definition). For the induction step, use part (b) of the
previous proposition.
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1.12.5. The Chinese Remainder Theorem for k ideals

To generalize the CRT to k rather than 2 ideals, we need one more piece of
notation:

Definition 1.12.6. Let I1, I2, . . . , Ik be k ideals of a ring R. We say that these
k ideals I1, I2, . . . , Ik are mutually comaximal if Ii + Ij = R holds for all i < j
(that is, Ii is comaximal with Ij for all i < j).

For k > 2, this is a much stronger requirement than I1 + I2 + · · ·+ Ik = R.
This is a generalization of the mutual coprimality of k integers, which is much
stronger than just saying that their cumulative gcd is 1. For instance, the three
integers 6, 10, 15 have gcd (6, 10, 15) = 1, but no two of them are coprime; they
are certainly not mutually coprime.

When n1, n2, . . . , nk are k mutually coprime integers, the corresponding prin-
cipal ideals n1Z, n2Z, . . . , nkZ are mutually coprime.

Now we can state the generalized CRT for k ideals:

Theorem 1.12.7 (The Chinese Remainder Theorem for k ideals). Let
I1, I2, . . . , Ik be k mutually comaximal ideals of a commutative ring R. Then:

(a) We have
I1 ∩ I2 ∩ · · · ∩ Ik = I1 I2 · · · Ik.

(b) We have

R/ (I1 I2 · · · Ik) ∼= R/I1 × R/I2 × · · · × R/Ik.

(c) More concretely, there is a ring isomorphism

R/ (I1 I2 · · · Ik) → R/I1 × R/I2 × · · · × R/Ik,
r 7→ (r, r, . . . , r) .

Proof. Induct on k. The induction step uses

• the previous proposition to argue that I1 I2 · · · Ik−1 is comaximal with Ik;

• the CRT for two ideals;

• the simple fact that if three rings A, B, C satisfy A ∼= B, then A×C ∼= B×C
(and more concretely: if f : A → B is a ring isomorphism, then

A × C → B × C,
(a, c) 7→ ( f (a) , c)

is a ring isomorphism as well).

See the text for more details.
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1.12.6. Applying to integers again

Applying the general CRT for k ideals to k principal ideals of R = Z, we find:

Theorem 1.12.8 (The Chinese Remainder Theorem for k integers). Let
n1, n2, . . . , nk be k mutually coprime integers (that is, k integers satisfying
gcd

(
ni, nj

)
= 1 for all i < j). Then,

Z/ (n1n2 · · · nk) ∼= Z/n1 × Z/n2 × · · · × Z/nk.

More concretely, there is a ring isomorphism

Z/ (n1n2 · · · nk) → Z/n1 × Z/n2 × · · · × Z/nk,
r 7→ (r, r, . . . , r) .

Proof. Apply the previous theorem to R = Z and Ii = niZ. Comaximality
follows from coprimality.

Corollary 1.12.9. Let n be a positive integer with prime factorization n =
pa1

1 pa2
2 · · · pak

k (where a1, a2, . . . , ak ∈ N), where the p1, p2, . . . , pk are distinct
primes. Then,

Z/n ∼= Z/pa1
1 × Z/pa2

2 × · · · × Z/pak
k .

More concretely, there is a ring isomorphism

Z/n → Z/pa1
1 × Z/pa2

2 × · · · × Z/pak
k ,

r 7→ (r, r, . . . , r) .

Proof. Apply the theorem above to ni = pai
i , after observing that powers of

distinct primes are coprime.

This corollary can be used to break rings of the form Z/n down into simpler
rings of the form Z/pa. This has many applications:

• Counting squares (or, more generally, solutions to polynomial equations)
in Z/n.

Recall HW#0 Exercise 7: How many remainders do perfect squares leave
when divided by 7 ? by 14 ? by a general n > 0 ?

In other words, how many squares are there in Z/n ? Here, a square in
a ring R means an element of the form a2 with a ∈ R. For instance, Z/5
has 3 squares: 0, 1, 4.

It is easy to see that if A and B are two rings, then

(# of squares in A × B) = (# of squares in A) · (# of squares in B)
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(since the squares in A × B are the pairs (a, b) of a square in A with a
square in B). Moreover, isomorphic rings have the same # of squares.
Thus, if n has the prime factorization n = pa1

1 pa2
2 · · · pak

k , then

Z/n ∼= Z/pa1
1 × Z/pa2

2 × · · · × Z/pak
k

yields

(# of squares in Z/n)

=
(
# of squares in Z/pa1

1 × Z/pa2
2 × · · · × Z/pak

k

)
=

k

∏
i=1

(
# of squares in Z/pai

i
)

.

Hence, it remains to compute the # of squares in Z/pa for any prime p
and any positive integer a.

A good first step is to count the squares in Z/p for any prime p. Their
number turns out to be 2, if p = 2;

p + 1
2

, if p ̸= 2.

This is not hard to show by noticing that each square x in Z/p other than
0 is taken twice (i.e., it is the square of two distinct elements of Z/p),
unless p = 2. Details on the course website (Spring 2019 HW#6 Exercise
5).

The next step is counting squares in Z/p2. Their number is2, if p = 2;
p2 − p

2
+ 1, if p ̸= 2,

as can again be shown without too much trouble. (Again, see the website.)

Now you can trust me that the analogous problem for Z/pa is solvable,
but the answer is not particularly nice. It is

(# of squares in Z/pa)

=



pa+1 + p + 2
2 (p + 1)

, if p ̸= 2 and if a is even;

pa+1 + 2p + 1
2 (p + 1)

, if p ̸= 2 and if a is odd;

2a−1 + 4
3

, if p = 2 and if a is even;

2a−1 + 5
3

, if p = 2 and if a is odd.
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Plugging this into our product formula, we find a formula for the # of
squares in Z/n.

• What is an integer a that leaves the remainder 3 when divided by 5, the
remainder 2 when divided by 6, and the remainder 9 when divided by 23
?

This is just asking for an integer a that satisfies a = 3 in Z/5, satisfies
a = 2 in Z/6, and satisfies a = 9 in Z/23. In other words, this is asking
for an integer a whose image under the ring morphism

Z → Z/5 × Z/6 × Z/23,
r 7→ (r, r, r)

is the triple
(
3, 2, 9

)
.

Since the integers 5, 6, 23 are mutually coprime, the Chinese Remainder
Theorem shows that there is a ring isomorphism

Z/ (5 · 6 · 23) → Z/5 × Z/6 × Z/23,
r 7→ (r, r, r) .

By tracking our way through the proof of this theorem, we can obtain an
algorithm for constructing the inverse of this isomorphism. Thus, we can
find the preimage of the triple

(
3, 2, 9

)
under our isomorphism: It is 308.

So the integer 308 is the simplest answer to our question.

• A modern application of the Chinese Remainder Theorem is a computa-
tional technique called Chinese remaindering. It can be used to paral-
lelize computations with integers. For instance, assume that you want to
compute

a = 772 · 802 − 782 · 792.

By some kind of theoretical knowledge, you know that |a| < 50 000. What
is a quick way to find a without actually doing all the computations?

It suffices to compute the remainder a%100 001, because this remainder,
when taken together with the condition |a| < 50 000, will allow you to
reconstruct a. In other words, it suffices to compute a in Z/100 001. For
the same reason, it suffices to compute a in Z/n for any n > 100 000.

So now you can work in Z/n instead of working in Z. This is already
a simplification, but we can do even better: If n has many distinct prime
factors, say n = pa1

1 pa2
2 · · · pak

k , then Z/n ∼= Z/pa1
1 × Z/pa2

2 × · · · × Z/pak
k ,

and so it will suffice to compute a in each of the quotient rings Z/pai
i and

then use the CRT to collate the results together to get a in Z/n (this is
possible since the extended Euclidean algorithm is quite fast).

A good choice for n is n = 2 · 3 · 5 · 7 · 11 · 13 · 17 = 510 510 > 100 000.
So, if you compute a in Z/p for all p ∈ {2, 3, 5, 7, 11, 13, 17}, then you can
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reconstruct a in Z/n and thus a. This is easy. For instance, in Z/5, we
have

a = 772 · 802 − 782 · 792

= 772 · 802 − 782 · 792

= 22 · 02︸ ︷︷ ︸
=0

− 32︸︷︷︸
=4

· 42︸︷︷︸
=1

= −4 · 1 = 1.

There are many more situations where this is useful (see, e.g., the Vogan
and Knuth references in the notes).

1.12.7. A few words about noncommutative rings

Recall the CRT as we stated it:

Theorem 1.12.10 (The Chinese Remainder Theorem for k ideals). Let
I1, I2, . . . , Ik be k mutually comaximal ideals of a commutative ring R. Then:

(a) We have
I1 ∩ I2 ∩ · · · ∩ Ik = I1 I2 · · · Ik.

(b) We have

R/ (I1 I2 · · · Ik) ∼= R/I1 × R/I2 × · · · × R/Ik.

(c) More concretely, there is a ring isomorphism

R/ (I1 I2 · · · Ik) → R/I1 × R/I2 × · · · × R/Ik,
r 7→ (r, r, . . . , r) .

We outlined its proof and applied it to R = Z.
But in fact, we can try to generalize it further: Does R really need to be

commutative?
Literally, the answer is “yes”: Our theorem that I + J = R entails I ∩ J = I J

requires J I = I J. If we do not assume that R is commutative, we have to replace
it by

I ∩ J = I J + J I.

Moreover, our proof of
R/I J ∼= R/I × R/J

can be generalized to noncommutative R if we replace I J by I J + J I: we get

R/ (I J + J I) ∼= R/I × R/J,
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or simply
R/ (I ∩ J) ∼= R/I × R/J.

We end up with the following:

Theorem 1.12.11 (The Chinese Remainder Theorem for k ideals, noncommu-
tative version). Let I1, I2, . . . , Ik be k mutually comaximal ideals of a ring R.
Then:

(a) We have

I1 ∩ I2 ∩ · · · ∩ Ik = ∑
σ∈Sk

Iσ(1) Iσ(2) · · · Iσ(k),

where Sk is the group of all permutations of the set {1, 2, . . . , k}. For instance,
for k = 3, this is saying that

I1 ∩ I2 ∩ I3 = I1 I2 I3 + I1 I3 I2 + I2 I1 I3 + I2 I3 I1 + I3 I1 I2 + I3 I2 I1.

(b) We have

R/ (I1 ∩ I2 ∩ · · · ∩ Ik) ∼= R/I1 × R/I2 × · · · × R/Ik.

(c) More concretely, there is a ring isomorphism

R/ (I1 ∩ I2 ∩ · · · ∩ Ik) → R/I1 × R/I2 × · · · × R/Ik,
r 7→ (r, r, . . . , r) .

Proof. More or less the same as for commutative R.

It turns out that the above theorem can still be improved! This was noticed
only recently and proved by Birgit van Dalen in 2005:

Theorem 1.12.12. Let I1, I2, . . . , Ik be k mutually comaximal ideals of a ring
R. Then,

I1 ∩ I2 ∩ · · · ∩ Ik = ∑
σ∈Sk

Iσ(1) Iσ(2) · · · Iσ(k)

= I1 I2 · · · Ik + Ik Ik−1 · · · I1

= I1 I2 · · · Ik + I2 I3 · · · Ik I1 + I3 I4 · · · Ik I1 I2 + · · ·
(sum of all cyclic rotations of I1 I2 · · · Ik) .

See the notes (and the HW) for more about comaximal ideals.
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1.13. Euclidean rings and Euclidean domains

1.13.1. All ideals of Z are principal

We have been talking about ideals of Z for quite a while now, but we always
dealt with principal ideals. Are there any others? No, because:

Proposition 1.13.1. Any ideal of Z is principal.

Proof. Let I be an ideal of Z. We must show that I is principal.
If I = {0}, then this is clear (since I = 0Z). So we assume that I ̸= {0}.

Then, I contains a nonzero integer, therefore a positive integer (since I is closed
under negation). Let b be the smallest positive integer in I.

Now I want to prove that I = bZ (which will yield that I is principal).
Since b ∈ I, we have bZ ⊆ I (since I is an ideal). Remains to prove that

I ⊆ bZ.
To do so, we let a ∈ I be arbitrary. We must show that a ∈ bZ, that is, b | a,

that is, a%b = 0. But a%b = a− qb for some q ∈ Z, and therefore a%b ∈ I (since
a, b ∈ I). Moreover, a%b is nonnegative and smaller than b. So a%b cannot be
positive (since if it was, then it would be a smaller positive integer in I than
b, but b was already the smallest positive integer in I). Thus, a%b must be 0.
Hence, b | a, so that a ∈ bZ. This shows that I ⊆ bZ, and we are done.

Note that division with remainder is what made this proof work! Thus,
commutative rings in which you can “divide with remainder” have the prop-
erty that all their ideals are principal, at least if there is a reasonable notion of
“smallest element” in them. Next time, we will make this vague concept formal
and study it.

The proposition above is not constructive, since ideals of Z can be specified in
arbitrarily non-explicit forms (e.g., the set of all integers that are 0 or multiples
of an odd perfect number is an ideal of Z, thus principal by the proposition
above, but this tells you nothing about what b generates this ideal). However,
when an ideal I is given in certain simple ways, there are often algorithms
for finding a generator. The most common case is when I is a sum of two
principal ideals: I = aZ + bZ. In this case, we are looking for a c ∈ Z such
that aZ + bZ = cZ. By what we proved before, we know that this c must
be ± gcd (a, b), so the question is how to compute gcd (a, b). The answer is
given by the Euclidean algorithm, which (just like the above proof) rests on
division with remainder. There is furthermore an algorithm called the extended
Euclidean algorithm, which actually constructs two integers x and y such that
xa + yb = gcd (a, b).

These algorithms are useful in number theory, so it would be good to gener-
alize them to other rings. The rings for which this can be done are known as
the Euclidean rings.
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1.13.2. Euclidean rings

Definition 1.13.2. Let R be a commutative ring.
(a) A norm on R means a function N : R → N with N (0) = 0.
(b) A norm N on R is called Euclidean if for any a ∈ R and any nonzero

b ∈ R, there exist q, r ∈ R with

a = qb + r and (r = 0 or N (r) < N (b)) .

(c) We say that R is a Euclidean ring if R has a Euclidean norm.
(d) We say that R is a Euclidean domain if R is a Euclidean ring and an

integral domain.

You can think of the norm as a measure of “how big” an element of R is; partic-
ular cases are the absolute value of an integer and the degree of a polynomial.
Note that we are not requiring the norm to be multiplicative or to satisfy the
triangle inequality. We are also not requiring the q and the r to be unique.

Some examples:

• Any field F is a Euclidean domain. Indeed, any map N : F → N with
N (0) = 0 is a Euclidean norm on F, since you can always divide without
remainder (i.e., with remainder r = 0).

• The ring Z is a Euclidean domain. Indeed, the map

N : Z → N,
n 7→ |n|

is a Euclidean norm on Z. The Euclideanness follows from division with
remainder (once you check that it works for negative b). Note that the q
and the r are not unique: For example, for a = 7 and b = 5, there are two
pairs (q, r) ∈ Z × Z satisfying

a = qb + r and (r = 0 or N (r) < N (b)) .

These two pairs are (1, 2) and (2,−3).

• If F is a field, then the ring F [x] of polynomials in a single indeterminate
x with coefficients in F is a Euclidean domain, with Euclidean norm

N : F [x] → N,
p 7→ deg p when p ̸= 0,
0 7→ 0.

We will see this in more detail later on. (This is just polynomial division
with remainder. Note that here, the q and the r are unique.)

However, polynomials in more than 1 variable do not form a Euclidean
domain. Neither do polynomials in 1 variable over Z.
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• The ring Z [i] of Gaussian integers is a Euclidean domain.

Indeed, we claim that the map

N : Z [i] → N,

a + bi 7→ a2 + b2 (for a, b ∈ Z)

is a Euclidean norm.

To prove this, we must show that for any α ∈ Z [i] and any nonzero
β ∈ Z [i], there exist elements q, r ∈ Z [i] such that

α = qβ + r and (r = 0 or N (r) < N (β)) .

So let us fix α and β. How do we find q and r ?

Actually, we don’t need the r = 0 option; I claim that we can find q, r ∈
Z [i] such that

α = qβ + r and N (r) < N (β) .

To find such q and r, we observe that each z ∈ Z [i] satisfies N (z) = |z|2.
Hence, we have the following chain of equivalences:

(N (r) < N (β)) ⇐⇒ (|r| < |β|) ⇐⇒
(∣∣∣∣ r

β

∣∣∣∣ < 1
)

(since
|z|
|w| =

∣∣∣ z
w

∣∣∣ for any complex z, w with w ̸= 0). Moreover, we have

the equivalence

(α = qβ + r) ⇐⇒
(

α

β
= q +

r
β

)
⇐⇒

(
α

β
− q =

r
β

)
.

Thus, we need to find q, r ∈ Z [i] such that

α

β
− q =

r
β

and
∣∣∣∣ r
β

∣∣∣∣ < 1.

In other words, we need to find q ∈ Z [i] such that∣∣∣∣αβ − q
∣∣∣∣ < 1.

(If we can find such a q, then r = α − qβ will automatically be the r to
match it.) In other words, we want to find a Gaussian integer q such that
α

β
lies in the open circle with center q and radius 1.
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But this can be done: The open circles with centers at all Gaussian integers
and radius 1 cover the whole complex plane. Geometrically, this can be
seen using the convexity of the circles and the fact that every complex
number lies in one of the “lattice squares” with corners a + bi, (a + 1) +
bi, a + (b + 1) i, (a + 1) + (b + 1) i for some a, b ∈ Z.

There is also an algebraic argument: Write the complex number
α

β
as

(u + x) + (v + y) i, where u and v are integers and x, y ∈ [0, 1] (since each
real number can be written as u + x for some u ∈ Z and x ∈ [0, 1]). Then,
the required point q will be

u + vi, if x ≤ 1
2

and y ≤ 1
2

;

u + (v + 1) i, if x ≤ 1
2

and y >
1
2

;

(u + 1) + vi, if x >
1
2

and y ≤ 1
2

;

(u + 1) + (v + 1) i, if x >
1
2

and y >
1
2

.

To prove that
∣∣∣∣αβ − q

∣∣∣∣ < 1, you can just argue using Pythagoras.

Hence, Z [i] is a Euclidean ring, thus a Euclidean domain.

• The ring
Z
[√

−3
]
=
{

a + b
√
−3 | a, b ∈ Z

}
is not Euclidean. This is not obvious. (It is not hard to see that the
“obvious” norm (a, b) 7→ a2 + 3b2 is not Euclidean. But it can be shown
that no other norm is Euclidean either.)

• The ring
Z
[√

2
]
=
{

a + b
√

2 | a, b ∈ Z
}

(a subring of R) is Euclidean. A Euclidean norm for it is the map

Z
[√

2
]
→ N,

a + b
√

2 7→
∣∣∣a2 − 2b2

∣∣∣ .

(This is not obvious, but can be proved.)

• The ring
Z
[√

14
]
=
{

a + b
√

14 | a, b ∈ Z
}

is Euclidean, but the obvious norm a + b
√

14 7→
∣∣a2 − 14b2

∣∣ is not Eu-
clidean. An actually Euclidean norm for this ring is notoriously hard to
construct, but it exists.
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• The ring Z
[√

5
]
=
{

a + b
√

5 | a, b ∈ Z
}

is not Euclidean.

• For any n ∈ Z, the quotient ring Z/n is Euclidean. More generally, if R
is a Euclidean ring, then any quotient ring R/I is also Euclidean.

We can now generalize the last proposition:

Proposition 1.13.3. Let R be a Euclidean ring. Then, any ideal of R is princi-
pal.

Proof. Same argument as for Z. The only change is that now you take a nonzero
element b ∈ I with minimum N (b) (instead of taking the smallest positive
b ∈ I).

Again, this proof is not constructive, but there are algorithms for many given
types of ideals. In particular, for any Euclidean ring R with a division-with-
remainder algorithm (i.e., an algorithm that computes q and r for given a and
b), there is an algorithm that, for any a, b ∈ R, computes an element c ∈ R
satisfying aR + bR = cR, and also computes two elements x, y ∈ R such that
c = xa + yb. This is a generalization of the extended Euclidean algorithm for
integers, and proceeds in exactly the same way. See §2.13.3 in the text for the
details of this algorithm. The element c is essentially a “gcd” of a and b (we
will say more about this later).

1.14. An introduction to divisibility theory

We will now generalize the basics of elementary number theory to commutative
rings – as generally as possible. Some things generalize easily; others less so;
some don’t generalize at all. Often, properties hold only if the ring satisfies
certain extra conditions. More can be found in textbooks.

1.14.1. Principal ideal domains

The last proposition we proved says the following:

Proposition 1.14.1. In a Euclidean ring, any ideal is principal.

This motivates the following definition:

Definition 1.14.2. An integral domain R is said to be a principal ideal do-
main (short: PID) if each ideal of R is principal.

Thus, the proposition we proved yields:
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Proposition 1.14.3. Any Euclidean domain is a PID.

But there are other PIDs which are not Euclidean. The examples are rather
exotic. One such non-Euclidean PID is the ring

Z [α] = {a + bα | a, b ∈ Z} for α =
1 +

√
−19

2
.

For a proof, see [Dummit/Foote].

1.14.2. Divisibility in commutative rings

Let us define the notions we will study:

Definition 1.14.4. Let R be a commutative ring. Let a ∈ R.
(a) A multiple of a means an element of the principal ideal aR.
(b) A divisor of a means an element d ∈ R such that a ∈ dR. We write

“d | a” for “d is a divisor of a”.
Now, let a, b ∈ R.
(c) A common divisor of a and b means a divisor of a that is also a divisor

of b.
(d) A common multiple of a and b means a multiple of a that is also a

multiple of b.
(e) A greatest common divisor (short: gcd) of a and b means a common

divisor d of a and b such that every common divisor of a and b is a divisor
of d.

(f) A least common multiple (short: lcm) of a and b means a common
multiple m of a and b such that every common divisor of a and b is a multiple
of m.

These definitions of gcd and lcm are perhaps not the most straightforward
generalizations of the gcd and lcm from number theory, and in fact, they are
not even literally unique: By this definition, both 2 and −2 are gcds of 4 and
6. Likewise, both 12 and −12 are lcms of 4 and 6. Thus we use the indefinite
article “a” here.

In general, it is not guaranteed that a gcd and an lcm exist in the first place.
In many rings, they often don’t. And as we just noticed, when they do exist,
they need not be unique.

1.14.3. Gcds and lcms for integers

Proposition 1.14.5. Let a and b be two integers. Let g = gcd (a, b) and ℓ =
lcm (a, b) in the sense of elementary number theory. Then:

(a) The gcds of a and b in the new sense are g and −g.
(b) The lcms of a and b in the new sense are ℓ and −ℓ.
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Proof. Easy if you remember your number theory.

In general commutative rings, gcds might not even exist. For instance, if R is
the ring

Z
[√

−3
]
=
{

a + b
√
−3 | a, b ∈ Z

}
,

then the elements a = 4 and b = 2
(
1 +

√
−3
)

have neither a gcd nor an lcm.
What about uniqueness? As we saw, in Z, gcds and lcms are unique up to

sign. How do we generalize this “up to sign”-uniqueness to arbitrary rings?

1.14.4. Associate elements

Definition 1.14.6. Let R be a commutative ring. Let a, b ∈ R. We say that a
is associate to b (and we write a ∼ b) if there exists a unit u of R such that
a = bu.

For example:

• For R = Z, two integers a and b are associate if and only if a = ±b.

• In a field, two nonzero elements are always associate.

• In a polynomial ring F [x] over a field F, two polynomials f and g are
associate if and only if f = λg for some nonzero λ ∈ F. In particular, any
nonzero polynomial is associate to a unique monic polynomial.

• What about R = Z [i] ? The units of Z [i] are 1, −1, i, −i (this is not hard
to prove; see later). So two elements a, b ∈ Z [i] are associate if and only
if a is b or −b or ib or −ib.

Here are some general properties of associateness:

Proposition 1.14.7. Let R be a commutative ring. The relation ∼ is an equiv-
alence relation.

Proof. Easy.

Proposition 1.14.8. Let R be an integral domain. Let a, b ∈ R. Then, a ∼ b if
and only if both a | b and b | a hold.

Proof. =⇒: Assume that a ∼ b. Thus, a = bu for some unit u, so that b | a.
Moreover, a = bu yields b = au−1 (since u is a unit), so that a | b.
⇐=: Assume that a | b and b | a. That is, b = ax and a = by for some x, y ∈ R.

So b = a︸︷︷︸
=by

x = byx = bxy. If b ̸= 0, then this entails 1 = xy because we can

cancel b in the integral domain R; thus we conclude that x is a unit (since R is
commutative) and so a ∼ b. If b = 0, then a = 0 (since b | a), and so a ∼ b (since
a = b · 1).
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The condition “R is an integral domain” cannot be omitted in this last propo-
sition, but the counterexamples are rather obscure.

Associate elements “look the same” to divisibility, meaning that in a divisi-
bility a | b we can always replace a by any element associate to a, or replace b
by any element associate to b. In other words:

Proposition 1.14.9. Let R be a commutative ring. Let a ∼ a′ and b ∼ b′. Then,
a | b if and only if a′ | b′.

1.14.5. Uniqueness of gcds and lcms in an integral domain

Proposition 1.14.10. Let R be an integral domain. Let a, b ∈ R. Then:
(a) Any two gcds of a and b are associate.
(b) Any two lcms of a and b are associate.

Proof. (a) Let g and h be two gcds of a and b. We must show that g ∼ h.
By one of the propositions above, it suffices to show that g | h and h | g.
Why does g | h ? Because g is a common divisor of a and b, but h is a greatest

common divisor of a and b and thus divisible by any common divisor of a and
b, including g.

So g | h. Similarly, h | g. And we are done.
(b) Analogous.

The proposition we just proved is the most reasonable sense in which gcds
and lcms are unique.

1.14.6. Existence of gcds and lcms in a PID

Existence is a trickier question: Sometimes, two elements of an integral domain
have a gcd; sometimes, they don’t. At least in a PID (and thus in any Euclidean
domain), gcds and lcms always exist:

Theorem 1.14.11. Let R be a PID (for example, a Euclidean domain). Let
a, b ∈ R. Then, there exist a gcd and an lcm of a and b.

More concretely:

Proposition 1.14.12. Let R be a commutative ring. Let a, b, c ∈ R. Then:
(a) If aR + bR = cR, then c is a gcd of a and b. [NB: This is not an “if and

only if”!]
(b) If aR ∩ bR = cR, then c is an lcm of a and b. [This is actually an “if and

only if”.]
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Proof. (a) Assume that aR + bR = cR. Then,

a = a · 1 + b · 0 ∈ aR + bR = cR,

so that c is a divisor of a. Similarly, c is a divisor of b. Hence, c is a common
divisor of a and b.

Why is it a greatest common divisor of a and b ? We must prove that d | c
for any common divisor d of a and b. So let d be a common divisor of a and b.
Why is d | c ? We have

c = c · 1 ∈ cR = aR + bR,

so that c = ax + by for some x, y ∈ R. But a = du and b = dv for some u, v ∈ R
(since d divides a and b). Thus,

c = a︸︷︷︸
=du

x + b︸︷︷︸
=dv

y = dux + dvy = d (ux + vy) ∈ dR.

In other words, d | c, as desired. So part (a) is proved.
(b) The equation aR∩ bR = cR is saying literally that “the common multiples

of a and b are the multiples of c”. This means precisely that c is an lcm of a and
b (why?).

Warning 1.14.13. Adding principal ideals like aR and bR is ideal addition,
not addition of elements. So aR + bR ̸= (a + b) R. Indeed, (a + b) R consists
of the multiples of a + b, whereas aR + bR consists of the sums of a multiple
of a with a multiple of b. Usually there are many more of the latter than of
the former, so (a + b) R is a proper subset of aR + bR.

Proof of the theorem. Since R is a PID, the ideal aR + bR is principal. This means
that aR + bR = cR for some c ∈ R. By part (a) of the above proposition, this c
must then be a gcd of a and b. So a and b have a gcd.

Similarly, a and b have an lcm.

This proof is, of course, non-constructive, since it relies on a magical machine
that writes every ideal of R as cR for some c ∈ R, and this cannot be done
algorithmically even for R = Z. However, for many rings R, we can make
the theorem constructive, by finding algorithms to write sums aR + bR and
intersections aR ∩ bR in the form cR. One important class of such algorithms is
the extended Euclidean algorithm, which finds a gcd and an lcm whenever R
is a Euclidean ring. In the notes, I do this in some detail (§2.13.3). Let me just
mention the main idea: To find gcd (a, b), we replace (a, b) by (b, r), where r is
a remainder upon division of a by b (that is, r is the r in a pair (q, r) satisfying
a = qb + r and r = 0 or N (r) < N (b), as required in the definition of a
Euclidean ring). This computes a gcd of a and b. Then, to find the lcm, we use
the formula

gcd (a, b) · lcm (a, b) ∼ ab,
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which holds for any two elements a, b of an integral domain R that have a gcd
and an lcm (see Winter 2021 homework set #2 Exercise 3).

Last time, we saw a bunch of Euclidean domains, such as Z [i]. So we obtain
algorithms for gcds and lcms in all of these Euclidean domains.

1.14.7. Irreducible and prime elements

Now let us generalize the prime numbers from the ring Z to an arbitrary com-
mutative ring R. There are two ways to do so, both useful. They start from two
different characterizations of prime numbers in Z:

1. The prime numbers are the integers p > 1 that have no positive divisors
apart from 1 and p. In other words, they are the integers p > 1 such that
whenever p is written as p = ab for a, b ∈ Z, at least one of a and b must
be ±1.

2. They are the integers p > 1 with the property that if p | ab, then p | a or
p | b.

You know that these two characterizations are equivalent... for numbers, but
not for elements of a general commutative ring! To generalize them to arbitrary
rings, we have to treat them separately. The “charactierzation-1” prime num-
bers are called irreducible elements, whereas the “charactierzation-2” prime
numbers are called prime elements. In other words:

Definition 1.14.14. Let R be a commutative ring. Let r ∈ R be nonzero and
not a unit.

(a) We say that r is irreducible (in R) if it has the following property:
Whenever a, b ∈ R satisfy r = ab, at least one of a and b is a unit.

(b) We say that r is prime (in R) if it has the following property: Whenever
a, b ∈ R satisfy r | ab, we have r | a or r | b.

Note that we have replaced the condition “p > 1” by “r is nonzero and not
a unit”. This preserves the spirit of the requirement (we don’t want to count 0
and 1 as primes), but allows for a bit more “freedom of association”, meaning
that with any irreducible or prime element, all elements associate to it will also
be irreducible or prime. In particular, the integer −2, while not a prime number
by definition, does count as a prime element of Z.

When R = Z, then the prime and the irreducible elements are exactly the
prime numbers and their negatives:

Proposition 1.14.15. Let r ∈ Z. Then, we have the following equivalence:

(r is prime in Z) ⇐⇒ (r is irreducible in Z) ⇐⇒ (|r| is a prime number) .
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Proof. Easy.

Thus, in the ring Z, being prime and being irreducible is the same thing. In
an arbitrary integral domain, this is not always the case. For instance:

• In the ring Z
[√

−5
]
, the element 3 is irreducible but not prime.

• Here is an example using polynomials: Consider the univariate polyno-
mial ring

Q [x] =
{

a0 + a1x + a2x2 + · · ·+ anxn | ai ∈ Q
}

and its subring

R =
{

a0 + a2x2 + · · ·+ anxn | ai ∈ Q
}

=
{

f ∈ Q [x] | the x1-coefficient of f is 0
}

(yes, this is a subring – check it!). The element x3 of R is irreducible, but
not prime: x3 | x2x2 but x3 ∤ x2.

The converse, however, never happens: A prime element is always irre-
ducible.

More on this next time.
The following connection between “irreducible” and “prime” has already

been noticed in Lecture 16:

Proposition 1.14.16. Let R be an integral domain. Then, any prime element
of R is irreducible.

In a PID (= integral domain where each ideal is principal), this goes both
ways:

Proposition 1.14.17. Let R be a PID (for example, a Euclidean domain). Let
r ∈ R. Then, r is prime if and only if r is irreducible.

One proof of this proposition is given in the text (Proposition 2.15.4); we shall
give another. This latter proof will rely on the following two general lemmas:

Lemma 1.14.18. Let R be an integral domain. Let a, b, c ∈ R be such that
a ̸= 0. If ab | ac, then b | c.

Proof. Assume that ab | ac. In other words, ac = abr for some r ∈ R. Consider
this r. We have a (c − br) = ac − abr = 0 (since ac = abr). Since R is an integral
domain, we thus conclude that c − br = 0 (since a ̸= 0). In other words, c = br.
This entails that b | c. Thus, Lemma 1.14.18.
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Lemma 1.14.19. Let R be an integral domain. Let a, b, c ∈ R be such that
a ̸= 0. Assume that the elements ab and ac have a gcd g. Then, the elements
b and c have a gcd h such that g = ah.

Proof. The element a is a common divisor of ab and ac (obviously), and thus
must divide g (by the definition of a gcd, since g is a gcd of ab and ac). In other
words, there exists some r ∈ R such that g = ar. Consider this r.

Since g is a gcd of ab and ac, we have g | ab and g | ac. From ar = g | ab, we
obtain r | b (by Lemma 1.14.18, applied to r and b instead of b and c). Similarly,
r | c. Thus, r is a common divisor of b and c.

Now, let s be any common divisor of b and c. Then, s | b, so that b = sb′ for
some b′ ∈ R. This b′ then satisfies a b︸︷︷︸

=sb′
= asb′, so that as | ab. Similarly, as | ac.

Hence, as is a common divisor of ab and ac. Therefore, as divides g (since g is
a gcd of ab and ac). In other words, as | g = ar. Hence, Lemma 1.14.18 (applied
to s and r instead of b and c) yields s | r.

Forget that we fixed s. We thus have shown that any common divisor s of b
and c satisfies s | r. In other words, any common divisor of b and c divides r.
Since we also know that r is a common divisor of b and c, we thus conclude
that r is a gcd of b and c (by the definition of a gcd). Hence, the elements b and
c have a gcd h such that g = ah (namely, h = r), since we know that g = ar.
This proves Lemma 1.14.19.

Proof of Proposition 1.14.17. =⇒: This follows from Proposition 1.14.16.
⇐=: Assume that r is irreducible. We must prove that r is prime.
So let a, b ∈ R be such that r | ab. We must show that r | a or r | b.
If a = 0, then this is obvious (since r | 0). Thus, we WLOG assume that a ̸= 0.
Theorem 1.14.11 in Lecture 16 shows that ab and ar have a gcd in R. Let g be

this gcd. Then, g | ab and g | ar.
We have r | ab (by assumption) and r | ar (obviously). Hence, r is a common

divisor of ab and ar. Thus, r divides g (by the definition of a gcd, since g is a
gcd of ab and ar). That is, r | g.

Lemma 1.14.19 (applied to c = r) yields that the elements b and r have a gcd
h such that g = ah. Consider this h. Since h is a gcd of b and r, we have h | b
and h | r.

In particular, h | r. In other words, there exists some k ∈ R such that r = kh.
Consider this k.

So we have kh = r. Since r is irreducible, this entails that at least one of the
elements k and h is a unit (by the definition of “irreducible”). Thus, we are in
one of the following cases:

Case 1: The element k is a unit.
Case 2: The element h is a unit.1

1Cases 1 and 2 cannot overlap, because if k and h were both units, then their product kh = r
would be a unit as well, but r is irreducible and thus not a unit. But we don’t care about
this, since cases in a proof can overlap.
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Let us first consider Case 1. In this case, the element k is a unit. Hence, k has
an inverse k−1. From r = kh, we thus obtain h = rk−1, so that r | h | b. Thus,
r | a or r | b. So we are done in Case 1.

Let us next consider Case 2. In this case, the element h is a unit. Hence, h
has an inverse h−1. From g = ah, we thus obtain a = gh−1. Thus, g | a. Hence,
r | g | a. Thus, r | a or r | b. So we are done in Case 2.

Hence, in both cases, we have shown that r | a or r | b. As we explained, this
completes the proof of the “⇐=” direction of Proposition 1.14.17.

1.14.8. Irreducible factorizations and UFDs

The following theorem generalizes the classical “Fundamental Theorem of Arith-
metic” (i.e., the fact that each positive integer has a prime factorization, which
is unique up to reordering the factors):

Theorem 1.14.20. Let R be a PID. Then, any nonzero element r ∈ R can be
decomposed (up to associates) into a product of irreducible (i.e., prime) ele-
ments of R. Moreover, this product is unique up to order and associateness.

In detail: Let r ∈ R be a nonzero element. Then, there is a tuple
(p1, p2, . . . , pn) of irreducible (i.e., prime) elements of R such that

r ∼ p1p2 · · · pn.

If (p1, p2, . . . , pn) and (q1, q2, . . . , qm) are two such tuples, then (p1, p2, . . . , pn)
can be obtained from (q1, q2, . . . , qm) by reordering the entries and replacing
them by associate entries.

Proof. See a textbook, e.g., [?, §8.3, Theorem 14] or [?, Theorem 8.15]. Just a few
words about the proof:

Uniqueness is proved just as for integers.
Existence is tricky: Just as for integers, you start with r and keep factoring

it further and further (avoiding unit factors) until no more divisors remain.
But you have to argue that this factoring process won’t go on forever, and this
is no longer as easy as for integers. (It is easy when R has a “multiplicative
norm”, i.e., a map N : R → N such that N (a) < N (ab) whenever a, b ∈ R are
nonzero and b is not a unit. For example, if R = Z [i], then the Euclidean norm
N : Z [i] → N defined by N (a + bi) = a2 + b2 has this property.)

Integral domains R in which the claim of Theorem 1.14.20 holds are called
UFDs (short for unique factorization domains). This class is wider than the
PIDs. For instance, the polynomial rings Z [x] (the ring of all univariate poly-
nomials in x with integer coefficients) and Q [x, y] (the ring of all polynomials
in two variables x and y with rational coefficients) are UFDs but not PIDs.

We will not focus on UFDs in this course, but we briefly note that they have
some (but not all) of the nice properties of PIDs. In particular, in a UFD, any
two elements have a gcd and an lcm. (But we shall not prove this.)
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1.14.9. A synopsis

The following corollary combines several results we have seen above in a con-
venient hierarchy:

Corollary 1.14.21. We have

{fields} ⊆ {Euclidean domains} ⊆ {PIDs} ⊆ {UFDs}
⊆ {integral domains} ⊆ {commutative rings} ⊆ {rings} .

Let us illustrate this hierarchy in a symbolic picture:

rings
commutative rings

integral domains

UFDs
PIDs

Euclidean domains
fields

All the “⊆” signs in Corollary 1.14.21 are strict inclusions; let us briefly recall
some examples showing this:

• The rings Z and Z [i] and Z
[√

−2
]

and Z
[√

2
]

and the polynomial ring
Q [x] are Euclidean domains, but not fields.

• The ring Z [α] for α =
1 +

√
−19

2
is a PID, but not a Euclidean domain.

• The polynomial rings Q [x, y] and Z [x] are UFDs, but not PIDs.

• The rings Z [2i] and Z
[√

−3
]

are integral domains, but not UFDs.

• The ring Z/6 ∼= Z/2 × Z/3 is a commutative ring, but not an integral
domain.

• The matrix ring Q2×2 and the ring of quaternions H are not commutative.



Math 332 Winter 2025 diary, version March 14, 2025 page 78

1.15. Application: Fermat’s p = x2 + y2 theorem

As an application of some of the above, we will show a result of Fermat:

Theorem 1.15.1 (Fermat’s two-squares theorem). Let p be a prime number2

such that p ≡ 1 mod 4. Then, p can be written as a sum of two perfect
squares.

For example,

5 = 12 + 22;

13 = 22 + 32;

17 = 12 + 42;

29 = 22 + 52.

I will prove Theorem 1.15.1 using rings (specifically, the ring Z/p of residue
classes and the ring Z [i] of Gaussian integers). The first ingredient of the proof
is a curious fact about primes, known as Wilson’s theorem:

Theorem 1.15.2 (Wilson’s theorem). Let p be a prime. Then, (p − 1)! ≡
−1 mod p.

Proof. We must show that (p − 1)! = −1 in Z/p.
In Z/p, we have

(p − 1)! = 1 · 2 · · · · · (p − 1) = 1 · 2 · · · · · p − 1. (1)

Recall that every ring R has a group of units, which is denoted by R×. (Its
elements are the units of R, and its operation is multiplication.) Since the ring
Z/p is a field (because p is prime), its group of units (Z/p)× consists of all
nonzero elements of Z/p. Thus,

(Z/p)× =
{

1, 2, . . . , p − 1
}

,

with all the p − 1 elements 1, 2, . . . , p − 1 being distinct. Hence, the product of
all units of Z/p is

∏
a∈(Z/p)×

a = 1 · 2 · · · · · p − 1.

Comparing this with (1), we find

(p − 1)! = ∏
a∈(Z/p)×

a. (2)

2in the sense of classical number theory, i.e., an integer p > 1 with no positive divisors other
than 1 and p
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Now, recall that any unit a of Z/p (or of any other ring) has an inverse a−1,
which is also a unit and satisfies

(
a−1)−1

= a. Thus, the units of Z/p can be
paired up in pairs

{
a, a−1} consisting of a unit a and its inverse a−1. The only

units left unpaired will be the units that are their own inverses. These units
are the elements a ∈ Z/p that satisfy a2 = 1, and a moment of thought reveals
that they are 1 and −1 (because a2 = 1 entails 0 = a2 − 1 =

(
a − 1

) (
a + 1

)
,

and since Z/p is an integral domain, this equality can only hold if either a − 1
or a + 1 is 0). Thus, all units other than 1 and −1 are paired. Hence, in the
product of all units of Z/p, we can pair up each factor other than 1 and −1
with its inverse:

∏
a∈(Z/p)×

a =
(

a1 · a−1
1

)
︸ ︷︷ ︸

=1

·
(

a2 · a−1
2

)
︸ ︷︷ ︸

=1

· · · · ·
(

ak · a−1
k

)
︸ ︷︷ ︸

=1

· 1 · −1 = −1.

Hence, (2) can be rewritten as (p − 1)! = −1, which means precisely that
(p − 1)! ≡ −1 mod p. This proves Theorem 1.15.2.

(Caution: The above argument breaks down a bit for p = 2, but this case is
trivial anyway.)

Corollary 1.15.3. Let p be an odd prime (i.e., a prime distinct from 2). Let

u =
p − 1

2
∈ N. Then, u!2 ≡ − (−1)u mod p.

Proof. Theorem 1.15.2 yields

(p − 1)! ≡ −1 mod p.
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However,

(p − 1)! = 1 · 2 · · · · · (p − 1)

=

(
1 · 2 · · · · · p − 1

2

)
·


(

p − 1
2

+ 1
)

︸ ︷︷ ︸
≡−

p − 1
2

mod p

· · · · · (p − 2)︸ ︷︷ ︸
≡−2 mod p

· (p − 1)︸ ︷︷ ︸
≡−1 mod p


≡
(

1 · 2 · · · · · p − 1
2

)
·
((

− p − 1
2

)
· · · · · (−2) · (−1)

)
= (1 · 2 · · · · · u) · ((−u) · · · · · (−2) · (−1))︸ ︷︷ ︸

=(−1)u·(u·····2·1)
=(−1)u·(1·2·····u)

(
since

p − 1
2

= u
)

= (1 · 2 · · · · · u) · (−1)u · (1 · 2 · · · · · u)

= (−1)u ·

1 · 2 · · · · · u︸ ︷︷ ︸
=u!

2

= (−1)u · u!2 mod p,

so that
(−1)u · u!2 ≡ (p − 1)! ≡ −1 mod p.

Multiplying both sides of this congruence by (−1)u, we obtain

u!2 ≡ − (−1)u mod p.

This proves Corollary 1.15.3.

Corollary 1.15.4. Let p be a prime such that p ≡ 1 mod 4. Let u =
p − 1

2
∈ N.

Then, u!2 ≡ −1 mod p.

Proof. Apply Corollary 1.15.3, and observe that (−1)u = 1 (since p ≡ 1 mod 4,
so that u is even). Corollary 1.15.4 follows.

This corollary shows that p | u!2 + 1 = (u + i) (u − i) in Z [i].
If p was prime in Z [i], then this would entail that p | u + i or p | u − i (by

the definition of “prime”), but this is not the case, since
u + i

p
=

u
p
+

1
p

i /∈ Z [i]

and
u + i

p
=

u
p
− 1

p
i /∈ Z [i]. So p (while prime in Z) cannot be a prime in

Z [i]. Since Z [i] is a PID, this entails that p is not irreducible either (since
prime = irreducible in a PID). In other words, we can factor p as p = αβ for two
Gaussian integers α, β ∈ Z [i] that are both non-units.
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How do we make anything useful out of this? We recall our favorite Eu-
clidean norm N on Z [i]. This is the map

N : Z [i] → N,

a + bi 7→ a2 + b2.

It has some nice properties:

Proposition 1.15.5. For any α, β ∈ Z [i], we have N (αβ) = N (α) N (β).

Proof. Straightforward by computation. Or observe that N (z) = |z|2 and |αβ| =
|α| |β|.

Corollary 1.15.6. If α | β in Z [i], then N (α) | N (β).

Proof. The assumption α | β means β = αγ, hence N (β) = N (αγ) = N (α) N (γ).

Corollary 1.15.7. The units of Z [i] are exactly the elements α ∈ Z [i] with
norm N (α) = 1, and these elements are precisely 1, i, −1, −i.

Proof. If α ∈ Z [i] is a unit, then α | 1, so the previous corollary yields N (α) |
N (1) = 1, and therefore N (α) = 1 (since N (α) is a nonnegative integer). If
N (α) = 1, then α is one of 1, i, −1, −i, by a fairly simple case analysis.
Finally, if α is one of 1, i, −1, −i, then α is a unit, since you can just exhibit its
inverse.

Now all is in place for proving Fermat’s two-squares theorem:

Proof of Fermat’s two-squares theorem. As we showed above, p is not irreducible
in Z [i]. But p is nonzero and not a unit (e.g., by the last corollary). So p = αβ
for two non-units α, β ∈ Z [i] (by the definition of “irreducible”). Consider
these α, β.

From p = αβ, we obtain N (p) = N (αβ) = N (α) N (β). So N (α) N (β) =
N (p) = p2. Thus, N (α) and N (β) are two nonnegative divisors of p2 that
multiply together to form p2. Moreover, these two divisors are not 1 (by the
last corollary), since α and β are not units. Thus, N (α) and N (β) must be p
and p. In particular, N (α) = p. Writing α as a+ bi, this means that p = N (α) =
a2 + b2, qed.

To recap, this proof proceeded roughly as follows:

• We showed that there is some perfect square that is ≡ −1 mod p. (This
square was u!2, but we don’t need the details.)

• We used this to obtain a product of two Gaussian integers that is divis-
ible by p without either factor being divisible by p. (Specifically: x2 ≡
−1 mod p, then p | (x + i) (x − i) but p ∤ x + i and p ∤ x − i.)
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• We concluded that p cannot be prime in Z [i], hence cannot be irreducible,
so p = αβ for some non-units α, β.

• We showed that N (α) = p because there isn’t much freedom left for N (α)
and N (β) when p = αβ.

Note that one thing we learned is that a prime in Z does not have to remain
a prime in Z [i].

Is the above proof constructive? Does it give an algorithm for finding a, b that
satisfy p = a2 + b2 ? Yes, though we need to read the proof correctly (including,
most importantly, the proof of “not prime =⇒ not irreducible”) to really bring
out the algorithmic content. That said, the algorithm it gives for computing a
and b is probably not the best one.

Fermat’s two-squares theorem is just the tip of an iceberg, which was being
explored for the last few centuries and is still less than fully mapped. The first
step beyond it is to extend the theorem to non-primes:

Theorem 1.15.8. Let n be a positive integer with prime factorization n =

2a pb1
1 pb2

2 · · · pbk
k , where p1, p2, . . . , pk are distinct primes > 2, and where

a, b1, b2, . . . , bk are nonnegative integers. Then:
(a) The number n can be written as a sum of two perfect squares if and

only if the following condition holds: For each i ∈ {1, 2, . . . , k} satisfying
pi ≡ 3 mod 4, the exponent bi is even.

(b) If this condition holds, then the number of ways to write n as a sum
of two perfect squares (i.e., the number of pairs (x, y) ∈ Z × Z such that
n = x2 + y2) is

∏
i∈{1,2,...,k};
pi≡1 mod 4

(bi + 1) .

This can also be proved using Z [i]. See my 2019 notes for the details (or
[Dummit/Foote]).

More about decompositions of numbers into sums of perfect squares can be
found in various texts referenced in the notes. Let me shift to a slight variation
of the problem, where we replace x2 + y2 by x2 + 2y2 or x2 + 3y2 or x2 + xy+ y2

or x2 − 2y2 or many other such expressions. A whole book has been written
about such questions [Cox: Primes of the form x2 + ny2, 3rd edition 2022]. The
simpler of the questions can be answered with similar methods as above, just
using Z [2i] or Z

[√
−3
]

or similar rings instead of Z [i]. These work well as
long as these rings are PIDs. In harder situations, proofs have been seen using
quadratic forms, elliptic curves, elliptic functions, .... Here is a potpourri of
answers for the forms x2 + ny2 for certain values of n:
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Theorem 1.15.9. Let p be a prime number.
(a) We can write p as p = x2 + y2 with x, y ∈ Z if and only if p = 2 or

p ≡ 1 mod 4.
(b) We can write p as p = x2 + 2y2 with x, y ∈ Z if and only if p ≡

1, 3 mod 8. (The comma means “or”: i.e., we are saying “p ≡ 1 mod 8 or
p ≡ 3 mod 8”.)

(c) We can write p as p = x2 + 3y2 with x, y ∈ Z if and only if p = 3 or
p ≡ 1 mod 3.

(d) We can write p as p = x2 + 4y2 with x, y ∈ Z if and only if p ≡ 1 mod 4.
(e) We can write p as p = x2 + 5y2 with x, y ∈ Z if and only if p ≡

1, 9 mod 20.
(f) We can write p as p = x2 + 6y2 with x, y ∈ Z if and only if p ≡

1, 7 mod 24.
(g) We can write p as p = x2 + 14y2 with x, y ∈ Z if and only if p ≡

1, 9, 15, 23, 25, 39 mod 56 and there exists some integer z satisfying
(
z2 + 1

)2 ≡
8 mod p.

(h) We can write p as p = x2 + 27y2 with x, y ∈ Z if and only if we have
p ≡ 1 mod 3 and there exists some integer z satisfying z3 ≡ 2 mod p.

Cox’s book discusses most of these. Part (d) is a homework exercise. Part (b)
is an exercise in the text. Part (c) can still be done with similar methods, but
is a bit trickier (it requires working not in Z

[√
−3
]

but in the slightly larger
ring of Eisenstein integers). Part (e) is proved using genus theory of quadratic
forms. Part (f) requires class field theory. Parts (g) and (h) are proved using
elliptic functions. Conditions like the ones in part (g) and (h) are unavoidable
for larger coefficients.

We can also ask about sums of more than two squares. Lagrange proved that
every nonnegative integer can be written as a sum of four squares. These days,
one of the shortest proof uses the so-called Hurwitz quaternions.

2. Modules

Roughly speaking, a ring is a system of “number-like objects” that can be
“added” and “multiplied”.

In contrast, a module over a given ring R is a system of “vector-like objects”
that can be “added” and “scaled” (by elements of R). Thus, modules general-
izes vector spaces.

2.1. Definitions and examples
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Convention 2.1.1. We shall fix a ring R for the rest of this section.

2.1.1. Defining modules

Modules come in two forms: left modules and right modules. Let us define the
left ones:

Definition 2.1.2. Let R be a ring. A left R-module (or a left module over R)
means a set M equipped with

• a binary operation + (that is, a map from M × M to M) that is called
addition;

• an element 0M of M that is called the zero element or the zero vector
or just the zero, and will often just be called 0;

• a map from R × M to M that is called the action of R on M, and
is written as multiplication (i.e., we denote the image of a pair (r, m)
under this map as rm or r · m)

such that the following module axioms hold:

• (M,+, 0) is an abelian group.

• The right distributivity law holds: We have (r + s)m = rm + sm for all
r, s ∈ R and m ∈ M.

• The left distributivity law holds: We have r (m + n) = rm + rn for all
r ∈ R and m, n ∈ M.

• The associativity law holds: We have (rs)m = r (sm) for all r, s ∈ R
and m ∈ M.

• We have 0Rm = 0M for all m ∈ M.

• We have r · 0M = 0M for all r ∈ R.

• We have 1m = m for all m ∈ M.

When M is a left R-module, the elements of M are called vectors, while
the elements of R are called scalars.

As the name “left R-module” suggests, there is a mirror notion of “right R-
modules”, in which the action is not a map R × M → M but a map M × R →
M, and its values are denoted by mr rather than rm. Correspondingly, the
associativity law for a right R-module takes the form m (rs) = (mr) s.

When the ring R is commutative, any left R-module M becomes a right R-
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module by setting

mr := rm for all r ∈ R and m ∈ M,

and conversely, any right R-module becomes a left R-module by setting

rm := mr for all r ∈ R and m ∈ M.

For example, the associativity law for a left R-module, (rs)m = r (sm), be-
comes m (rs) = (ms) r. But the associativity law for a right R-module says that
m (rs) = (mr) s. When R is commutative, the two laws are equivalent because
we can apply the former law to s and r instead of r and s and recall that sr = rs.
So left vs. right R-modules over a commutative ring R are “the same objects”
except for notational differences. Not so when R is non-commutative.

If R is not commutative, then the left R-modules cannot be transformed into
right R-modules. However, they can be transformed into right Rop-modules,
where Rop is the opposite ring of R, which is the same ring as R but with
the order of factors in its multiplication flipped. So you can translate between
left modules and right modules at the cost of changing the base ring from R
to Rop. In practice, this allows us to prove theorems about left modules and
automatically conclude that analogous theorems are true for right modules,
as long as these theorems are not particular to a specific ring R but allow for
general R.

When R is commutative, we will often just speak of “R-modules” to mean
left or right R-modules, as we desire (since the two concepts are equivalent).

When R is a field, the R-modules are also known as the R-vector spaces.
These are precisely the vector spaces from linear algebra. However, this case is
not representative of the complexity that R-modules can have when R is not a
field. Vector spaces over a field always have bases and dimensions; in contrast,
R-modules for general R rarely do so. The wilder the ring R is, the less well-
behaved and the more diverse are the R-modules.

Another piece of terminology:

Definition 2.1.3. Let M be a left R-module, and let r ∈ R be a scalar. Then,
the map

M → M,
m 7→ rm

is called scaling by r.

This map is a group morphism from the additive group (M,+, 0) to itself.
Scaling by 1 is the identity map on M, whereas scaling by 0 sends every vector
to the zero vector.
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2.1.2. Defining submodules

Definition 2.1.4. Let M be a left R-module. An R-submodule (or, to be more
precise, a left R-submodule) of M means a subset N of M such that

• N is closed under addition, i.e., we have a + b ∈ N for all a, b ∈ N;

• N is closed under scaling, i.e., we have ra ∈ N for all r ∈ R and a ∈ N;

• N contains zero, i.e., we have 0M ∈ N.

We will soon see that any such R-submodule is also closed under negation, so
it becomes a left R-module in its own right.

All of this applies “mutatis mutandis” to right R-modules.

2.1.3. Examples

• Let R be a ring. Then, R itself becomes a left R-module: Just define the
action to be the multiplication of R. Thus, the elements of R serve both as
the scalars and as the vectors. Scaling is just multiplying.

The R-submodules of this left R-module R are the subsets L of R that are
closed under addition and contain 0 and satisfy ra ∈ L for all r ∈ R and
a ∈ L. These subsets L are called left ideals of R. They differ from the
ideals of R in that they don’t need to satisfy ar ∈ L for all r ∈ R and a ∈ L.
Correspondingly, many rings have a lot more left ideals than ideals (any
ideal is a left ideal, but not vice versa). For example, if R is the matrix
ring Q2×2, then R has only two ideals ({0} and R itself), but lots of left

ideals (e.g., the set
(

0 ∗
0 ∗

)
).

When R is commutative, the left ideals of R are just the ideals of R, so the
notion of R-submodules generalizes that of ideals of a commutative ring.

• Let R be any ring, and let n ∈ N. Then,

Rn := {(a1, a2, . . . , an) | all ai belong to R}

is a left R-module, where addition and scaling are defined entrywise, i.e.,
by setting

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

and
r (a1, a2, . . . , an) = (ra1, ra2, . . . , ran) .

The zero vector of this left R-module is (0, 0, . . . , 0).
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• Let R be any ring, and let n, m ∈ N. Consider the set Rn×m of all n × m-
matrices with entries in R. This set Rn×m is not a ring unless n = m,
but it is always a left R-module, where addition and action are defined
entrywise. For instance, for 2 × 2-matrices, the action is given by

r ·
(

a b
c d

)
=

(
ra rb
rc rd

)
,

and similarly for the other sizes. The zero vector is the zero matrix.

The set Rn×m is also a right R-module in a similar way.

According to our above definition, this allows us to refer to matrices as
“vectors”. This is a rather general notion of a vector that relies not on
what a vector is but on what we can do with it (add and scale and take
the zero).

• Just as we defined the left R-module Rn (consisting of n-tuples) for any
n ∈ N, we can define a left R-module “R∞” consisting of all infinite
sequences of elements of R. The proper name of this module is RN.
Explicitly, RN is defined to be the left R-module

{(a0, a1, a2, . . .) | all ai belong to R} ,

whose addition and action are defined entrywise.

This left R-module RN has an R-submodule

R(N) =
{
(a0, a1, a2, . . .) ∈ RN | only finitely many i ∈ N satisfy ai ̸= 0

}
.

You can check that this is indeed an R-submodule of RN. For instance,
for R = Q, we have

(1, 1, 1, . . .) ∈ RN \ R(N);3, 2, 0, 5, 0, 0, 0, . . .︸ ︷︷ ︸
only zeroes here

 ∈ R(N);

1, 0, 1, 0, 1, 0, 1, 0, . . .︸ ︷︷ ︸
1’s and 0’s taking turns

 ∈ RN \ R(N);

(
1,

1
2

,
1
4

,
1
8

,
1

16
, . . .

)
∈ RN \ R(N).

Note that the zero vector of an R-module is uniquely determined by its ad-
dition, so we don’t have to provide it.
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2.1.4. Direct products

Fix a ring R.
Most of our above examples of R-modules involve tuples on which addition

and action work entrywise. There is a general concept for this:

Definition 2.1.5. Let n ∈ N, and let M1, M2, . . . , Mn be any n left R-modules.
Then, the Cartesian product M1 × M2 × · · · × Mn becomes a left R-module
as well, where addition and action are defined entrywise: e.g., the action is
given by

r · (m1, m2, . . . , mn) = (rm1, rm2, . . . , rmn) .

This left R-module M1 × M2 × · · · × Mn is called the direct product of
M1, M2, . . . , Mn.

More generally, we can define direct products of arbitrary families of R-
modules, just as for rings. The resulting products are called ∏

i∈I
Mi. (See §3.3.1

in the notes for the details.)
A particular case is of particular importance:

Definition 2.1.6. Let M be any left R-module. Let n ∈ N. Then, we set

Mn := M × M × · · · × M︸ ︷︷ ︸
n times

.

In particular, for M = R, we recover Mn = Rn from the above examples.

2.1.5. Restriction of scalars

In linear algebra, you often consider R-vector spaces and C-vector spaces. One
thing that you probably have seen is this: Any C-vector space V becomes an
R-vector space if we simply forget how to scale by non-real numbers. This is
called restriction, since we are just restricting the action C × V → V to a map
R × V → V.

Generalizing this idea to arbitrary modules gives the following operation:

• If R is a subring of a ring S, then any left S-module M becomes a left
R-module, by restricting the action S × M → M to a map R × M → M.
Roughly speaking, we simply forget how to scale by scalars in S \ R.

In particular, S itself (being a left S-module) becomes a left R-module. In
this case, the action of R on S is just a restriction of the multiplication of
S.
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• More generally, if R and S are any two rings, and if f : R → S is a ring
morphism, then any left S-module M becomes a left R-module, where the
action is given by

r · m = f (r) · m for all r ∈ R and m ∈ M.

This is called restriction of scalars.

In particular, S itself becomes a left R-module (since S is a left S-module,
by multiplication). Some examples:

– Any quotient ring R/I of a ring R by some ideal I becomes a left
R-module, because the canonical projection π : R → R/I (sending
each r to r = r + I) is a ring morphism. Explicitly, the action of R on
R/I is given by

r · u = π (r) · u = r · u = ru for all r, u ∈ R.

– Another, weirder particular case: I claim that the abelian group Z/5
becomes a Z [i]-module if we define the action by

(a + bi) · m = a + 2b · m for all a + bi ∈ Z [i] and m ∈ Z/5.

To understand this properly, we notice that there is a ring morphism

f : Z [i] → Z/5,

a + bi 7→ a + 2b,

which is a ring morphism because 22
= −1 in Z/5 (check this!). The

above Z [i]-module structure on Z/5 is simply the one obtained by
restriction of scalars from using this ring morphism f .

There is also a second Z [i]-module structure on Z/5, given by

(a + bi) · m = a − 2b · m for all a + bi ∈ Z [i] and m ∈ Z/5.

When we speak of the Z [i]-module Z/5, we must be specific which
one we are talking about.

2.2. A couple generalities

Next, we shall show a few general properties of modules. Again, fix a ring R.

2.2.1. Negation and subtraction
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Proposition 2.2.1. Let R be a ring. Let M be a left R-module. Then, (−1) a =
−a for each a ∈ M.

Proof. Let a ∈ M. Then, 1a = a (by the module axioms). Thus,

(−1) a + a︸︷︷︸
=1a

= (−1) a + 1a = ((−1) + 1)︸ ︷︷ ︸
=0

a (by distributivity)

= 0a = 0 (by the module axioms) .

In other words, (−1) a is an additive inverse to a. But that just means it is
−a.

Proposition 2.2.2. Let R be a ring. Let M be a left R-module. Let r ∈ R and
m ∈ M. Then,

(−r)m = − (rm) = r (−m)

and
(−r) (−m) = rm.

Proof. LTTR.

Proposition 2.2.3. Let R be a ring. Let M be a left R-module. Then, any
R-submodule of M is a subgroup of the additive group (M,+, 0).

Proof. Let N be an R-submodule of M. Then, N is closed under addition and
under scaling and thus also under negation (since (−1) a = −a shows that
negation is the same as scaling by −1). Moreover, it contains zero. So it is a
subgroup.

Proposition 2.2.4. Let R be a ring. Let M be a left R-module. Then, an R-
submodule of M is the same as a subgroup of the additive group (M,+, 0)
that is closed under scaling by every scalar r ∈ R.

Proof. Follows from the above.

Proposition 2.2.5. Let R be a ring. Let M be a left R-module. Then, any R-
submodule of M becomes a left R-module in its own right (just like a subring
of a ring becomes a ring itself).

Proof. Follows from the above.

We also have “distributivity laws for subtraction”:

Proposition 2.2.6. Let R be a ring. Let M be a left R-module. Then:
(a) We have (r − s)m = rm − sm for all r, s ∈ R and m ∈ M.
(b) We have r (m − n) = rm − rn for all r ∈ R and m, n ∈ M.

Proof. LTTR.
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2.2.2. Finite sums

Finite sums ∑
s∈S

as of elements of an R-module are defined just as they are in a

ring. Finite products, of course, cannot be defined, since there is no multiplica-
tion on an R-module. The generalized distributivity laws

(r1 + r2 + · · ·+ rn) a = r1a + r2a + · · ·+ rna and
r (a1 + a2 + · · ·+ an) = ra1 + ra2 + · · ·+ ran

hold in every left R-module A.
Since the associativity axiom says (rs)m = r (sm) for all r, s ∈ R and m ∈ M,

we can write both sides as rsm without parentheses.

2.2.3. Principal submodules

The simplest way to construct submodules of a module is the following:

Proposition 2.2.7. Let R be a ring. Let a be a central element of R. Let M be
a left R-module. Then,

aM := {am | m ∈ M}

is an R-submodule of M.
In particular, 0M = {0M} and 1M = M are R-submodules of M.

Proof. Closed under addition: am + an = a (m + n).
Closed under scaling: r · am = ram = arm since a is central.
Contains zero: 0 = a0M.

Every R-submodule N of M lies between 0M and 1M, meaning that 0M ⊆
N ⊆ 1M.

If M = R, then the above submodules aM are just the principal ideals aR.

2.3. Abelian groups as Z-modules

Let us now understand Z-modules in particular.
Recall how the product of two integers is defined: Multiplication of nonneg-

ative integers is defined by

nm = m + m + · · ·+ m︸ ︷︷ ︸
n times

.

More precisely, this formula defines nm for all m ∈ Z and all n ∈ N. Then, to
define nm for negative n, we set

nm = − (m + m + · · ·+ m)︸ ︷︷ ︸
−n times

.
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So, altogether, nm is defined by

nm =


m + m + · · ·+ m︸ ︷︷ ︸

n times

, if n ≥ 0;

− (m + m + · · ·+ m)︸ ︷︷ ︸
−n times

, if n < 0.

The same definition can be adapted to any abelian group:

Proposition 2.3.1. Let A be an abelian group, written additively (i.e., the
operation on A is denoted by +, and the neutral element by 0). Then, for any
n ∈ Z and a ∈ A, we define

na =


a + a + · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

− (a + a + · · ·+ a)︸ ︷︷ ︸
−n times

, if n < 0.

Thus, we have defined a map

Z × A → A,
(n, a) 7→ na.

We shall refer to this map as the action of Z by repeated addition.
(a) The group A becomes a Z-module, where we take this map as the

action of Z on A.
(b) This is the only Z-module structure on A. That is, if A is any Z-

module, then the action of Z on A is given by the above formula for na (and
therefore uniquely determined by the abelian group structure on A).

(c) The Z-submodules of A are precisely the subgroups of A.

Proof. See the text (§3.4).

The proposition reveals what Z-modules really are: They are just abelian
groups with a more convenient “user interface”. The “scaling by repeated ad-
dition” structure is inherent in the group, and by making the group into a
Z-module, you are “exposing” it for easier use.

In contrast, for a typical ring R, the R-modules have much more structure
than the underlying abelian groups. The R-action on an R-module M is rarely
ever determined by the addition on M. That this happens for R = Z is an
exception.

That said, Z is not the only exception. Another case where the R-module
structure is uniquely determined by the addition is the case R = Q. The Q-
modules are also known as the Q-vector spaces (since Q is a field), and again
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the action of Q on such a module is uniquely determined by its addition: If a
is a vector in a Q-module M, and if

n
m

is a rational number, then

n
m

· a = the unique vector b such that mb = na.

Thus, any abelian group becomes a Q-module in at most one way (there is
no freedom in choosing the action). However, not every abelian group can be
made into a Q-module in the first place! For example, Z/2 cannot be made
into a Q-module, because if it did, then

1
2
·
(
2 · 1

)︸ ︷︷ ︸
=0

=
1
2
· 0 = 0

would equal
1
2
·
(
2 · 1

)
=

(
1
2
· 2
)

︸ ︷︷ ︸
=1

·1 = 1 · 1 = 1.

Thus, we see that

• any abelian group can be turned into a Z-module, and in a unique way;

• not every abelian group can be turned into a Q-module, but when it can
be, this is also unique.

There is actually a characterization of abelian groups that can be turned into
Q-modules: they are the uniquely divisible abelian groups, i.e., those abelian
groups A such that for each positive integer n and each a ∈ A, there is a unique
b ∈ A such that a = nb.

What about R-modules (aka R-vector spaces)? Again, not every abelian
group can be made into an R-module (for instance, Q is not an R-module).
Moreover, uniqueness is not a given either: In fact, the action of R on an R-
module is never uniquely determined by the addition (unless the R-module
is trivial, i.e., just contains a single vector). Likewise, the action of Z [i] on a
Z [i]-module is not uniquely determined by the addition (as we already saw
above).

2.4. Module morphisms

2.4.1. Definition

Ring morphisms are maps between rings that respect the defining features of a
ring (+, ·, 0, 1).

Module morphisms play a similar role for modules:
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Definition 2.4.1. Let R be a ring. Let M and N be two left R-modules.
(a) A left R-module morphism (aka left R-linear map) from M to N means

a map f : M → N tha

• respects addition – i.e., satisfies f (a + b) = f (a) + f (b) for all a, b ∈
M;

• respects scaling – i.e., satisfies f (ra) = r f (a) for all r ∈ R and a ∈ M;

• respects the zero – i.e., satisfies f (0M) = 0N.

We can drop the word “left” and just say “R-linear map” or “R-module
morphism”.

(b) A left R-module isomorphism from M to N means an invertible R-
module morphism f : M → N whose inverse f−1 : N → M is also an
R-module morphism. (The latter part is actually redundant, as we will soon
see.)

(c) The left R-modules M and N are said to be isomorphic if there exists a
left R-module isomorphism f : M → N. In this case, we write M ∼= N.

(d) Everything is defined analogously for right R-modules.

2.4.2. Simple examples

Here are some examples of R-module morphisms:

• When F is a field, the F-module morphisms are just the F-linear maps you
know from linear algebra.

• Let k ∈ Z. The map Z → Z, a 7→ ka is a Z-module morphism.

• More generally: Let R be a ring. Let k be a central element of R. Let M
be any left R-module. Then, the map

M → M,
a 7→ ka

is a left R-module morphism. (We note that k needs to be central in order
for this map to respect scaling.)

• Let R be a ring. Let n ∈ N. For any i ∈ {1, 2, . . . , n}, the map

πi : Rn → R,
(a1, a2, . . . , an) 7→ ai

(which sends each n-tuple to its i-th entry) is a left R-module morphism.
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Similar things hold for direct products more generally: Let M1, M2, . . . , Mn
be any n left R-modules. Then, for any i ∈ {1, 2, . . . , n}, the map

πi : M1 × M2 × · · · × Mn → Mi,
(a1, a2, . . . , an) 7→ ai

is a left R-module morphism.

• If M and N are two left R-modules, then the map

M × N → N × M,
(m, n) 7→ (n, m)

is a left R-module isomorphism.

The Z-module morphisms (i.e., the Z-linear maps) are just the morphisms of
abelian groups:

Proposition 2.4.2. Let M and N be two Z-modules. Then, the Z-module
morphisms from M to N are precisely the group morphisms from (M,+, 0)
to (N,+, 0).

Proof. Easy.

2.4.3. Ring morphisms as module morphisms

Here is one more source of R-module morphisms:

• Let R and S be two rings. Let f : R → S be a ring morphism.

As we observed a couple lectures ago, this morphism f makes S into a
left R-module by the rule

rs = f (r) · s for all r ∈ R and s ∈ S

(“restriction of scalars”).

It is now easy to see that f is a left R-module morphism from R to S. For
instance, it respects scaling because

f (ra) = r f (a) for all r ∈ R and a ∈ R

(since f is a ring morphism, so f (ra) = f (r) · f (a) = r f (a) by the defini-
tion of the action of R on S).

Here is a specific example: There is a ring morphism

f : C → C,
a + bi 7→ a − bi (for all a, b ∈ R) .
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This morphism f is called complex conjugation (geometrically, it flips the
plane upside down, i.e., reflects it across the x-axis); the image f (z) of a
z ∈ C is called z.

Obviously, C is a C-module, by multiplication. However, we can define a
second C-module structure on C, which is given by restriction of scalars
via the morphism f : C → C. This second structure is explicitly given by

r ⇀ s = f (r)︸︷︷︸
=r

·s = r · s for any r, s ∈ C,

where ⇀ is the symbol for the new action (the addition is the same as in
the usual C).

Let me denote this new C-module by C. The map f : C → C is not C-
linear as a map from C to C, but it is C-linear as a map from C to C (or
vice versa).

We can play this game more generally: If M is any C-module (= C-vector
space), then we can define a second C-module structure on M by restrict-
ing the C-module M via the complex conjugation map f . We call this
second C-module M. As an additive group, it is just M, but its action is
given by

r ⇀ s = r · s for any r, s ∈ C.

You can think of M as a “mirror version” of M; it consists of the same
vectors as M but “sees the scalars through the looking glass”.

If M and N are two C-modules, then a map g : M → N is said to be anti-
linear (or conjugate-linear) if it is a C-linear map from M to N. Explicitly,
this means that g has the following properties:

g (a + b) = g (a) + g (b) for all a, b ∈ M;
g (ra) = rg (a) for all r ∈ C and a ∈ M;
g (0) = 0.

For example, the complex conjugation map f is an antilinear map from C

to C (or a linear map from C to C).

For instance, the Hermitian dot product

Cn × Cn → C,


v1
v2
...

vn

 ,


w1
w2
...

wn


 7→

n

∑
k=1

vkwk

is antilinear in its first argument and linear in its second. Such maps are
called sesquilinear, and include all Hermitian forms.
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2.4.4. General properties of linearity

Fix a ring R. The following facts about R-module morphisms are analogues of
known facts about group and ring morphisms:

Proposition 2.4.3. Any invertible left R-module morphism is a left R-module
isomorphism.

Proposition 2.4.4. A composition of two left R-module morphisms is again
a left R-module morphism.

Proposition 2.4.5. A composition of two left R-module isomorphisms is
again a left R-module isomorphism.

Proposition 2.4.6. The inverse of a left R-module isomorphism is a left R-
module isomorphism.

Proposition 2.4.7. The relation ∼= (between left R-modules) is an equivalence
relation.

Again, there is an isomorphism principle: Any intrinsic property of an R-
module M (i.e., any property that does not depend on what the elements of M
“are”) automatically holds for any R-module isomorphic to M.

Everything we say about left R-modules holds equally well for right Rop-
modules, and thus for right R-modules if R is allowed to be arbitrary (since
Rop op = R).

2.4.5. Kernels and images

Just like ring morphisms, module morphisms have kernels and images.
Again, we fix a ring R.

Definition 2.4.8. Let R be a ring. Let M and N be two left R-modules. Let
f : M → N be a left R-module morphism. Then, the kernel (aka nullspace)
of f (denoted Ker f or ker f ) is defined to be the subset

Ker f := {a ∈ M | f (a) = 0N}

of M.

Examples:

• Let R be a commutative ring. Let b ∈ R. Then, the map

R → R,
r 7→ br
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(multiplication by b) is an R-module morphism. Its kernel is

{r ∈ R | br = 0} .

If b is not zero and no zero-divisor, then this kernel is {0}.

• Both Z3 and Z × (Z/2) are abelian groups, thus Z-modules. The map

Z3 → Z × (Z/2) ,

(a, b, c) 7→
(

a − b, b − c
)

is a Z-module morphism. Its kernel is{
(a, b, c) ∈ Z3 |

(
a − b, b − c

)
= 0

}
=
{
(a, b, c) ∈ Z3 | a − b = 0 and b − c = 0

}
=
{
(a, b, c) ∈ Z3 | a = b and b ≡ c mod 2

}
= {(a, a, a + 2k) | a, k ∈ Z} .

Some basic facts from linear algebra still hold at the level of modules:

Theorem 2.4.9. Let R be a ring. Let M and N be two left R-modules. Let
f : M → N be a left R-module morphism. Then:

(a) The kernel Ker f is an R-submodule of M.
(b) The image Im f = f (M) is an R-submodule of N.

Lemma 2.4.10. Let R be a ring. Let M and N be two left R-modules. Let
f : M → N be a left R-module morphism. Then, f is injective if and only if
Ker f = {0M}.

2.4.6. Quotient modules

Again, we fix a ring R.
Quotient modules are an analogue of quotient rings and quotient groups:

Definition 2.4.11. Let M be a left R-module. Let I be a left R-submodule
of M. Thus, I is a subgroup of the additive group (M,+, 0), so we obtain
a quotient group M/I, whose elements a + I we shall write as a and call
residue classes or cosets. Addition is given by

a + b = a + b for all a, b ∈ M.

We make M/I into a left R-module by defining an action of R on M/I by
setting

ra = ra for all r ∈ R and m ∈ M.

This makes M/I into a left R-module with zero vector 0 = 0 + I. It is
called the quotient R-module of M by I, and is denoted M/I.
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Theorem 2.4.12. This is indeed a left R-module. Moreover, the map

π : M → M/I,
a 7→ a = a + I

is a surjective R-module morphism. This map π is called the canonical pro-
jection.

Proof. Straightforward.

Examples of quotient modules come from many places:

• Quotients of abelian groups (e.g., Z/n or R/Z = S1 (a circle) or R2/Z2 =
T2 (a torus)) are just quotients of Z-modules.

• Quotients of vector spaces are quotients of F-modules, where F is a field.

For instance, consider the 3D vector space (i.e., R-module) R3 over the
ring R. Typically, we view R3 as the usual geometric 3D space. Define a
vector subspace (i.e., an R-submodule) I of R3 by

I =
{
(x, y, z) ∈ R3 | x + y + z = 0

}
.

Geometrically, this is a plane through the origin.

What can we say about the quotient R-module R3/I ? Its elements
are residue classes of the form (x, y, z), where two vectors (x, y, z) and
(x′, y′, z′) belong to the same residue class if and only if their entry-
wise difference (x − x′, y − y′, z − z′) belongs to I (that is, if and only if
(x − x′) + (y − y′) + (z − z′) = 0, or, equivalently, x + y+ z = x′+ y′+ z′).
For exmaple, the two residue classes (3, 0, 0) and (1, 1, 1) are identical. It
is not hard to see that each element of R3/I can be uniquely written in
the form (r, 0, 0) for some r ∈ R. This shows that R3/I is 1-dimensional
as a vector space.

• If R is any ring, and M is any left R-module, then the two obvious R-
submodules {0M} and M lead to uninteresting quotient modules:

M/ {0M} ∼= M and M/M is trivial (i.e., has only 1 element).

• Let R be a ring. As we recall, the left R-module

RN = {(a0, a1, a2, . . .) | all ai ∈ R}

has an R-submodule

R(N) = {(a0, a1, a2, . . .) | all ai ∈ R, and almost all ai = 0}
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(where “almost all” means “all but finitely many”, i.e., “we have ai = 0
for all but finitely many i”). What is the quotient module RN/R(N) ? Its
elements are residue classes of the form (a0, a1, a2, . . .), where two infinite
sequences (a0, a1, a2, . . .) and (b0, b1, b2, . . .) lie in the same residue class
if and only if their entrywise difference (a0 − b0, a1 − b1, a2 − b2, . . .) lies
in R(N) (that is, if all but finitely many i satisfy ai = bi). So we can view a
residue class (a0, a1, a2, . . .) as “an infinite sequence that is defined up to
finitely many places”.

Such residue classes have a bunch of features known from analysis. In
particular, if the limit lim

n→∞
an exists, then it depends only on the residue

class (a0, a1, a2, . . .) rather than on the sequence (a0, a1, a2, . . .).

For quotient rings, we have previously proved a universal property and a
first isomorphism theorem. The same can be done for quotient modules. Let
me just state the analogue of the universal property:

Theorem 2.4.13 (Universal property of quotient modules, elementwise form).
Let M be a left R-module. Let I be a left R-submodule of M.

Let N be a left R-module. Let f : M → N be a left R-module morphism.
Assume that f (I) = 0 (that is, f (i) = 0 for each i ∈ I). Then, the map

f ′ : M/I → N,
a 7→ f (a)

is well-defined and is a left R-module morphism.

Proof. Analogous to the ring case.

2.5. Spanning, linear independence, bases, free modules

Again, we fix a ring R.

2.5.1. Definitions

Definition 2.5.1. Let M be a left R-module. Let m1, m2, . . . , mn be finitely
many vectors in M. Then:

(a) A linear combination of m1, m2, . . . , mn means a vector of the form

r1m1 + r2m2 + · · ·+ rnmn for all r1, r2, . . . , rn ∈ R.

(b) The set of all linear combinations of m1, m2, . . . , mn is called the span of
m1, m2, . . . , mn, and is denoted by span (m1, m2, . . . , mn).
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(c) If the span of m1, m2, . . . , mn is M, then we say that the vectors
m1, m2, . . . , mn span M (or generate M).

(d) We say that the vectors m1, m2, . . . , mn are linearly independent if the
following holds: If r1, r2, . . . , rn ∈ R satisfy

r1m1 + r2m2 + · · ·+ rnmn = 0,

then r1 = r2 = · · · = rn = 0.
(e) We say that the n-tuple (m1, m2, . . . , mn) is a basis of M if and only if

the vectors m1, m2, . . . , mn are linearly independent and span M.
(f) All of this terminology depends on R. If R is not clear from the context,

you can make it explicit: say “R-linear combination”, “R-span”, and so on.

These features can be defined not just for a finite list (m1, m2, . . . , mn) of vec-
tors, but for any family (mi)i∈I of vectors. There is one complication: We do
not allow “truly infinite” linear combinations like 1m0 + 1m1 + 1m2 + · · · . So,
even if your family (mi)i∈I is infinite (i.e., if the set I is infinite), we only allow
linear combinations where all but finitely many coefficients are 0. For instance,
with an infinite sequence of vectors (m0, m1, m2, . . .), you can take linear com-
binations such as m3 + m5 − 2m7 but not 0m0 + 1m1 + 2m2 + · · · .

Likewise, linear independence for a family (mi)i∈I is defined in terms of finite
sums only.

Definition 2.5.2. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M (with I being any set). Then:

(a) A linear combination of (mi)i∈I means a vector of the form

∑
i∈I

rimi

for some family (ri)i∈I of scalars (i.e., for a choice of ri ∈ R for each i ∈ I)
with the property that

all but finitely many i ∈ I satisfy ri = 0.

Here, the sum ∑
i∈I

rimi is an infinite sum, but all but finitely many of its

addends are 0, and thus we can make sense of this sum simply by throwing
away the 0 addends and summing the rest (for example, 3 + 2 + 0 + 0 + 0 +
· · · = 3 + 2).

(b) The set of all linear combinations of (mi)i∈I is called the span of (mi)i∈I ,
and is denoted by span (mi)i∈I .

(c) If the span of (mi)i∈I is M, then we say that the family (mi)i∈I spans M
(or generates M).

(d) We say that the family (mi)i∈I is linearly independent if the following
holds: If some family (ri)i∈I of scalars ri ∈ R satisfies

all but finitely many i ∈ I satisfy ri = 0
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and
∑
i∈I

rimi = 0,

then ri = 0 for all i ∈ I.
(e) We say that the family (mi)i∈I is a basis of M if and only if it is linearly

independent and spans M.
(f) All of this terminology depends on R. If R is not clear from the context,

you can make it explicit: say “R-linear combination”, “R-span”, and so on.

2.5.2. Spans are submodules

As in linear algebra, we can generate submodules of a given module M by
taking spans of vectors in M:

Proposition 2.5.3. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M. Then, the span of this family is an R-submodule of M.

Proof. “Closed under addition”:

∑
i∈I

aimi + ∑
i∈I

bimi = ∑
i∈I

(ai + bi)mi.

(You have to check finiteness, but that’s simply because a union of two finite
sets is finite. See 2023 Lecture 20 for details.)

The other axioms are similar.

2.5.3. Coordinates

The notions of linear independence and spanning can be described equivalently
as follows:

Proposition 2.5.4. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M. Then:

(a) The family (mi)i∈I spans M if and only if each vector v ∈ M can be
written as an R-linear combination of (mi)i∈I in at least one way.

(b) The family (mi)i∈I is linearly independent if and only if each vector
v ∈ M can be written as an R-linear combination of (mi)i∈I in at most one
way (i.e., there is at most one family (ri)i∈I of scalars such that v = ∑

i∈I
rimi

and such that all but finitely many i ∈ I satisfy ri = 0).
(c) The family (mi)i∈I is a basis of M if and only if each vector v ∈ M

can be written as an R-linear combination of (mi)i∈I in exactly one way (i.e.,
there is exactly one family (ri)i∈I of scalars such that v = ∑

i∈I
rimi and such

that all but finitely many i ∈ I satisfy ri = 0).
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Part (c) of this proposition shows that a basis of an R-module M can be used
as a “coordinate system” for M. The scalars ri that represent v as v = ∑

i∈I
rimi

are called the coordinates of v with respect to this basis.
For the proof of the proposition, see Winter 2023 Lecture 20.

2.5.4. Free modules

In linear algebra, there is a celebrated result saying:

Theorem 2.5.5. If F is a field, then every F-module (i.e., every F-vector space)
has a basis.

Proof. See [Treil] or [Keith Conrad, dimension.pdf]. The case when the F-
module is finitely generated (i.e., spanned by a finite list of vectors) is relatively
easy and done in most linear algebra texts. Note that the general version is not
constructive at all. For instance, it yields that R has a basis as a Q-vector space,
but no one can actually construct such a basis. (This is known as a Hamel
basis.)

In comparison, not every R-module over a ring R has a basis. Modules with
bases are rather rare and have their own name:

Definition 2.5.6. (a) A left R-module M is said to be free if it has a basis.
(b) Let n ∈ N. A left R-module M is said to be free of rank n if it has a

basis of size n (that is, a basis consisting of n vectors).

Note that not every free R-module has a rank in this sense, since its basis
could be infinite.

Confusing curiosity: A free R-module can have several ranks at the same
time. This happens for some (rather weird) noncommutative rings R, and also
for the trivial ring R. It never happens when R is a nontrivial commutative
ring, but the proof is not quite easy.

Surprisingly, even though not all R-modules are free in general, free R-
modules appear over and over in mathematics. Let us give some examples.

We begin with examples that make sense for any ring R. We fix an arbitrary
ring R.

• Consider the left R-module

R2 = {(a, b) | a, b ∈ R} .

This R-module R2 is free of rank 2, since the list

((1, 0) , (0, 1))

is a basis of R2. This is a basis because:
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– It spans R2, since each (a, b) ∈ R2 is a · (1, 0) + b · (0, 1).

– It is linearly independent, since if a · (1, 0) + b · (0, 1) = 0, then 0 =
a · (1, 0) + b · (0, 1) = (a, b), so a = b = 0.

• Likewise, the left R-module R3 has basis

((1, 0, 0) , (0, 1, 0) , (0, 0, 1)) .

• More generally: For any n ∈ N, the left R-module Rn has a basis

(e1, e2, . . . , en) ,

where ei is the n-tuple (0, 0, . . . , 0, 1, 0, 0, . . . , 0) with the 1 at the i-th posi-
tion. This basis is called the standard basis of Rn. So Rn is free of rank
n.

• In particular, R1 is free of rank 1. Since R1 ∼= R as left R-modules, this
shows that R is free of rank 1.

Also, R0 is free of rank 0.

• More generally: If I is a set, then the set

RI = ∏
i∈I

R =
{
(ri)i∈I | all ri belong to R

}
is a left R-module (with entrywise addition and action). If I is finite, then
this R-module is free (indeed, if I is an n-element set, then RI ∼= Rn). If I
is infinite, then RI is usually not free. For instance, the Z-module

ZN = {all infinite sequences of integers}

is not free. (This is not obvious, but can be proved.) Of course, when R is
a field, then RI is free, by the above theorem saying that any vector space
is free.

However, the left R-module RI has a very important submodule that is
always free. Namely, we define

R(I) =
{
(ri)i∈I ∈ RI | all but finitely many i ∈ I satisfy ri = 0

}
,

a subset of RI . This subset R(I) is a left R-submodule of RI (easy to check),
and is actually free, with a standard basis (ei)i∈I , where ei is the family
with a 1 in its i-th position and 0’s everywhere else (a generalization of
the standard basis (e1, e2, . . . , en) of Rn).

• Let n, m ∈ N. Then, the set Rn×m of n × m-matrices is a left R-module.
It is free of rank nm, and in fact it has a basis

(
Ei,j
)
(i,j)∈{1,2,...,n}×{1,2,...,m}

consisting of the elementary matrices Ei,j. Each Ei,j is the n × m-matrix
which has a 1 in its (i, j)-th cell and 0’s in all other cells.
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• Let n ∈ N. Then, the set Rn×n
symm of all symmetric n × n-matrices is a left

R-module. It is free of rank
n (n + 1)

2
, with a basis consisting of the diago-

nal elementary matrices Ei,i and the symmetrized off-diagonal elementary
matrices Ei,j + Ej,i for i < j.

Let us now look at Z-modules. As we know, they are just abelian groups in
fancy clothes, but let us see which of them are free (as Z-modules):

• Consider the Z-submodule

U :=
{
(a, b, c) ∈ Z3 | a + b + c = 0

}
of Z3.

Is U free? Can we find a basis for U ? Yes:

((−1, 1, 0) , (−1, 0, 1)) .

What about more general versions of U ? So subsets of Zn carved out by
(systems of) linear equations?

In this example, we can find this basis by Gaussian elimination, as in
linear algebra. But in more general situations, Gaussian elimination can
fail, since it can incur denominators (and thus take us out of Z).

Nevertheless, it can be shown that any Z-submodule of Zk (for k ∈ N) is
free. More on this later.

• The Z-module Z/2 is not free. More generally: Any free Z-module is
either trivial or infinite. So Z/n is only free as a Z-module if n is 1, 0 or
−1.

• The Z-module Q is not free. In a nutshell, this is because one vector is
not enough to span Q, but two vectors are already linearly dependent.

• Consider the Z-submodule

V :=
{
(a, b) ∈ Z2 | a ≡ b mod 2

}
of Z2.

This Z-module is free. Can you find a basis?

((1, 1) , (2, 0)) is a basis;
((1, 1) , (1,−1)) is a basis.

Linear independence can be checked over Q (why?). Spanning for ((1, 1) , (2, 0))
can be checked by observing that each (a, b) ∈ V satisfies

(a, b) = b (1, 1) +
a − b

2︸ ︷︷ ︸
∈Z

since a≡b mod 2

(2, 0) =
(

b + 2 · a − b
2

, b
)

.
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• More examples: see §3.7.3 in the text.

Some more generalities about free modules:

Theorem 2.5.7. Let M be a left R-module. Let n ∈ N. Then, the left R-module
M is free of rank n if and only if M ∼= Rn as left R-modules.

More concretely, any basis of M gives an isomorphism f : Rn → M:

Theorem 2.5.8. Let M be a left R-module. Let m1, m2, . . . , mn be n vectors in
M. Consider the map

f : Rn → M,
(r1, r2, . . . , rn) 7→ r1m1 + r2m2 + · · ·+ rnmn.

Then:
(a) This map f is always a left R-module morphism.
(b) This map f is injective if and only if the vectors m1, m2, . . . , mn are

R-linearly independent.
(c) This map f is surjective if and only if the vectors m1, m2, . . . , mn span

M.
(d) This map f is bijective (i.e., an isomorphism) if and only if

(m1, m2, . . . , mn) is a basis of M.

This can be generalized from Rn to R(I) for arbitrary sets I:

Theorem 2.5.9. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in I. Consider the map

f : R(I) → M,

(ri)i∈I 7→ ∑
i∈I

rimi.

Then:
(a) This map f is always a left R-module morphism.
(b) This map f is injective if and only if the family (mi)i∈I is R-linearly

independent.
(c) This map f is surjective if and only if the family (mi)i∈I spans M.
(d) This map f is bijective (i.e., an isomorphism) if and only if (mi)i∈I is a

basis of M.
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2.6. The universal property of a free module

As before, fix a ring R.
Recall that R-linear maps (= R-module morphisms) respect addition, scaling

and zero. Thus, they respect any linear combinations:

Proposition 2.6.1. Let M and P be two left R-modules. Let f : M → P be an
R-linear map. Let (mi)i∈I be a family of vectors in M, and let (ri)i∈I ∈ R(I)

be a family of scalars. Then,

f

(
∑
i∈I

rimi

)
= ∑

i∈I
ri f (mi) .

Proof. If I is finite, induct on |I|. If I is infinite, throw away the zeroes.

Now, we shall state the universal property of free modules. This property
gives an easy way to construct a linear map f from a free R-module M: It just
says that we can specify the values f (mi) of f on a given basis (mi)i∈I of M,
and then all other values of f are uniquely determined. In formal words:

Theorem 2.6.2 (Universal property of free modules). Let M be a free left R-
module with basis (mi)i∈I . Let P be a further left R-module (free or not). Let
pi ∈ P be a vector for each i ∈ I. Then, there exists a unique R-linear map
f : M → P such that

each i ∈ I satisfies f (mi) = pi.

Explicitly, this map is given by

f

(
∑
i∈I

rimi

)
= ∑

i∈I
ri pi for all (ri)i∈I ∈ R(I).

Proof. See the notes. (Straightforward.) (Lecture 21 in Winter 2023)

The uniqueness part of the universal property (i.e., the part claiming that f
is unique) is true under a weaker assumption: It suffices that (mi)i∈I spans M;
we don’t need it to be a basis for that. So we get the following fact:

Theorem 2.6.3 (Linear maps are determined on a spanning set). Let M be
a left R-module. Let (mi)i∈I be a family of vectors in M that spans M. Let
f , g : M → P be two R-linear maps from M to a further R-module P such
that

each i ∈ I satisfies f (mi) = g (mi) .

Then, f = g.
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Proof. See the notes. (Straightforward.) (Lecture 21 in Winter 2023)

The universal property of free R-modules is why we can represent linear
maps between free R-modules as matrices. So if you have a free left R-module
M with basis (m1, m2, . . . , mn) and a free left R-module M′ with basis

(
m′

1, m′
2, . . . , m′

n′
)
,

then a linear map f : M → M′ can be represented by the n′ × n-matrix whose
j-th column is given by the coordinates of f

(
mj
)

with respect to the basis(
m′

1, m′
2, . . . , m′

n′
)

of M′.

2.7. Bilinear maps

Let R be a commutative ring.
The addition map

add : R × R → R,
(a, b) 7→ a + b

is R-linear (where the domain is the direct product of two copies of R). But the
multiplication map

mul : R × R → R,
(a, b) 7→ ab

is not. Nevertheless, it has “some linearity” in it: Namely, if we fix one argu-
ment, then mul is linear in the other. That is:

• For any a ∈ R, the map

R → R,
b 7→ ab

is R-linear.

• For any b ∈ R, the map

R → R,
a 7→ ab

is R-linear.

Maps with these properties are called bilinear:

Definition 2.7.1. Let R be a commutative ring. Let M, N and P be three
R-modules. A map f : M × N → P is said to be R-bilinear (or just bilinear)
if it satisfies the following two conditions:
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1. For any n ∈ N, the map

f : M → P,
m 7→ f (m, n)

is R-linear. Explicitly, this is saying that for any n ∈ N, we have

f (m1 + m2, n) = f (m1, n) + f (m2, n) for all m1, m2 ∈ M;
f (rm, n) = r f (m, n) for all r ∈ R and m ∈ M;

f (0, n) = 0.

This is called “ f is linear in its first argument”.

2. For any m ∈ M, the map

f : N → P,
n 7→ f (m, n)

is R-linear. Explicitly, this is saying that for any m ∈ M, we have

f (m, n1 + n2) = f (m, n1) + f (m, n2) for all n1, n2 ∈ N;
f (m, rn) = r f (m, n) for all r ∈ R and n ∈ N;
f (m, 0) = 0.

This is called “ f is linear in its second argument”.

Here are some examples of R-bilinear maps:

• The multiplication map mul : R × R → R is bilinear.

• For any n ∈ N, the map

Rn × Rn → R,
((a1, a2, . . . , an) , (b1, b2, . . . , bn)) 7→ a1b1 + a2b2 + · · ·+ anbn

– known as the dot product or the standard scalar product – is bilinear.

• For any n ∈ N, the map

Cn × Cn → C,

((a1, a2, . . . , an) , (b1, b2, . . . , bn)) 7→ a1b1 + a2b2 + · · ·+ anbn

(where z denotes the complex conjugate of z) is not bilinear as a map from
Cn ×Cn → C, but it is bilinear as a map from Cn ×C

n → C (remember: M
is M with the scaling twisted by conjugation, meaning that z ⇀ v = z · v).
Such maps are called sesquilinear.
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• The cross product map

R3 × R3 → R3,(
(a, b, c) ,

(
a′, b′, c′

))
7→
(
bc′ − cb′, ca′ − ac′, ab′ − ba′

)
is bilinear.

• The determinant map

det : R2 × R2 → R,
((a, b) , (c, d)) 7→ ad − bc

is R-bilinear.

• The Hadamard product

Rn×m × Rn×m → Rn×m,((
ai,j
)

i,j ,
(
bi,j
)

i,j

)
7→
(
ai,jbi,j

)
i,j

is R-bilinear.

• For any R-module M, the action

R × M → M,
(r, m) 7→ rm

is an R-bilinear map. (Note that commutativity of R is needed.)

Recall the universal property of free modules we proved above. That prop-
erty allows us to define a linear map from a free module by specifying its
images on the basis vectors. The same can be done for bilinear maps:

Theorem 2.7.2 (Universal property of free modules wrt bilinear maps). Let
M be a free left R-module with basis (mi)i∈I . Let N be a free left R-module
with basis

(
nj
)

j∈J . Let P be a further left R-module (free or not). Let pi,j ∈ P
be a vector for each pair (i, j) ∈ I × J. Then, there exists a unique R-bilinear
map f : M × N → P such that

each i ∈ I satisfies f
(
mi, nj

)
= pi,j.

Explicitly, this map is given by

f

(
∑
i∈I

rimi, ∑
j∈J

sjnj

)
= ∑

(i,j)∈I×J
risj pi,j for all (ri)i∈I ,

(
sj
)

j∈J .

Proof. See the notes (Theorem 3.9.2).
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2.8. Multilinear maps

Multilinear maps are a generalization of linear and bilinear maps:

Definition 2.8.1. Let R be a commutative ring. Let M1, M2, . . . , Mn be finitely
many R-modules. Let P be any R-module. A map f : M1 × M2 × · · · × Mn →
P is said to be R-multilinear (or just multilinear) if it satisfies the following
condition:

• For any i ∈ {1, 2, . . . , n} and any m1, m2, . . . , mi−1, mi+1, . . . , mn in the
respective modules (meaning that mk ∈ Mk for each k ̸= i), the map

Mi → P,
mi 7→ f (m1, m2, . . . , mn)

is R-linear. In other words, if we fix all arguments of f other than the i-
th argument, then f is R-linear as a function of the i-th argument. This
is called “ f is linear in the i-th argument”.

So “bilinear” means “multilinear for n = 2”, whereas “linear” means “mul-
tilinear for n = 1”.

The simplest examples of a multilinear map are

• the determinant map

det : Rn × Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R,

(v1, v2, . . . , vn) 7→ det (v1, v2, . . . , vn) ;

• the product map

prodn : Rn → R,
(a1, a2, . . . , an) 7→ a1a2 · · · an.

• the triple product

R3 × R3 × R3 → R,
(u, v, w) 7→ u ·︸︷︷︸

dot product

(v × w) .

There is a universal property for free modules again.

2.9. Algebras over commutative rings
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Convention 2.9.1. In this section, we fix a commutative ring R.

2.9.1. Definition

We know rings and we know R-modules. The former have addition and mul-
tiplication; the latter have addition and scaling. What happens if we combine
these features, to obtain an object that has addition, multiplication and scaling?

This kind of object turns out to be really useful. Here is the precise definition
(we impose an extra condition to keep the multiplication and the scaling in
harmony):

Definition 2.9.2. An R-algebra is a set A endowed with

• two binary operations (i.e., maps from A × A to A) called addition and
multiplication and denoted by + and ·;

• a map · from R × A to A that is called action of R and A (not the same
as multiplication, despite being called · as well);

• two elements of A called zero and unity and denoted by 0 and 1,

such that the following axioms (the algebra axioms) hold:

• The addition, the multiplication, the zero and the unity satisfy all the
ring axioms (so that A is a ring).

• The addition, the action and the zero satisfy all the module axioms (so
that A is an R-module).

• Scale-invariance of multiplication: We have

r (ab) = (ra) b = a (rb) for all r ∈ R and a, b ∈ A.

Here (and in the following), we omit the · signs.

Thus, an R-algebra is an R-module that is also a ring at the same time, with
the same addition, and satisfying the “scale-invariance” axiom.

The “scale-invariance” axiom can be replaced by requiring that the multipli-
cation map

A × A → A,
(a, b) 7→ ab

is R-bilinear. Thus, an R-algebra is “just” an R-module with an R-bilinear
multiplication as well as a unity.
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You can also restate the “scale-invariance” axiom as “scalars commute with
vectors”. (More precisely: For each r ∈ R, the “proxy of r in A” – that is, the
element r · 1A – is central in A.)

Some examples of R-algebras include:

• The commutative ring R is itself an R-algebra. Both multiplication and
action are just the multiplication of R.

• The zero ring {0} is an R-algebra.

• The matrix ring Rn×n is an R-algebra (usually not commutative).

• Any quotient ring R/I of R is a commutative R-algebra.

• The ring C is an R-algebra.

• More generally: If a ring R is a subring of a commutative ring S, then S
becomes an R-module and an R-algebra.

• Even more generally: If R and S are two commutative rings, and if f :
R → S is a ring morphism, then S becomes an R-algebra. We recall that
the R-module structure is given by restriction of scalars, i.e.,

r · s = f (r) · s for all r ∈ R and s ∈ S.

This R-algebra structure on S is said to be induced by the morphism f .

The above example of R/I is an instance of this.

• Even more generally: If R and S are two commutative rings, and if f :
R → S is a ring morphism, then any S-algebra becomes an R-algebra via
the “restriction of scalars” rule

r · a = f (r) · a for all r ∈ R and a ∈ A.

• The quaternion ring H is an R-algebra, but not a C-algebra (despite C

being a subring of H), because the “scale-invariance of multiplication”
axiom is violated. That axiom would require

r (ab) = (ra) b = a (rb) for all r ∈ C and a, b ∈ H.

But this fails for r = i and a = j and b = 1 for example, since ij ̸= ji.

• The polynomial ring R [x] (to be defined soon) is an R-algebra.

• More examples: see §3.11.2 in the text.

2.9.2. Z-algebras = rings

Just like any abelian group automatically becomes a Z-module, any ring auto-
matically becomes a Z-algebra:
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Proposition 2.9.3. Let A be any ring. Then, A is an abelian group (with
respect to +), thus a Z-module. Together with the given structure on A, this
turns A into a Z-algebra.

Proof. Easy.

2.9.3. The underlying structures

Every R-algebra A has an underlying ring (i.e., the ring you obtain if you forget
the action of R on A) and an underlying R-module (i.e., the R-module you
obtain if you forget the multiplication and the unity). We will just refer to them
as “the ring A” and “the R-module A”.

Thus, when A and B are two R-algebras, then a ring morphism from A to B
means a morphism of the underlying rings, whereas an R-module morphism
from A to B means a morphism of the underlying R-modules.

Do not mistake the underlying ring (A) for the base ring (R).

2.9.4. Commutative R-algebras

Definition 2.9.4. An R-algebra is said to be commutative if its underlying
ring is commutative.

2.9.5. Subalgebras

Subalgebras are to algebras what subrings are to rings:

Definition 2.9.5. Let A be an R-algebra. An R-subalgebra of A means a
subset of A that is simultaneously a subring and an R-submodule of A.

Every R-subalgebra of an R-algebra A becomes an R-algebra in its own right
automatically.

2.9.6. R-algebra morphisms

Definition 2.9.6. Let A and B be two R-algebras.
(a) An R-algebra morphism (or, short, algebra morphism) from A to B

means a map f : A → B that is both a ring morphism and an R-module
morphism.

(b) An R-algebra isomorphism from A to B means an invertible R-algebra
morphism f : A → B whose inverse f−1 : B → A is an R-algebra morphism
as well.

(c) The R-algebras A and B are said to be isomorphic (written A ∼= B) if
there is an R-algebra isomorphism from A to B.

All the fundamental properties of ring (iso)morphisms have analogues for al-
gebras instead of rings (see the notes for details).

Furthermore, Z-algebra morphisms are nothing but ring morphisms.
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2.9.7. Direct products

Definition 2.9.7. Direct products of R-algebras are defined just as for rings
and for R-modules: All structures are entrywise.

2.10. Defining algebras: the case of H

An R-algebra carries more information than a ring, but sometimes this extra
information makes it easier to define: Instead of starting with a ring and putting
an R-module structure on it, you can start with an R-module and put a ring
structure (i.e., is an R-bilinear multiplication with a unity) on it. When you do
so, you can use the existing R-module structure as “scaffolding” for defining
the ring structure.

We shall now give an example how this works.
Recall the ring H of Hamilton quaternions, which were “defined” (in Math

331) to be “numbers” of the form a + bi + cj + dk with a, b, c, d ∈ R and with
multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

It is clear how to calculate in H using these rules. But it is not clear that this H

exists in the first place.
This is not a vacuous question. For instance, if we replace the rule k2 = −1

by k2 = 1 in the above definition, then we get

j2 k2︸︷︷︸
=1

= j2 = −1

and thus

−1 = j2k2 = j jk︸︷︷︸
=i

k = j ik︸︷︷︸
=−j

= j (−j) = −j2 = − (−1) = 1,

showing that our nicely defined ring collapses to the trivial ring (−1 = 1 im-
plies 0 = 2 and thus 0 = 1 by dividing by 2).

So this is a danger that always exists when you invent new “numbers” and
declare new rules. These “numbers” technically exist, but the ring they form
might be trivial, or at least much smaller than you expected, and in particular
there is no guarantee that your “old” numbers are injectively embedded in it.

(The simplest example for this is division by 0: Introduce ∞ =
1
0

and you get
0 = 1.)

So we need to show that this does not happen when we define H.
One safe way to define H is as follows: We define a quaternion to be a 4-

tuple (a, b, c, d) of real numbers (stand-in for a + bi + cj + dk), and define the
R-algebra operations on the ring of these quaternions by

(a, b, c, d) +
(
a′, b′, c′, d′

)
=
(
a + a′, b + b′, c + c′, d + d′

)
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and

(a, b, c, d)
(
a′, b′, c′, d′

)
= ( aa′ − bb′ − cc′ − dd′,

ab′ + ba′ + cd′ − dc′,
ac′ − bd′ + ca′ + db′,
ad′ + bc′ − cb′ + da′ )

and
r (a, b, c, d) = (ra, rb, rc, rd) for r ∈ R.

This is a valid definition, but you have to check that all the ring axioms (and
module axioms, and scale-invariance) hold. In particular, associativity of · is a
lot of work.

This definition of H does its job well, but as we just said, it is laborious to
justify and somewhat inflexible if we try to generalize it.

A simpler and slicker way to define H proceeds as follows: First define H

as an R-module (= R-vector space); this is easy: just say H = R4 (free R-
module). Then, build the multiplication on top of it, using R-bilinearity (since
the multiplication in an R-algebra must always be an R-bilinear map). Recall
from last time that an R-bilinear map on a free R-module needs to be only
specified on a basis. Thus, instead of defining the product of two quaternions,
we will only have to define the product of two quaternions from a given basis
(which we will take to be (1, i, j, k)).

Let us do this. We define H to be the R-module R4, which is a free R-
module of rank 4. Thus, we define a quaternion to be a 4-tuple (a, b, c, d) of
real numbers. The addition and the scaling of quaternions are thus defined
entrywise.

We denote the standard basis (e1, e2, e3, e4) of R4 by (e, i, j, k). (The e will be
the 1, but we don’t know yet that it is the unity.)

Now, define the multiplication of H to be the R-bilinear map µ : H×H → H

that satisfies

µ (e, e) = e, µ (e, i) = i, µ (e, j) = j, µ (e, k) = k,
µ (i, e) = i, µ (i, i) = −e, µ (i, j) = k, µ (i, k) = −j,
µ (j, e) = j, µ (j, i) = −k, µ (j, j) = −e, µ (j, k) = i,
µ (k, e) = k, µ (k, i) = j, µ (k, j) = −i, µ (k, k) = −e.

By the universal property of free modules wrt bilinear maps, there really is a
unique R-bilinear map µ : H × H → H; thus we have defined our µ.

We claim that the R-module H becomes an R-algebra (and thus a ring) if
endowed with the multiplication µ and the unity e. For this, we need to show
the algebra axioms. Most of them are clear from our construction (a free R-
module always satisfies the module axioms, and the bilinearity of µ guarantees
a bunch of the other axioms). The only two axioms we need to check are:
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1. The map µ is associative (i.e., we have µ (µ (a, b) , c) = µ (a, µ (b, c)) for all
a, b, c ∈ H).

2. The element e is a neutral element for µ (that is, we have µ (a, e) =
µ (e, a) = a for all a ∈ H).

Good news: Both of these axioms need only to be checked on the basis! In
other words,

1. to check associativity of µ, it suffices to show that µ (µ (a, b) , c) = µ (a, µ (b, c))
holds for all a, b, c ∈ {e, i, j, k}. (Straightforward.)

2. to check neutrality of e, it suffices to show that µ (a, e) = µ (e, a) = a holds
for all a ∈ {e, i, j, k}. (Easy.)

This is because µ is R-bilinear, so that these properties are inherited by R-
linear combinations. (See the notes for details.)

3. Monoid algebras and polynomials

Convention 3.0.1. For this entire chapter, we fix a commutative ring R.

In the previous section, we have learned the “quick” way to define an R-algebra:
Define an R-module first, then define its multiplication µ as a certain R-bilinear
map which you can specify on the basis elements (if you have a basis). Then,
associativity and neutrality of the unity can also be proved just by verifying
them on the basis. The keyword for this method is “by linearity”.

We shall now apply this strategy to construct an important class of algebras:
the monoid algebras, including the group algebras and the polynomial rings.

3.1. Monoid algebras

3.1.1. Definition

Recall the notion of a monoid: Roughly speaking, it is a “group without in-
verses”. That is, a monoid is a triple (M, ·, 1), where M is a set, · is an asso-
ciative binary operation on M, and 1 is a neutral element for ·. We call m · n
the product of m and n, and we write mn for it. The monoid M is abelian if
mn = nm for all m, n ∈ M. Given a monoid (M, ·, 1), the binary operation · is
called the operation of M, and the element 1 is called the neutral element of
M. When the operation is denoted by · and the neutral element by 1, we say
that the monoid is written multiplicatively (or is a multiplicative monoid).
When the operation is denoted by + and the neutral element by 0, we say that
the monoid is written additively (or is an additive monoid).
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If M is a monoid written multiplicatively, then we can define the monoid
algebra R [M]. Informally, this is the R-algebra obtained by “throwing” the
elements of M “into” the ring R. Its elements are “formal R-linear combinations
of elements of M”, that is, expressions of the form

r1m1 + r2m2 + · · ·+ rkmk

with k ∈ N and m1, m2, . . . , mk ∈ M and r1, r2, . . . , rk ∈ M. These expressions
are multiplied by distributivity and using the multiplications of R and M: that
is,

(r1m1 + r2m2 + · · ·+ rkmk) (s1n1 + s2n2 + · · ·+ sℓnℓ)

=
k

∑
i=1

ℓ

∑
j=1

risj︸︷︷︸
product

in R

minj︸︷︷︸
product

in M

.

In order to make this rigorous, let us recall some concepts:
If M is any set, then RM is the R-module{

(rm)m∈M | rm ∈ R for each m ∈ M
}

,

whereas R(M) is its R-submodule{
(rm)m∈M ∈ RM | rm = 0 for all but finitely many m ∈ M

}
.

If M is finite, then R(M) = RM.
The R-module R(M) is free, and its standard basis (em)m∈M is defined as

follows: Each em is the family whose m-th entry is 1 while all its other entries
are 0.

Now we can define the monoid algebra R [M] rigorously:

Definition 3.1.1. Let M be a monoid, written multiplicatively (so that · de-
notes its operation, and 1 its neutral element).

The monoid algebra of M over R (also known as the monoid ring of M
over R) is the R-algebra R [M] defined as follows:

As an R-module, it is the free R-module

R(M) =
{
(rm)m∈M ∈ RM | rm = 0 for all but finitely many m ∈ M

}
.

Its multiplication is defined to be the unique R-bilinear map µ : R(M) ×
R(M) → R(M) that satisfies

µ (em, en) = emn for all m, n ∈ M,

where (em)m∈M is the standard basis of R(M). The unity of this R-algebra is
e1.
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Theorem 3.1.2. This is indeed a well-defined R-algebra.

Proof. By linearity (and associativity of M). See Theorem 4.1.2 in the text for
details.

Definition 3.1.3. If G is a group, then its monoid algebra R [G] is called the
group algebra (or group ring) of G over R.

3.1.2. Examples

Example 3.1.4. Consider the cyclic group C2 of order 2. We write it multi-
plicatively as C2 = {1, u} where u2 = 1. (Written additively, it is just Z/2,
but we want it multiplicative.)

What does its group algebra (= monoid algebra) Q [C2] look like?
As a Q-module, it is

Q(C2) = Q({1,u}) = Q{1,u}

=
{
(rm)m∈{1,u} | rm ∈ Q for each m ∈ {1, u}

}
.

A family of this form (rm)m∈{1,u} consists of just two entries: r1 and rm. By
abuse of notation, we can thus identify such a family with the pair (r1, ru).
Thus,

Q(C2) = {(r1, ru) | r1, ru ∈ Q} = Q2.

The addition and the action of the group algebra Q [C2] are entrywise. What
about its multiplication?

Its standard basis is (em)m∈{1,u} = (e1, eu), where e1 = (1, 0) and eu = (0, 1).
The multiplication of the group algebra Q [C2] is given by

µ (em, en) = emn for all m, n ∈ C2.

In other words,
emen = emn for all m, n ∈ C2.

Explicitly,

e1e1 = e1·1 = e1, e1eu = e1u = eu,

eue1 = eu1 = eu, eueu = euu = e1

(
since uu = u2 = 1

)
.

Since (e1, eu) is a basis of Q [C2], we can write each element of Q [C2]
uniquely as ae1 + beu with a, b ∈ Q. To multiply two such elements, we
use Q-bilinearity of µ:

(ae1 + beu) (ce1 + deu)

= ace1e1 + bceue1 + ade1eu + bdeueu

= ace1 + bceu + adeu + bde1

= (ac + bd) e1 + (bc + ad) eu.
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Using the pair notation for these elements, ae1 + beu is simply (a, b), so this
multiplication rule rewrites as

(a, b) (c, d) = (ac + bd, bc + ad) .

This looks a lot like the multiplication rule for complex numbers (as pairs
of real numbers), which says

(a, b) (c, d) = (ac − bd, bc + ad) .

Thus, we can think of Q [C2] as a “twin brother” of C, except that we are
using Q instead of R as the base ring (but we could just as well have used
R or any other commutative ring). So we should instead think of R [C2] as a
“twin brother” of C.

However, this “twin brother” behaves rather differently from C in many
ways. For example, C is a field, but R [C2] is not a field. In fact, R [C2] is not
even an integral domain, because

(1, 1) (1,−1) = (0, 0) = 0R[C2].

Or, in terms of linear combinations of basis vectors:

(e1 + eu) (e1 − eu) = 0.

Actually, we can say more:

Q [C2] ∼= Q × Q as Q-algebras.

Indeed, there is a Q-algebra isomorphism

Q [C2] → Q × Q,
ae1 + beu = (a, b) 7→ (a + b, a − b)

(the simplest case of the discrete Fourier transform). Its inverse is

Q × Q → Q [C2] ,

(c, d) 7→
(

c + d
2

,
c − d

2

)
.

See the notes for a more conceptual way to find this. Note that we can redo
the above computations with R instead of Q, but we cannot do them with Z

instead of Q. The group algebra Z [C2] is not isomorphic to Z × Z, and in
fact it is not isomorphic to any nontrivial direct product, despite not being an
integral domain.
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Example 3.1.5. Consider the cyclic group C3 = {1, u, v} of order 3 with u3 =
1 and v = u2. Its group algebra Q [C3] is then Q3 as a Q-vector space (upon
identifying each family (rm)m∈C3

with the triple (r1, ru, rv)). Its multiplication
rule is given by

(ae1 + beu + cev)
(
a′e1 + b′eu + c′ev

)
=
(
aa′ + bc′ + cb′

)
e1 +

(
ab′ + ba′ + cc′

)
eu +

(
ac′ + bb′ + ca′

)
ev,

aka

(a, b, c)
(
a′, b′, c′

)
=
(
aa′ + bc′ + cb′, ab′ + ba′ + cc′, ac′ + bb′ + ca′

)
.

Again, this is not an integral domain, since

(1, 1, 1) · (1,−1, 0) = (0, 0, 0) .

Actually, you can show that

Q [C3] ∼= Q × S

for some Q-algebra S that is 2-dimensional as a Q-vector space.
More generally, for any finite group G, the group algebra Q [G] has a cen-

tral idempotent

z :=
∑

g∈G
eg

|G|
(prove this!), and the principal ideal zQ [G] is ∼= Q as a Q-algebra, so that
using one old exercise (HW#4 Exercise 1 (d)), we conclude that

Q [G] ∼= Q × S

for some subalgebra S = (1 − z)Q [G]. Sometimes (but not always), you can
split the S further into direct products. If G = C2, then S ∼= Q, but in general
S is more complicated.

If you work with C instead of Q, then for any finite abelian group G you
can actually split

C [G] ∼= C × C × · · · × C︸ ︷︷ ︸
|G| times

(the discrete Fourier transform). This relies on roots of unity (e2πik/n), so it
does require the base ring to be C (or something else that has these roots of
unity).

For non-abelian groups G, even roots of unity don’t let you decompose
the algebra C [G] into a direct product of Cs. No surprise here: If G is not
abelian, then C [G] will not be commutative.
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3.1.3. General properties of monoid algebras

Here are some general properties of and conventions about monoid algebras.

Proposition 3.1.6. Let M be an abelian monoid. Then, the monoid ring R [M]
is commutative.

Proof. By linearity. (Proposition 4.1.9 in the text.)

Proposition 3.1.7. Let M be a monoid with neutral element 1. Then, the map

R → R [M] ,
r 7→ r · e1

is an injective R-algebra morphism.

Proof. Easy. (Morphicity relies on e1e1 = e1.)

Convention 3.1.8. If M is a monoid, then we shall identify each r ∈ R with
r · e1 ∈ R [M]. This identification is harmless (i.e., does not lead to any
false conclusions), since the map in the previous proposition is an injective
R-algebra morphism. Thus, R turns into an R-subalgebra of R [M].

An element of the form r · e1 ∈ R [M] are called constant.

Proposition 3.1.9. Let M be a monoid. Then, the map

M → R [M] ,
m 7→ em

is a monoid morphism from M to (R [M] , ·, 1).

Proof. This is just saying that emen = emn for all m, n ∈ M, and that e1 = 1R[M].
Both are clear from the definition of R [M].

The last two propositions show that the monoid algebra R [M] contains “a
copy of” R and “a copy of” M. However, the “copy of M” is collapsed if R is a
trivial ring.

Convention 3.1.10. Let M be a monoid. Then, the elements em of the standard
basis (em)m∈M of R [M] will just be written as m if no confusion can arise.

For example, if M is the cyclic group C3 = {1, u, v} as in the above exam-
ple, then we write the element ae1 + beu + cev as a1 + bu + cv = a + bu + cv.

For another example, if M is the cyclic group C2 = {1, u} as above, then
ae1 + beu becomes a + bu.
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3.2. Polynomial rings

3.2.1. Univariate polynomials

We can now effortlessly define univariate polynomials: They are just elements
of certain monoid algebras. Which ones?

Recall that R is a commutative ring, whereas N = {0, 1, 2, . . .}.

Definition 3.2.1. Let C be the free monoid with a single generator x. This is
the monoid whose elements are countably many distinct symbols called

x0, x1, x2, x3, . . .

with operation given by

xi · xj = xi+j for all i, j ∈ N.

Of course, this monoid is just the well-known additive monoid (N,+, 0)
rewritten in a multiplicative form (with each element i ∈ N renamed as xi).

The neutral element of this monoid C is x0. We set x := x1.
The elements of C are called monomials in the variable x. The specific

element x is called the indeterminate.
Now, the univariate polynomial ring R [x] over R is defined to be the

monoid algebra R [C]. Following the conventions above, we simply write m
for each standard basis vector em. That is, we write xi for exi . Thus, R [x] is a
free R-module with basis(

x0, x1, x2, . . .
)
=
(

1, x, x2, x3, . . .
)

.

Hence, any p ∈ R [x] can be written as a finite R-linear combination of powers
of x. That is, p can be written as

p = a0x0 + a1x1 + a2x2 + · · ·+ anxn = a0 + a1x + a2x2 + · · ·+ anxn

for some n ∈ N and some a0, a1, . . . , an ∈ R. This representation is unique up
to trailing zeroes (i.e., up to adding extra terms of the form 0xn+1 and 0xn+2

and so on).
Elements of R [x] are called polynomials in x over R.

Note that the ring R [x] is commutative, since it is the monoid ring of the
abelian monoid C.

Example 3.2.2. (a) This is a polynomial: 1 + 3x2 + 9x5 ∈ Z [x] (also in Q [x]
and so on).

(b) This is not a polynomial: 1 + x + x2 + x3 + · · · , unless R is trivial.
Infinite sums like this are called formal power series and lie not in R(C) but
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in RC. They also form a ring, but this is a story for another class (e.g., Math
531 Algebraic Combinatorics).

So we have defined univariate polynomials (i.e., polynomials in one vari-
able). We can similarly define multivariate polynomials (i.e., polynomials in
many variables). For simplicity, I restrict myself to the case of finitely many
variables.

3.2.2. Multivariate polynomials

Definition 3.2.3. Let n ∈ N. Let C(n) be the free abelian monoid with n
generators x1, x2, . . . , xn. This is the monoid whose generators are the distinct
symbols

xi1
1 xi2

2 · · · xin
n with i1, i2, . . . , in ∈ N

and with operation given by(
xi1

1 xi2
2 · · · xin

n

) (
xj1

1 xj2
2 · · · xjn

n

)
= xi1+j1

1 xi2+j2
2 · · · xin+jn

n .

This monoid is just the additive monoid Nn (with entrywise addition), writ-
ten multiplicatively (with each n-tuple (i1, i2, . . . , in) renamed as xi1

1 xi2
2 · · · xin

n ).
The elements of C(n) are called monomials.
For each i ∈ {1, 2, . . . , n}, we define the monomial xi to be

xi = x0
1x0

2 · · · x0
i−1x1

i x0
i+1x0

i+2 · · · x0
n.

These specific monomials xi are called the indeterminates.
Now, the monoid algebra R

[
C(n)

]
is denoted R [x1, x2, . . . , xn], and is

called the polynomial ring in n variables x1, x2, . . . , xn over R. Its elements
are called polynomials in x1, x2, . . . , xn. A typical polynomial looks like this:

∑
(i1,i2,...,in)∈Nn

ri1,i2,...,in xi1
1 xi2

2 · · · xin
n

with ri1,i2,...,in ∈ R such that all but finitely many of these coefficients ri1,i2,...,in
are 0. You can also write it as

∑
m∈C(n)

rmm.

For example,
4x2

1 + 3x2x3 − x5 + 6



Math 332 Winter 2025 diary, version March 14, 2025 page 125

is a polynomial in x1, x2, . . . , xn whenever n ≥ 5 and for any base ring R. Like-

wise,
1
2

x1 + 7x2x3 − πx1x2
3 is a polynomial in x1, x2, x3 over R or C.

Note that the univariate polynomial ring R [x] is the particular case of the
multivariate polynomial ring R [x1, x2, . . . , xn] for n = 1, once you rename the
x1 as x.

So our polynomials are pretty much formal objects. They are NOT functions
of an argument in R. In fact, we have yet to see how polynomials can be
evaluated. This will be done next time.

3.2.3. Constant polynomials

A constant polynomial is a constant element of the monoid ring R
[
C(n)

]
(or R [C] in the univariate case): i.e., a scalar multiple of the monomial 1 =
x0

1x0
2 · · · x0

n. We can identify the constant polynomials with the elements of R,
thus making R into a subring of any polynomial ring over R.

3.2.4. Coefficients

By their definition, polynomials are R-linear combinations of monomials. We
now introduce a notation for their coefficients:

Definition 3.2.4. Let p ∈ R [x1, x2, . . . , xn] be a polynomial. Let m =
xa1

1 xa2
2 · · · xan

n be a monomial. Then, the coefficient of m in p is the element
[m] p defined as follows: If we write p as

p = ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in xi1
1 xi2

2 · · · xin
n

(
with pi1,i2,...,in ∈ R

)
,

then
[m] p := pa1,a2,...,an .

For example, [
x3
] (

(1 + x)5
)
=

(
5
3

)
= 10 and[

x6
] (

(1 + x)5
)
= 0

(since (1 + x)5 = x5 + 5x4 + 10x3 + 10x2 + 5x + 1). For another example, work-
ing in R [x1, x2] and renaming the variables x1, x2 as x, y, we have[

x2y3
] (

(x + y)5
)
= 10
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and
[xy]

(
(x + y)5

)
= 0

(since (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5).

3.2.5. Symbols for indeterminates

In our above definition of a multivariate polynomial ring R [x1, x2, . . . , xn], we
have “hardcoded” the indeterminates to be called x1, x2, . . . , xn. Often, you
want a more flexible definition, where you can call the variables whatever you
want, and you want the resulting polynomial rings to “know” how the variables
are called. For example, you want the polynomial rings R [x, y] and R [y, z] to
be isomorphic, but not the same ring (and also different from R [x1, x2]).

This necessitates some minor changes to our definition of multivariate poly-
nomials. Namely, instead of using the monoid

C(n) =
{

xi1
1 xi2

2 · · · xin
n | (i1, i2, . . . , in) ∈ Nn

}
,

we now use the monoid

C(S) =

{
∏
s∈S

sis | is ∈ N for each s ∈ S

}

where S is our chosen (finite) set of indeterminates (e.g., S = {x, y} or S =

{y, z} or S = {α, ω,F ,ℜ}). A monomial in this monoid C(S) is a “formal”
product of the form ∏

s∈S
sis , really a map from S to N that sends each s ∈ S to

is. These monomials are multiplied by the rule(
∏
s∈S

sis

)(
∏
s∈S

sjs

)
= ∏

s∈S
sis+js .

We shall refer to the monoid ring R
[
C(S)

]
as a multivariate polynomial ring

with named variables, and just call it R [S].
We will be cavalier about this all, and pretend that this naming issue is a

non-issue.

3.3. Univariate polynomials

Let us now take a closer look at univariate polynomial rings, as these have the
best properties of all the polynomial rings.
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3.3.1. Degrees and coefficients

Recall: If p = ∑
j∈N

pjxj ∈ R [x] with pj ∈ R, then
[
xi] p = pi for each i ∈ N.

Definition 3.3.1. Let p ∈ R [x] be a univariate polynomial.
(a) If p ̸= 0, then the degree of p is defined to be the largest i ∈ N such

that
[
xi] p ̸= 0. The degree of the zero polynomial 0 ∈ R [x] is defined to be

−∞.
The degree of p is called deg p.
(b) If p ̸= 0, then the leading coefficient of p is defined to be

[
xdeg p] p ∈ R.

(c) The polynomial p is said to be monic if its leading coefficient is 1.

For example, the polynomial

5x3 + 2x + 1 ∈ Q [x]

has degree 3 and leading coefficient 5, thus is not monic. The polynomial

5x3 + 2x + 1 ∈ (Z/n) [x] (for a given integer n > 0)

has

• degree 3 if n ̸= 5, 1;

• degree 1 if n = 5;

• degree −∞ if n = 1 (since it is just 0 in this case).

Remark 3.3.2. Let n ∈ N. Then,

{ f ∈ R [x] | deg f ≤ n}

=
{

f ∈ R [x] | f = a0x0 + a1x1 + · · ·+ anxn for some ai ∈ R
}

= span
(

x0, x1, . . . , xn
)

.

In particular, this is an R-submodule of R [x].

Corollary 3.3.3. Let p, q ∈ R [x]. Then,

deg (p + q) ≤ max {deg p, deg q} and
deg (p − q) ≤ max {deg p, deg q} .
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Remark 3.3.4. The polynomials of degree ≤ 0 are just the constant polyno-
mials.

Proposition 3.3.5. Let p, q ∈ R [x]. Then:
(a) We have deg (pq) ≤ deg p + deg q.
(b) We have deg (pq) = deg p + deg q if p ̸= 0 and the leading coefficient

of p is a unit.
(c) We have deg (pq) = deg p + deg q if R is an integral domain.
(d) If n, m ∈ N satisfy n ≥ deg p and m ≥ deg q, then[

xn+m] (pq) = [xn] (p) · [xm] (q) .

(e) If pq = 0 and p ̸= 0 and if the leading coefficient of p is a unit, then
q = 0.

Corollary 3.3.6. If R is an integral domain, then so is the polynomial ring
R [x].

Remark 3.3.7. If R is not an integral domain, then you can get shenanigans
with degrees. For instance, if R = Z/4, then(

1 + 2x
)2

= 1 + 4x + 4x2 = 1
(
since 1 = 0

)
.

So the degree of a polynomial can decrease when it is squared!

All the above results have pretty easy proofs. See Proposition 4.3.5 in the
notes.

3.3.2. Division with remainder

Just like integers, univariate polynomials can be divided with remainder, as
long as the polynomial you are dividing by has an invertible (= unit) leading
coefficient:

Theorem 3.3.8. Let a, b ∈ R [x] be two polynomials such that b is nonzero and
the leading coefficient of b is a unit.

(a) Then, there is a unique pair (q, r) of polynomials in R [x] such that

a = qb + r and deg r < deg b.

(b) Moreover, this pair satisfies deg q ≤ deg a − deg b.

Proof. See Theorem 4.3.7 in the text.
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Example: a = 4x4 + 2x3 − 3x + 5 and b = x2 − x + 7. Then, we want q, r with

a = qb + r︸︷︷︸
deg<2

, that is,

4x4 + 2x3 − 3x + 5 = q ·
(

x2 − x + 7
)
+ r.

To make the 4x4-terms agree, we want q to have degree ≤ 2 and we want[
x2] q = 4. Thus, we get q = 4x2 + q′ (note: q′ is not the derivative q), so the

above equality becomes

4x4 + 2x3 − 3x + 5 =
(

4x2 + q′
)
·
(

x2 − x + 7
)
+ r, that is,

4x4 + 2x3 − 3x + 5 = 4x2
(

x2 − x + 7
)
+ q′

(
x2 − x + 7

)
+ r, that is,

4x4 + 2x3 − 3x + 5 − 4x2
(

x2 − x + 7
)
= q′

(
x2 − x + 7

)
+ r, that is,

6x3 − 28x2 − 3x + 5 = q′
(

x2 − x + 7
)
+ r.

To make the 6x3 terms agree here, we want q′ to have degree ≤ 1 and we want[
x1] q′ = 6. Thus, we get q′ = 6x1 + q′′ and

6x3 − 28x2 − 3x + 5 =
(

6x1 + q′′
) (

x2 − x + 7
)
+ r, that is,

−22x2 − 45x + 5 = q′′
(

x2 − x + 7
)
+ r.

To make the −22x2 terms agree here, we want q′′ to have degree ≤ 0 and we
want

[
x0] q′′ = −22. Thus we get q′′ = −22 and

−22x2 − 45x + 5 = −22
(

x2 − x + 7
)
+ r,

so that

r = −22x2 − 45x + 5 −
(
−22

(
x2 − x + 7

))
= 159 − 67x.

This is a valid remainder, since it has degree < deg b. Moreover, substituting
back in, we find q = 4x2 + 6x1 + (−22).

The polynomials q and r in the above theorem are called the quotient and
the remainder obtained when dividing a by b. Note that if deg a < deg b, then
q = 0 and r = a. Also note that b | a if and only if r = 0.

Don’t forget the condition “the leading coefficient of b is a unit”. This condi-
tion is automatically satisfied if b is monic or if R is a field, but not in general
(see homework set #6 for some examples).
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3.3.3. Evaluation of polynomials

Polynomials can not only be added, scaled, multiplied etc., but they can also
be evaluated, meaning that we can substitute things into them. Let us define
how this evaluation works, first for univariate polynomials:

Definition 3.3.9. Let p ∈ R [x] be a univariate polynomial. Let A be any
R-algebra. Let a ∈ A.

We define the element p (a) aka p [a] of A as follows: Write p as

p = ∑
i∈N

pixi (where pi ∈ R) ,

and set
p (a) := ∑

i∈N

piai.

This element p (a) aka p [a] is called the evaluation of p at a; we say that it
is obtained by substituting a for x in p.

A few comments:

• The A here can be any R-algebra, not just R itself. For example, A can
be Rn×n (a case known from linear algebra) or R [x] (in which case you
are evaluating a polynomial at another polynomial – this is called com-
position of polynomials). So a polynomial is not a function – it allows for
a-priori unbounded possibilities of domain.

• We cannot do this with formal power series (i.e., infinite sums like 1+ x +
x2 + x3 + · · · ).

• Note that p [x] = p.

• Warning: The notation p (a) can be ambiguous. For example, what is
x (x + 1) ? Is it the product x · (x + 1) or the evaluation x [x + 1] ? So be
careful with it, and fall back to p [a] if necessary.

• Evaluation can act weird. For instance, let R = Z/2 and p = x2 + x ∈
R [x]. Then, evaluating p at the elements of R yields

p
(
0
)
= 02

+ 0 = 0;

p
(
1
)
= 12

+ 1 = 2 = 0.

That is, p (r) = 0 for all r ∈ R. But evaluating p at the 2 × 2-matrix
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(
0 1
1 0

)
∈ R2×2 yields

p

[(
0 1
1 0

)]
=

(
0 1
1 0

)2

+

(
0 1
1 0

)

=

(
1 1
1 1

)
̸= 0R2×2 .

So a polynomial can be nonzero even if all its values on scalars (= elements
of R) are zero.

Given an R-algebra A and an element a ∈ A, the operation of evaluating
polynomials p ∈ R [x] at a behaves nicely:

Theorem 3.3.10. Let A be an R-algebra. Let a ∈ A. Then, the map

R [x] → A,
p 7→ p [a]

is an R-algebra morphism. Explicitly, this is saying that:

(p + q) [a] = p [a] + q [a] for all p, q ∈ R [x] ;
(pq) [a] = p [a] · q [a] for all p, q ∈ R [x] ;
(λp) [a] = λ · p [a] for all λ ∈ R and p ∈ R [x] ;

0 [a] = 0;
1 [a] = 1,

The proof of this is easy, but it becomes even easier using the following
lemma:

Lemma 3.3.11. Let A and B be two R-algebras. Let f : A → B be an R-linear
map. Let (mi)i∈I be a family of vectors in A that spans A. If we have

f
(
mimj

)
= f (mi) f

(
mj
)

for all i, j ∈ I,

then
f (ab) = f (a) f (b) for all a, b ∈ A.

Proof. By linearity.

Proof of the theorem. Easy using the lemma.
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We can similarly evaluate multivariate polynomials, but now we need to
require that the “inputs” commute. Otherwise, the true equality xy = yx in the
polynomial ring R [x, y] would become the not-necessarily-true equality ab = ba
in every R-algebra A.

Definition 3.3.12. Let n ∈ N. Let p ∈ R [x1, x2, . . . , xn] be a multivariate
polynomial. Let A be any R-algebra. Let a1, a2, . . . , an be n elements of A
that mutually commute (i.e., that satisfy aiaj = ajai for all i, j).

We define the element p (a1, a2, . . . , an) aka p [a1, a2, . . . , an] of A as follows:
Write the polynomial p as

p = ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in xi1
1 xi2

2 · · · xin
n

(
with pi1,i2,...,in ∈ R

)
,

and set
p (a1, a2, . . . , an) := ∑

(i1,i2,...,in)∈Nn

pi1,i2,...,in ai1
1 ai2

2 · · · ain
n .

This element p (a1, a2, . . . , an) is called the evaluation of p at a1, a2, . . . , an,
and we say that it is obtained by substituting a1, a2, . . . , an for x1, x2, . . . , xn
in p.

There is an analogue of the above theorem:

Theorem 3.3.13. Let n ∈ N. Let A be any R-algebra. Let a1, a2, . . . , an be n
elements of A that mutually commute (i.e., that satisfy aiaj = ajai for all i, j).
Then, the map

R [x1, x2, . . . , xn] → A,
p 7→ p [a1, a2, . . . , an]

is an R-algebra morphism.

Proof. Somewhat analogous to the above; see the text for details (Theorem
4.2.11). Note that you need(

ai1
1 ai2

2 · · · ain
n

) (
aj1

1 aj2
2 · · · ajn

n

)
= ai1+j1

1 ai2+j2
2 · · · ain+jn

n ,

and that’s where the commutativity of the ais comes useful.

3.3.4. Roots

Our notion of roots is quite liberal:



Math 332 Winter 2025 diary, version March 14, 2025 page 133

Definition 3.3.14. Let A be an R-algebra. Let p ∈ R [x] be a polynomial. An
element a ∈ A is called a root of p if p [a] = 0.

For example, the matrix
(

0 1
1 0

)
∈ Q2×2 is a root of the polynomial x2 − 1,

since (
x2 − 1

) [( 0 1
1 0

)]
=

(
0 1
1 0

)2

−
(

1 0
0 1

)
= 0Q2×2 .

For another example, the polynomial x2 + 1 ∈ Z [x] has infinitely many roots
in the quaternion ring H, since any “purely imaginary” quaternion ai + bj + ck
satisfies

(ai + bj + ck)2 = −
(

a2 + b2 + c2
)

and thus is a root of x2 + 1 whenever a2 + b2 + c2 = 1.

Let us say a few first things about roots in R:

Proposition 3.3.15. Let f be a polynomial in R [x]. Let a ∈ R. Then, a is a
root of f if and only if x − a | f in R [x].

Proof. See §4.3.3 in the text. In a nutshell: Divide f by x − a with remainder,
and observe that x − a | f if and only if the remainder is 0.

The following theorem is often known as the easy half of the FTA (Funda-
mental Theorem of Algebra):

Theorem 3.3.16 (easy half of FTA). Let R be an integral domain. Let n ∈ N.
Then, any nonzero polynomial f ∈ R [x] of degree ≤ n has at most n roots in
R. (We are not counting multiplicities here.)

Proof. See §4.3.3 in the text. In a nutshell: Each root a allows you to divide f by
x − a, which lowers the degree of f by 1. All roots distinct from a remain roots
when you do this, because R is an integral domain. Obviously, you cannot do
this more than n times, since the degree of a nonzero polynomial cannot be
negative.

Remark 3.3.17. The “full” FTA says that a nonzero polynomial of degree n
over C has exactly n roots, counted with multiplicities. This is not really a
theorem of algebra, since it relies on analytic properties of C. Some references
to proofs can be found in the notes. For us in abstract algebra, the “full” FTA
is usually not needed.
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3.3.5. F [x] is a Euclidean domain

The division-with-remainder theorem for polynomials looks very much like
the definition of a Euclidean ring. However, it has the annoying condition “the
leading coefficient of b is a unit”, which does not allow it to be used as widely
as the definition of a Euclidean ring would require. However, when R is a field,
every leading coefficient is a unit, so the condition becomes unnecessary. Thus,
we obtain:

Theorem 3.3.18. Let F be a field. Then, the polynomial ring F [x] is a Eu-
clidean domain with Euclidean norm

N : F [x] → N,

p 7→ max {deg p, 0} =

{
deg p, if p ̸= 0;
0, if p = 0.

Proof. As just explained.

This allows us to apply the machinery of Euclidean domains to F [x]. Thus,
univariate polynomials over a field have gcds and lcms, which can be computed
by the Euclidean algorithm, and Bezout’s theorem (about gcd (a, b) = ua + vb)
holds for them. Also, this entails that F [x] is a PID. See §4.3.6 in the text.

Note that even multivariate polynomial rings F [x1, x2, . . . , xn] over a field are
UFDs, so they have gcds and lcms, though they are not Euclidean domains!
This is harder to prove and we won’t get to it.

3.3.6. Lagrange interpolation

First, a corollary from the easy half of the FTA:

Corollary 3.3.19 (uniqueness of the interpolating polynomial). Let R be an
integral domain. Let a0, a1, . . . , an be n + 1 distinct elements of R. Let f , g ∈
R [x] be two polynomials of degree ≤ n. Assume that

f [ai] = g [ai] for all i ∈ {0, 1, . . . , n} .

Then, f = g.

Proof. The polynomial f − g has degree ≤ n, but it is 0 on all the a0, a1, . . . , an.
So f − g has more roots than its degree. If f − g was nonzero, this would
contradict the easy half of the FTA. So f − g is zero, and thus f = g.

This corollary says that a polynomial of degree ≤ n over an integral domain
is uniquely determined by its values at n + 1 distinct elements a0, a1, . . . , an of
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R. In other words, if you specify the values f [a0] , f [a1] , . . . , f [an], then the
polynomial f is uniquely determined (assuming it has degree ≤ n). But does
such a polynomial f always exist (whatever choice of values)?

If R is a field, then the answer is “yes”:

Theorem 3.3.20 (Lagrange interpolation). Let F be a field. Let n ∈ N.
Let a0, a1, . . . , an be n + 1 distinct elements of F. Let b0, b1, . . . , bn be n + 1

elements of F. Then:
(a) There is a unique polynomial p ∈ F [x] such that deg p ≤ n and

p [ai] = bi for all i ∈ {0, 1, . . . , n} .

(b) This polynomial p is explicitly given by

p =
n

∑
j=0

bj

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

) .

Proof. See Theorem 4.3.26 in the text for details. In a nutshell: Define p by the
formula in part (b). Then, deg p ≤ n and

p [ai] =
n

∑
j=0

bj

∏
k ̸=j

(ai − ak)

∏
k ̸=j

(
aj − ak

)
︸ ︷︷ ︸
=0 when j ̸=i

(because when j ̸=i, then the
product in the numerator has a k=i

factor, which is ai−ai=0)

= bi

∏
k ̸=i

(ai − ak)

∏
k ̸=i

(ai − ak)
= bi.

So p does fit the bill of part (a). Remains to prove the uniqueness. But the above
corollary does it for us.

The theorem allows us to construct (or reconstruct) a polynomial of degree
≤ n over a field F from knowing n + 1 of its values (at distinct inputs). This
is called Lagrange interpolation. This is particularly useful when F is a finite
field such as Z/p for a prime p. Here are two applications:

• Shamir’s Secret Sharing Scheme: How do you “divide up” a piece of
secret information among n “keepers” such that any k of the n “keepers”
can reconstruct it but any k − 1 cannot?

Assume you have a secret a, and you want to distribute it among n people
(“keepers”) in such a way that any k keepers can reconstruct a (working
together), but any k − 1 cannot infer anything nontrivial about a.
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How would you do this? Shamir’s Secret Sharing Scheme does it as fol-
lows:

Fix a prime p such that p > n and p > 2N, where N is the size of a in bits.

Label the n keepers 1, 2, . . . , n.

Encode the secret a as a residue class α ∈ Z/p. (Note that the encoding
algorithm and the p are not secret.)

Pick k − 1 uniformly random elements β1, β2, . . . , βk−1 of Z/p.

Let f be the polynomial

βk−1xk−1 + βk−2xk−2 + · · ·+ β1x + α ∈ (Z/p) [x]

of degree ≤ k − 1.

Give one value of f to each keeper: namely, keeper i gets f
[
i
]
∈ Z/p.

Lagrange interpolation allows any k keepers to reconstruct f and thus α
and thus a.

For any k − 1 keepers, the data they have is consistent with any possible
value of α, since fixing the value of α is the same as fixing f

[
0
]
, and that

would provide just enough values for Lagrange interpolation.

• Error-correcting codes: How do you transmit data so that occasional er-
rors in the transmission (noise, etc.) do not prevent the receiver from
reconstructing the correct data?

This is the main question of coding theory (including both storage media,
like hard drives and RAM, and communication media, like telephone and
radio).

Here is a little taste of the subject:

Imagine you want to send a message to a recipient via messenger pigeons.
Each pigeon can carry an element of Z/p for a given prime p (more
realistically, a bitstring of size n, but this can be reencoded into Z/p).
Your message is a tuple of n elements of Z/p, so you could fit it onto
n pigeons. But that’s fragile: If any pigeon gets lost, then the receiver
cannot recover your message.

You can ameliorate this by adding redundancy into the system: Duplicat-
ing each message 3 times (so send 3n pigeons), then you can stomach the
loss of 2 pigeons. But this is a bad deal: 3 times as many pigeons, but
only 2 pigeons of loss tolerance.

You want something better.

One simple trick is “check-sums”: If your message is the n-tuple (a1, a2, . . . , an),
then you can send n pigeons with the entries ai separately, and then an
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extra “checksum” pigeon with the sum a1 + a2 + · · · + an ∈ Z/p. This
allows the receiver to recover from the loss of any single pigeon:

ai = (a1 + a2 + · · ·+ an)− a1 − a2 − · · · − ai−1 − ai+1 − · · · − an.

Similarly, you can recover from 2 missing pigeons by sending two “check-
sum” pigeons, for example,

a1 + a2 + · · ·+ an,
1a1 + 2a2 + · · ·+ nan

(if n < p). Things, however, get more complicated with more missing
pigeons.

However, polynomials and Lagrange interpolation give a uniform solu-
tion. We encode our intended message into a polynomial

f := a1x0 + a2x1 + a3x2 + · · ·+ anxn−1 ∈ (Z/p) [x] ,

and give each pigeon a value of this polynomial (say, pigeon i gets f
[
i
]
).

Any n values determine f uniquely, so the receiver can make do with
receiving any n pigeons. So, if you send n + r pigeons, then the receiver
can recover from the loss of any r of them.

Moreover, this allows for some version of error correction (i.e., the receiver
can recover from the corruption of any

⌊ r
2

⌋
pigeons, which means that

they arrive but transport wrong values).

This is an error-correcting code known as the Reed–Solomon code (going
back to Reed and Solomon in 1960).

Several more codes are known; some textbooks are referenced in the notes
(or Lecture 26 from 2023).

• There are theoretical applications, too.

For example: Let p be a prime number. Consider the polynomial

xp − x ∈ (Z/p) [x] .

All elements of Z/p are roots of this polynomial (by Fermat’s Little The-
orem). So our degree-p polynomial xp − x has p roots. No surprise.

Now, let us tweak it a bit. Namely, consider the more sophisticated poly-
nomial

f := (xp − x)− ∏
u∈Z/p

(x − u)

= (xp − x)−
(
x − 0

)︸ ︷︷ ︸
=x

(
x − 1

) (
x − 2

)
· · ·
(
x − p − 1

)
.
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This polynomial f also has p roots (since any element of Z/p substituted
for x in ∏

u∈Z/p
(x − u) will yield 0). But its degree is < p (since the xp

leading terms cancel when you take the difference). Since Z/p is an
integral domain, this would contradict the easy half of the FTA if f was
nonzero. So f is zero. Thus we have proved:

Proposition 3.3.21. Let p be a prime number. Then,

xp − x = ∏
u∈Z/p

(x − u) in the polynomial ring (Z/p) [x] .

• Much can be gotten out of this proposition by comparing coefficients of
powers of x. In particular, we can compare coefficients in front of x. Thus
we find

−1 =
(
−1
) (

−2
)
· · ·
(
−p − 1

)
= ∏

u∈(Z/p)×
u

= 1 · 2 · · · · · p − 1 = 1 · 2 · · · · · (p − 1) = (p − 1)!.

Thus we recover Wilson’s theorem (p − 1)! ≡ −1 mod p.

• Another use of the easy half of the FTA is the following fact (see Proposi-
tion 4.3.20 in the text):

Let p be a prime. Let k ∈ {0, 1, . . . , p − 2}. Then, the sum

0k + 1k + · · ·+ (p − 1)k =
p−1

∑
j=0

jk

is divisible by p.

Proposition 3.3.22.

3.4. Intermezzo: Quotients of R-algebras

A ring can be quotiented by an ideal. An R-module can be quotiented by a
submodule.

So you shouldn’t be surprised that an R-algebra can be quotiented by some-
thing as well. This “something” has to be an ideal that also happens to be an
R-submodule at the same time. But it turns out that any ideal of an R-algebra
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is an R-submodule. Indeed, if I is an ideal of an R-algebra A, then I is closed
under scaling, since

ri = (r · 1A) i ∈ I since I is an ideal.

Thus, we can quotient an R-algebra by any ideal:

Theorem 3.4.1. Let A be an R-algebra. Let I be an ideal of A. Then:
(a) The ideal I is also an R-submodule of A.
(b) The quotient ring A/I and the quotient R-module A/I fit together to

form an R-algebra.
(c) The canonical projection π : A → A/I is an R-algebra morphism.

Proof. Straightforward. See the notes/text.

Quotient R-algebras have a universal property:

Theorem 3.4.2 (Universal property of quotient algebras, elementwise form).
Let A be a R-algebra. Let I be an ideal of A.

Let B be an R-algebra. Let f : A → B be an R-algebra morphism. Assume
that f (I) = 0 (that is, f (i) = 0 for each i ∈ I). Then, the map

f ′ : A/I → B,
a 7→ f (a)

is well-defined and is an R-algebra morphism.

Proof. Analogous to the ring case.

3.5. Adjoining roots

3.5.1. A notation

Convention 3.5.1. Let S be any commutative ring, and let a ∈ S. Then, the
quotient ring S/aS will be called S/a.

This generalizes the notation Z/n for Z/nZ.
We briefly recall that we think of a quotient ring R/I as “what becomes of R

if we equate all elements of I with zero”. Thus, S/a is “what becomes of S if we
equate all multiples of a with zero”. Of course, this is tantamount to equating
just a with zero and drawing the obvious consequences (0·anything= 0).
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3.5.2. Why adjoin roots

We now come to one of the most important applications of polynomials to
algebra: a way to “adjoin” roots of a polynomial to a given commutative ring
(i.e., to “create” roots out of thin air).

The classical example is the construction of complex numbers as “real num-
bers plus a root i of x2 + 1”. Cardano did essentially this in the 16th century
(more in the text) by sheer power of fancy: He essentially said “let’s pretend
that there is some new number i such that i2 = −1 and play with it”. This is a
dangerous thing to do, because you could just as well introduce a new number
∞ such that 0 · ∞ = 1, and then quickly “learn” that all your old numbers are
equal (1+ 1 = 0 ·∞+ 0 ·∞ = (0 + 0) ·∞ = 0 ·∞ = 1 for example). So nowadays
we prefer to define complex numbers as pairs of real numbers instead.

3.5.3. How to adjoin roots

Nevertheless, the ability to invent new numbers satisfying some desired equal-
ities is a good power to have, and it would be nice if we could tell when such
an invention is harmless (as opposed to collapsing existing numbers). So let us
try to make it rigorous. What does it mean to introduce a new number?

The simplest case is when we want to introduce a new number x that satisfies
no relations (other than the ring axioms). This just means we work in the
polynomial ring R [x]. Our “new number” here is just the indeterminate x.

Now, if we want our “new number” to satisfy some relations – let’s say
x2 + x = 15 – then we can move over to the quotient ring R [x] /

(
x2 + x − 15

)
.

This has the effect of equating x2 + x − 15 to 0, thus equating x2 + x to 15. Our
“new number” is then the residue class x ∈ R [x] /

(
x2 + x − 15

)
.

In particular, Cardano’s complex numbers are therefore the elements of R [x] /
(
x2 + 1

)
,

with the imaginary unit i being the residue class x.
This method generalizes to any commutative ring R instead of R, and to an

arbitrary polynomial b ∈ R [x] that we want to “equate to 0”. In general, if we
start with a commutative ring R and a polynomial b ∈ R [x], then the quotient
ring R [x] /b has an element x (the residue class of x) that is a root of b (since
b [x] = b [x] = b = 0 (because b is in the ideal we’re quotienting by)). So we
have “created” a root of b. This quotient ring R [x] /b is not just a ring, but
actually a commutative R-algebra.

Alas, as we said, this ring R [x] /b might “collapse” some existing elements
of R, in the sense that distinct elements of R could become equal in R [x] /b.
So we cannot generally say that R [x] /b is an “extension of R by a root of b”;
in general, it is merely an R-algebra that contains a root of b. We will soon see
some criteria for when this kind of “collapse” happens and when it doesn’t.



Math 332 Winter 2025 diary, version March 14, 2025 page 141

3.5.4. Some examples

Let us first see this construction in some concrete cases.
As we said, Cardano’s complex numbers are the elements of R [x] /

(
x2 + 1

)
,

while modern complex numbers are pairs of real numbers (a, b) = a + bi ∈ C.
We hope that these two rings (actually R-algebras) are isomorphic. This is
indeed the case:

Proposition 3.5.2. We have

R [x] /
(

x2 + 1
)
∼= C as R-algebras.

Concretely: There is an R-algebra isomorphism

R [x] /
(

x2 + 1
)
→ C,

p 7→ p [i] .

Proof. Here is a six-step procedure to prove this claim (and generally claims
like this):

1. Give a putative definition of the alleged isomorphism.

2. Prove that this definition actually defines a map (“the map is well-defined”).

3. Prove that this map is an R-algebra morphism.

4. Prove that this map is injective.

5. Prove that this map is surjective.

6. Conclude that this map is an R-algebra isomorphism.

Let us say a few words about how these six steps look like in our case.
Step 1 has already been done: Our map is defined to be the map

R [x] /
(

x2 + 1
)
→ C,

p 7→ p [i] .

Step 2: We must show that if p = q, then p [i] = q [i].
Let p = q. Then, p ≡ q mod

(
x2 + 1

)
R [x], which means that p = q +(

x2 + 1
)

r for some polynomial r ∈ R [x]. Then, with this r, we get

p [i] =
(

q +
(

x2 + 1
)

r
)
[i]

= q [i] +
(

x2 + 1
)
[i]︸ ︷︷ ︸

=i2+1=0

·r [i]

= q [i] .
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So Step 2 is finished.
Step 3: We must show that the map

R [x] /
(

x2 + 1
)
→ C,

p 7→ p [i] .

is an R-algebra morphism. This is a general property of evaluation morphisms.
(Actually, Steps 2 and 3 could be done in one swoop using the universal

property of quotient R-algebras.)
Step 4 (injectivity): Our map is R-linear. Hence, in order to prove that it is

injective, it suffices to show that its kernel is {0}. In other words, we must show
that if a polynomial p ∈ R [x] satisfies p [i] = 0, then p = 0.

Let p ∈ R [x] be a polynomial such that p [i] = 0. By division with remainder,
we can write p as p = q ·

(
x2 + 1

)
+ r for some polynomials q, r with deg r <

deg
(
x2 + 1

)
. Of course, deg r < deg

(
x2 + 1

)
= 2 means that r is linear, i.e.,

that r = ax + b for some constants a, b ∈ R. From p = q ·
(
x2 + 1

)
+ r, we obtain

p = r, so that p [i] = r [i] because our map is well-defined.
From r = ax + b, we obtain r [i] = ai + b = (b, a) (viewing C as R×R). Thus,

from r [i] = p [i] = 0, we obtain (b, a) = 0, so that a = b = 0 and therefore r = 0.
Hence, p = r = 0, qed.

(Essentially, we have argued here that every element of R [x] /
(
x2 + 1

)
can

be written as r for some linear polynomial r.)
Step 5 (surjectivity) is easy: We must show that every z ∈ C can be written

as p [i] for some p ∈ R [x]. To do this, just write z as a + bi with a, b ∈ R, and
take p = a + bx.

Step 6 is automatic. So the proposition is proved.

Similarly:

Proposition 3.5.3. We have

Z [x] /
(

x2 + 1
)
∼= Z [i] as Z-algebras.

Concretely: There is a Z-algebra isomorphism

Z [x] /
(

x2 + 1
)
→ Z [i] ,

p 7→ p [i] .

Proposition 3.5.4. We have

Q [x] /
(

x2 + 1
)
∼= Q [i] as Q-algebras.
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Concretely: There is a Q-algebra isomorphism

Q [x] /
(

x2 + 1
)
→ Q [i] ,

p 7→ p [i] .

Proposition 3.5.5. We have

Q [x] /
(

x2 − 5
)
∼= Q

[√
5
]

as Q-algebras.

Concretely: There is a Q-algebra isomorphism

Q [x] /
(

x2 − 5
)
→ Q

[√
5
]

,

p 7→ p [i] .

Proof. Similar, but use the irrationality of
√

5 to show that a + b
√

5 = 0 entails
a = b = 0 (when a, b ∈ Q).

Proposition 3.5.6. We have

Q [x] /
(

x2 − 1
)
∼= Q [C2] (the group algebra of the cyclic group C2)

∼=
{(

a b
b a

)
| a, b ∈ Q

} (
a subring of Q2×2

)
∼= Q × Q (a direct product of two Qs) .

All the above examples have a commonality: The quotient ring always had
the form R [x] /b where b is a non-constant polynomial whose leading coeffi-
cient is a unit (actually, 1 in our examples). This ensures that the division with
remainder we used in our proof goes through. The non-constantness of b en-
sures that the resulting quotient ring R [x] /b contains a copy of R as a subring.
(To be proved below.)

If the leading coefficient is not a unit or b is constant, then the quotient ring
R [x] /b might contain only a collapsed version of R as a subring:

Proposition 3.5.7. For any integer m, we have Z [x] /m ∼= (Z/m) [x].
In particular, Z [x] /1 ∼= (Z/1) [x] is a trivial ring.

Here is a subtler example:
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Proposition 3.5.8. Fix a nonzero integer m. Then,

Z [x] / (mx − 1) ∼= Z

[
1
m

]
=
{ a

mi | a ∈ Z and i ∈ N
}

.

This is not obvious (there is a proof sketch in the text)!

Let us summarize: If we have a commutative ring R and a polynomial b ∈
R [x], then the quotient ring R [x] /b is like “R with a root of b thrown in”. The
residue class x is a new root of b in R [x] /b. This ring R [x] /b does not always
contain a copy of R (for example, 1 ̸= 3 in Z but 1 = 3 in Z [x] /2), but it
is always a commutative R-algebra, and thus contains the subring {r | r ∈ R}
which is isomorphic to a quotient of R.

Cardano was lucky: In his case, the ring R [x] /
(
x2 + 1

)
really does contain a

copy of R, and its elements can be encoded as pairs (a, b) of two real numbers.
This means that, as an R-vector space, it has a basis

(
1, x
)
. In general, as an

R-module, R [x] /b will not always be free.
As a ring, R [x] /b is not always as nice as R. For example, Q is a field, but

Q [x] /
(
x2 − 1

)
is not even an integral domain (it is ∼= Q × Q).

This method of creating roots of polynomials b by passing from R to R [x] /b
is called root adjunction, or adjoining a root of b to R.

So we might want some criteria for when root adjunction behaves nicely:
When do we get a field? When do we get a free R-module? When do we get a
copy of R inside R [x] /b ?

Before answering these questions (by some sufficient criteria), let me state
some basics:

Proposition 3.5.9. Let b ∈ R [x] be a polynomial.
(a) The projection map

π : R [x] → R [x] /b,
p 7→ p

is an R [x]-algebra morphism, hence an R-algebra morphism.
(b) Its restriction

π |R: R → R [x] /b,
r 7→ r

is an R-algebra morphism.
(c) For any p ∈ R [x], we have p [x] = p in R [x] /b.
(d) The element x ∈ R [x] /b is a root of b.

Proof. Easy. (Proposition 4.5.7 in the text.)
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Now, here are the promised criteria for niceness of R [x] /b:

Theorem 3.5.10. Let m ∈ N. Let b ∈ R [x] be a polynomial of degree m
whose leading coefficient [xm] b is a unit of R. Then:

(a) Each element of R [x] /b can be uniquely written in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R.

(b) The m vectors x0, x1, . . . , xm−1 form a basis of the R-module R [x] /b. In
particular, this R-module is free of rank m.

(c) If m > 0, then the R-algebra morphism

R → R [x] /b,
r 7→ r

is injective, and thus R can be viewed as an R-subalgebra of R [x] /b (by
identifying each r ∈ R with r ∈ R [x] /b).

(d) Thus, under the assumption that m > 0, there exists a commutative
ring that contains R as a subring and that contains a root of b.

Proof. Again, see the text (Theorem 4.5.9). Part (a) reduces to division with
remainder, and the other parts follow from it.

OK, so we know how to adjoin a root of a polynomial to a commutative ring,
and we can ensure that the resulting ring will contain a copy of R as a subring
if our polynomial is non-constant and has its leading coefficient be a unit. This
covers most cases we care about, such as Cardano’s R [x] /

(
x2 + 1

)
. When the

leading coefficient is not a unit, we don’t get a basis any more, but the quotient
can still be well-behaved depending on other things.

When does a root adjunction to a field produce a field? It does for Q [x] /
(
x2 + 1

)
but it does not for Q [x] /

(
x2 − 1

)
. More complicated examples are Q [x] /

(
x4 + 3x3 + 2x2 + x + 5

)
(a field) and Q [x] /

(
x4 + 2x3 + 4x2 + 3x + 2

)
(not a field). In general:

Theorem 3.5.11. Let F be a field. Let b ∈ F [x] be a nonzero polynomial.
Then, F [x] /b is a field if and only if b is irreducible (= not a product of two
non-constant polynomials, and not itself constant).

Proof. This is the polynomial analogue of the fact that Z/n is a field if and only
if n is prime (or minus a prime, or 0 or 1 or −1). More generally: If R is any
PID, then a quotient ring R/b by a nonzero element b ∈ R is a field if and only
if b is prime in R. (If R is Euclidean, you can prove this exactly as we proved
the analogous property of Z/n.)

Thus, we can adjoin a root of any irreducible polynomial to a field and get a
field.

If we do this multiple times, we can obtain a field in which our polynomial
factors into linear factors:
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Corollary 3.5.12. Let F be a field. Let b ∈ F [x] be a monic polynomial. Then,
there exists a field G that contains F as a subfield and such that b can be
factored as

b = (x − λ1) (x − λ2) · · · (x − λn) for some λ1, λ2, . . . , λn ∈ G.

Proof. Use root adjunction repeatedly. Make sure to only apply root adjunction
to irreducible polynomials (so if b is not irreducible, just factor it and adjoin a
root of one of the factors).

Such a field G is called a splitting field for b. So we have shown that any
monic polynomial over a field has a splitting field. Thus, for an algebraist,
roots of a polynomial can always be summoned at will. This means that the
hard part of the FTA is rarely ever necessary in algebra: You can just get your
roots by root adjunction.

This also allows us to construct finite fields different from Z/p. For example,
you can get a finite field of size 25 = 32 by adjoining a root of an irreducible
polynomial of degree 5 to Z/2. (For this, you need to find such a polynomial,
but this can be done by brute force.)

In the text, I show that for any prime power pm, there is an irreducible poly-
nomial of degree m over Z/p, and this allows you to produce a finite field of
size pm by root adjunction.


	Rings and fields
	Defining rings
	The definition
	Some examples

	Calculating in rings
	What works
	What doesn't work

	Subrings
	Definition
	Examples

	Zero divisors and integral domains
	Units and fields
	Units and inverses
	Fields

	Fields and integral domains: some connections
	Division

	Ring morphisms
	Definition and examples
	Basic properties of ring morphisms
	The image of a ring morphism
	Basic properties of ring isomorphisms

	Ideals and kernels
	Kernels
	Ideals
	Principal ideals
	Other examples of ideals

	Quotient rings
	Quotient groups
	Quotient rings
	More examples of quotient rings
	The canonical projection
	The universal property of quotient rings
	Injectivity means zero kernel
	The First Isomorphism Theorem for sets
	The First Isomorphism Theorem for rings

	Direct products of rings
	Direct products of two rings
	Direct products of any number of rings
	Examples
	Direct products and idempotents

	Ideal arithmetic
	The Chinese Remainder Theorem
	Introduction
	The Chinese Remainder Theorem for two ideals
	Application to integers
	Interlude: Multiplying comaximal ideals
	The Chinese Remainder Theorem for k ideals
	Applying to integers again
	A few words about noncommutative rings

	Euclidean rings and Euclidean domains
	All ideals of Z are principal
	Euclidean rings

	An introduction to divisibility theory
	Principal ideal domains
	Divisibility in commutative rings
	Gcds and lcms for integers
	Associate elements
	Uniqueness of gcds and lcms in an integral domain
	Existence of gcds and lcms in a PID
	Irreducible and prime elements
	Irreducible factorizations and UFDs
	A synopsis

	Application: Fermat's p=x2+y2 theorem

	Modules
	Definitions and examples
	Defining modules
	Defining submodules
	Examples
	Direct products
	Restriction of scalars

	A couple generalities
	Negation and subtraction
	Finite sums
	Principal submodules

	Abelian groups as Z-modules
	Module morphisms
	Definition
	Simple examples
	Ring morphisms as module morphisms
	General properties of linearity
	Kernels and images
	Quotient modules

	Spanning, linear independence, bases, free modules
	Definitions
	Spans are submodules
	Coordinates
	Free modules

	The universal property of a free module
	Bilinear maps
	Multilinear maps
	Algebras over commutative rings
	Definition
	Z-algebras = rings
	The underlying structures
	Commutative R-algebras
	Subalgebras
	R-algebra morphisms
	Direct products

	Defining algebras: the case of H

	Monoid algebras and polynomials
	Monoid algebras
	Definition
	Examples
	General properties of monoid algebras

	Polynomial rings
	Univariate polynomials
	Multivariate polynomials
	Constant polynomials
	Coefficients
	Symbols for indeterminates

	Univariate polynomials
	Degrees and coefficients
	Division with remainder
	Evaluation of polynomials
	Roots
	F[ x]  is a Euclidean domain
	Lagrange interpolation

	Intermezzo: Quotients of R-algebras
	Adjoining roots
	A notation
	Why adjoin roots
	How to adjoin roots
	Some examples



