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The symmetric group algebra

Fix an n ∈ N and a commutative ring k.
The symmetric group Sn (aka Sn) consists of the
permutations of [n] := {1, 2, . . . , n}.
Let A = k [Sn] be the group algebra of the symmetric group
Sn over k.
It consists of formal linear combinations of the n!
permutations w ∈ Sn. Multiplication is composition of
permutations (+ expanding sums).

Example: For n = 3, we have

(1 + s1) (1− s1) = 1 + s1 − s1 − s21 = 1 + s1 − s1 − 1 = 0;

(1 + s2) (1 + s1 + s1s2) = 1 + s2 + s1 + s2s1 + s1s2 + s2s1s2 =
∑
w∈S3

w .

Here, si is the simple transposition swapping i with i + 1.

A has been studied since the late 1890s (Alfred Young’s
“substitutional analysis”). Today I will show that many
questions are still open.
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The Young–Jucys–Murphy elements, 1

Some of the nicest elements of A are the
Young–Jucys–Murphy elements (short: YJM elements)

mk := t1,k + t2,k + · · ·+ tk−1,k for all 1 ≤ k ≤ n,

where ti ,j is the transposition swapping i with j .

Theorem (easy exercise). The YJM elements
m1,m2, . . . ,mn commute.

(Note: m1 = 0.)

The subalgebra of A they generate is called the
Gelfand–Tsetlin subalgebra GZn.

Theorem (Murphy, ca. 1980?). If k is a field of
characteristic 0, then GZn (as a k-vector space) has dimension
equal to

(# of involutions in Sn)

=
∑
λ⊢n

(# of standard Young tableaux of shape λ)

(OEIS sequence A000085).
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The Young–Jucys–Murphy elements, 2: Questions

Question 1: Does GZn have a basis for arbitrary k ?

Question 1’ (equivalent): Let k = Z/p for a prime p. Is
dimk GZn independent on p ?

Question 1” (equivalent): Is GZn a direct addend of A as a
k-module? (The case k = Z would suffice.)

Question 1+: Does GZn have a combinatorially meaningful
basis for k = Z ?

For k = Q, it has a basis
(eT ,T )λ⊢n; T is a standard tableau of shape λ coming from the

seminormal basis of k [Sn].

Questions 1, 1’, 1” are true for n ≤ 6.

https://mathoverflow.net/questions/497831/
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The Young–Jucys–Murphy elements, 3: Some results

Fact: The 2nn! products ma1
1 ma2

2 · · ·man
n with ai ≤ 2 (i − 1)

span GZn.

This reduces Question 1 to “does this huge integer matrix
have invariant factors 0 and 1?”. But 2nn! grows very fast.

Fact (Jucys–Murphy theorem): The symmetric
polynomials in m1,m2, . . . ,mn form the center Z (k [Sn]) of
k [Sn]. This center has basis

(sum of all permutations w ∈ Sn with cycle type λ)λ⊢n .

Fact (Olshanskii? Okounkov/Vershik?): You don’t need
the YJM elements to define GZn. Two other characterizations:

GZn is the k-subalgebra of k [Sn] generated by the
centers of k [Sk ] for all k ∈ {0, 1, . . . , n}.
GZn is the k-subalgebra of k [Sn] generated by the
centralizers of k [Sk−1] in k [Sk ] for all k ∈ {1, 2, . . . , n}.
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Specht modules: a quick introduction

Let D be a diagram with n cells. For instance, for n = 9, we
can have

D = or D = .

Let T be an n-tableau of shape D, that is, a filling of D
with the numbers 1, 2, . . . , n. (Not necessarily standard, but
bijective!)
For example, if D is the second diagram above, we can have

T = 3 5 2

6 1 9

4 8 7

.
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Specht modules: the question

The Specht module SD is the left ideal of A generated by ∑
w∈Sn preserves
the columns of T

(−1)w w


 ∑

w∈Sn preserves
the rows of T

w

 .

Alternatively we can define SD as a span of polytabloids or of
determinants (see below) or in several other ways.

If D is a (skew) Young diagram, SD has many famous
properties (and is related to Schur functions). But let’s talk
about the general case.
Question 2 (Rota, Buchsbaum, 1980s??): Does SD have
a basis for arbitrary k ?
Question 2’ (equivalent): Let k = Z/p for a prime p. Is
dimk SD independent on p ?
Question 2” (equivalent): Is SD a direct addend of A as a
k-module? (The case k = Z would suffice.)
Question 2+: Does SD have a combinatorially meaningful
basis?
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Specht modules: alternative constructions, 1

Equivalent definitions of Specht modules #1:
We define a n-tabloid of shape D to be an equivalence class
of n-tableaux under row equivalence (i.e., permuting numbers
within rows of D). For instance,

n-tableau 3 2 7 5

4 6 1

9

2

7→ n-tabloid 2 3 5 7

1 4 6

9

2

.

We take the free k-module with basis the n-tabloids of shape
D. Inside it, we define the vector

eT :=
∑

w∈Sn preserves
the columns of T

(−1)w wT

for each n-tableau T (where wT means the n-tabloid that is
the equivalence class of wT ). Then, the span of these eT ’s is
∼= SD as Sn-representation. 8 / 29
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Specht modules: alternative constructions, 2

Equivalent definitions of Specht modules #2:
For each n-tableau T of shape D with ≤ k columns (labelled
1, 2, . . . , k), we define the Specht polynomial

spT :=
k∏

c=1

det


x ji where i runs over the entries

in the c-th column of T
while j runs over the indexes
of the rows they occupy

 .

For instance,

T = 2

6 4

3 5 1

7

7→ spT =

∣∣∣∣∣∣
x02 x06 x03
x12 x16 x13
x22 x26 x23

∣∣∣∣∣∣·
∣∣∣∣ x25 x27
x35 x37

∣∣∣∣·∣∣∣∣ x14 x11
x24 x21

∣∣∣∣ .

Then, SD ∼= spank {spT | T is an n-tableau of shape D}.
9 / 29



Specht modules: what is known

Theorem (Young 1930 in char 0, Garnir 1950 in general).
If D is a skew Young diagram, then SD has a basis indexed by
standard tableaux.

Theorem (Taylor 1997, Reiner/Shimozono 1995). If D is
column-convex (i.e., each column is contiguous), then SD has
a basis indexed by “straight tableaux”.

Further results by Reiner/Shimozono (1998) and Liu (2016)
on further classes of shapes, not sure about assumptions on
char k.

The general question of bases is wide open.

The next question would be to decompose SD into
irreducibles (“Specht filtration”).

Same questions can be posed for Schur and Weyl modules
(over GLn), but not sure if still equivalent.

10 / 29



Specht modules: what is known

Theorem (Young 1930 in char 0, Garnir 1950 in general).
If D is a skew Young diagram, then SD has a basis indexed by
standard tableaux.

Theorem (Taylor 1997, Reiner/Shimozono 1995). If D is
column-convex (i.e., each column is contiguous), then SD has
a basis indexed by “straight tableaux”.

Further results by Reiner/Shimozono (1998) and Liu (2016)
on further classes of shapes, not sure about assumptions on
char k.

The general question of bases is wide open.

The next question would be to decompose SD into
irreducibles (“Specht filtration”).

Same questions can be posed for Schur and Weyl modules
(over GLn), but not sure if still equivalent.

10 / 29



Specht modules: what is known

Theorem (Young 1930 in char 0, Garnir 1950 in general).
If D is a skew Young diagram, then SD has a basis indexed by
standard tableaux.

Theorem (Taylor 1997, Reiner/Shimozono 1995). If D is
column-convex (i.e., each column is contiguous), then SD has
a basis indexed by “straight tableaux”.

Further results by Reiner/Shimozono (1998) and Liu (2016)
on further classes of shapes, not sure about assumptions on
char k.

The general question of bases is wide open.

The next question would be to decompose SD into
irreducibles (“Specht filtration”).

Same questions can be posed for Schur and Weyl modules
(over GLn), but not sure if still equivalent.

10 / 29



Specht modules: what is known

Theorem (Young 1930 in char 0, Garnir 1950 in general).
If D is a skew Young diagram, then SD has a basis indexed by
standard tableaux.

Theorem (Taylor 1997, Reiner/Shimozono 1995). If D is
column-convex (i.e., each column is contiguous), then SD has
a basis indexed by “straight tableaux”.

Further results by Reiner/Shimozono (1998) and Liu (2016)
on further classes of shapes, not sure about assumptions on
char k.

The general question of bases is wide open.

The next question would be to decompose SD into
irreducibles (“Specht filtration”).

Same questions can be posed for Schur and Weyl modules
(over GLn), but not sure if still equivalent.

10 / 29



Specht modules: what is known

Theorem (Young 1930 in char 0, Garnir 1950 in general).
If D is a skew Young diagram, then SD has a basis indexed by
standard tableaux.

Theorem (Taylor 1997, Reiner/Shimozono 1995). If D is
column-convex (i.e., each column is contiguous), then SD has
a basis indexed by “straight tableaux”.

Further results by Reiner/Shimozono (1998) and Liu (2016)
on further classes of shapes, not sure about assumptions on
char k.

The general question of bases is wide open.

The next question would be to decompose SD into
irreducibles (“Specht filtration”).

Same questions can be posed for Schur and Weyl modules
(over GLn), but not sure if still equivalent.

10 / 29



The sum of all n-cycles

Let zn be the sum of all n-cycles in Sn. This is also the
product of all nonzero Young–Jucys–Murphy elements:

zn = m2m3 · · ·mn.

As a conjugacy class sum, zn belongs to the center of A.

Conjecture (Nathan Lindzey, MathOverflow #334899): For
k = Z, the quotient Z-module A/znA is a direct sum of Z’s
and Z/2k ’s.
Equivalently: All nonzero invariant factors of the “multiply by
zn” operator L (zn) = R (zn) : A → A are powers of 2.

Verified for all n ≤ 7.

The rank of zn (or, rather, of the operator L (zn)) is∑
λ⊢n is a hook

(
f λ

)2
=

(
2 (n − 1)

n − 1

)
.
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Rectangular rook sums: introduction

The next two questions are related to my new preprint Rook
sums in the symmetric group algebra (arXiv:2507.22386).
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Rectangular rook sums: definition

Definition. For any two subsets A and B of [n], we define the
elements

∇B,A :=
∑
w∈Sn;

w(A)=B

w and ∇̃B,A :=
∑
w∈Sn;

w(A)⊆B

w

of k [Sn] = A. We shall call these elements the rectangular
rook sums.

Examples.

∇∅,∅ = ∇[n],[n] = (sum of all w ∈ Sn) ;

∇{2},{1} = (sum of all w ∈ Sn sending 1 to 2) ;

∇̃{2,3},{1} = (sum of all w ∈ Sn sending 1 to 2 or 3) .
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Rook-to-rook sums: simple properties

Proposition. Let A and B be two subsets of [n]. Then:

(a) We have ∇B,A = 0 if |A| ≠ |B|.
(b) We have ∇̃B,A = 0 if |A| > |B|.
(c) We have ∇̃B,A =

∑
V⊆B;
|V |=|A|

∇V ,A.

(d) We have ∇B,A = ∇[n]\B, [n]\A.

(e) If |A| = |B|, then ∇B,A = ∇̃B,A.

Next, let S : k [Sn] → k [Sn] be the antipode of k [Sn]; this is
the k-linear map sending each permutation w ∈ Sn to w−1.
Then:

(f) We have S (∇B,A) = ∇A,B .

(g) We have S
(
∇̃B,A

)
= ∇̃[n]\A, [n]\B .
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Minimal polynomials: a question

The simplest rectangular rook sum is

∇∅,∅ = (sum of all w ∈ Sn) .

Easily, ∇2
∅,∅ = n!∇∅,∅, so that

P (∇∅,∅) = 0 for the polynomial P (x) = x (x − n!) .

Question: What polynomials P satisfy P (∇B,A) = 0 or

P
(
∇̃B,A

)
= 0 for arbitrary A,B ?

In particular, what is the minimal polynomial of ∇̃B,A ? (The
only interesting ∇B,A’s are those for |A| = |B|, and they agree

with ∇̃B,A, so that we need not study them separately.)
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Minimal polynomials: experimental data

Example. The minimal polynomial of ∇̃{2,4,5,6}, {1,2} for
n = 6 is (x − 288)x(x + 12)(x + 36).

Example. The minimal polynomial of ∇̃{1,2,5,6}, {1,2,3} for
n = 6 is (x − 144)(x + 16)x2.

Theorem (G. 2025). The minimal polynomial of ∇̃B,A

always splits over Z (i.e., factors into linear factors)!

Also true for arbitrary linear combinations

∇B,α :=
∑

A⊆[n];
|A|=|B|

αA∇B,A.
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A product rule

A crucial step in the proof is a product rule for ∇s:

Theorem (product rule). Let A,B,C ,D be four subsets of
[n] such that |A| = |B| and |C | = |D|. Then,

∇D,C∇B,A = ωB,C

∑
U⊆D,
V⊆A;
|U|=|V |

(−1)|U|−|B∩C |
(

|U|
|B ∩ C |

)
∇U,V .

Here, for any two subsets B and C of [n], we set

ωB,C := |B ∩ C |! · |B \ C |! · |C \ B|! · |[n] \ (B ∪ C )|! ∈ Z.

Proof. Nice exercise in enumeration! First step is to show
that

∇D,C∇B,A = ωB,C

∑
w∈Sn;

|w(A)∩D|=|B∩C |

w .
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The formal Nabla-algebra: definition and conjecture

The product rule for the ∇’s suggests another question.
The ∇’s are not linearly independent (e.g., we have
∇B,A = ∇[n]\B, [n]\A).
What happens if we create linearly independent “abstract
∇’s” (call them ∆’s) and define their product using the
product rule?

Definition. For any two subsets A and B of [n] satisfying
|A| = |B|, introduce a formal symbol ∆B,A. Let D be the free
k-module with basis (∆B,A)A,B⊆[n] with |A|=|B|. Define a
multiplication on D by

∆D,C∆B,A := ωB,C

∑
U⊆D,
V⊆A;
|U|=|V |

(−1)|U|−|B∩C |
(

|U|
|B ∩ C |

)
∆U,V .

Theorem. This makes D into a nonunital k-algebra.
Conjecture. If n! is invertible in k, then this algebra D has a
unity.
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The formal Nabla-algebra: examples

Example. For n = 1, the nonunital algebra D has basis (u, v)
with u = ∆∅,∅ and v = ∆{1},{1}, and multiplication

uu = uv = vu = u, vv = v .

It is just k× k.
Example. For n = 2, the nonunital algebra D has basis
(u, v11, v12, v21, v22,w) with u = ∆∅,∅ and vij = ∆{i},{j} and
w = ∆[2],[2]. The multiplication on D is

uu = uw = wu = 2u, uvij = viju = u,

vdcvba = u − vda if b ̸= c ;

vdcvba = vda if b = c ,

vijw = vi1 + vi2, wvij = v1j + v2j ,

ww = 2w .

This nonunital k-algebra D has a unity if and only if 2 is

invertible in k. This unity is
1

4
(v11 + v22 − v12 − v21 + 2w).
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The formal Nabla-algebra: questions

Using Sage, I have verified that D has a unity for all n ≤ 5
when n! is invertible.

Question. Is D a known object?

Question. Barring that, is there a nice proof of the above
theorem?

Over k = Q, we have

n = 2 n = 3 n = 4 n = 5

dimD 6 20 70 252

dimZ (D) 3 4 5 6

dim J (D) 3 5 39 84

CIs

 1 0 0
0 2 1
0 1 1




1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 2




1 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 1 0 2 0
0 0 1 0 2


(“CIs” = Cartan invariants).
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Row-to-row sums

Let us generalize the ∇B,A.

Definition. A set composition of [n] is a tuple
U = (U1,U2, . . . ,Uk) of disjoint nonempty subsets of [n] such
that U1 ∪ U2 ∪ · · · ∪ Uk = [n]. We set ℓ (U) = k and call k
the length of U.

Definition. Let SC (n) be the set of all set compositions of
[n].

Definition. If A = (A1,A2, . . . ,Ak) and B = (B1,B2, . . . ,Bk)
are two set compositions of [n] having the same length, then
we define the row-to-row sum

∇B,A :=
∑
w∈Sn;

w(Ai )=Bi for all i

w in k [Sn] .

Example. We have

∇B,A = ∇B,A for B = (B, [n] \ B) and A = (A, [n] \ A) .
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Simple properties and non-properties

Proposition. Let A = (A1,A2, . . . ,Ak) and
B = (B1,B2, . . . ,Bk).

(a) We have ∇B,A = 0 unless |Ai | = |Bi | for all i .
(b) We have ∇B,A = ∇Bσ,Aσ for any σ ∈ Sk (acting on set

compositions by permuting the blocks).
(c) We have S (∇B,A) = ∇A,B, where S (w) = w−1 for all

w ∈ Sn as before.

The minimal polynomial of ∇B,A does not always split over Z
unless ℓ (A) ≤ 2.

The ∇B,A are not entirely new:
The Murphy basis of k [Sn] consists of the elements ∇B,A for
the standard set compositions A and B of [n]. Here,
“standard” means that the blocks are the rows of a standard
Young tableau (in particular, they must be of partition shape).
See G. E. Murphy, On the Representation Theory of the
Symmetric Groups and Associated Hecke Algebras, 1991.
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The span of the generalized ∇’s, 1

Theorem. Let A = k [Sn]. Let k ∈ N. We define two
k-submodules Ik and Jk of A by

Ik := span {∇B,A | A,B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}

and

Jk := A · span
{
α−

U | U ⊆ [n] of size k + 1
}
· A,

where
α−

U :=
∑
σ∈SU

(−1)σ σ ∈ k [Sn] .

Then:

(a) Both Ik and Jk are ideals of A, and are preserved under
S .
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The span of the generalized ∇’s, 2

Theorem (cont’d).

(b) We have

Ik = J ⊥
k = LAnnJk = RAnnJk and

Jk = I⊥
k = LAnn Ik = RAnn Ik .

Here, U⊥ means orthogonal complement wrt the
standard bilinear form on A, whereas LAnn and RAnn
mean left and right annihilators.

(c) The k-module Ik is free of rank = # of
(1, 2, . . . , k + 1)-avoiding permutations in Sn.

(d) The k-module Jk is free of rank = # of
(1, 2, . . . , k + 1)-nonavoiding permutations in Sn.

(e) The quotients A/Jk and A/Ik are also free, with bases

(w)w∈Sn avoids (1,2,...,k+1) (for A/Jk) and

(w)w∈Sn does not avoid (1,2,...,k+1) (for A/Ik).
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The span of the generalized ∇’s, 3

Theorem (cont’d).

(f) If n! is invertible in k, then A = Ik ⊕ Jk (internal direct
sum) as k-modules, and A ∼= Ik × Jk as k-algebras.

Some of this rehashes results of de Concini, Procesi (1976),
Härterich (1999), Raghavan, Samuel, Subrahmanyam (2012),
Bowman, Doty, Martin (2018 and 2022), Donkin (2024) and
various others. (My proofs are more elementary.)

Question. Is there a product rule for the ∇B,A’s?

Question. How much of the representation theory of Sn can
be developed using the ∇B,A’s?
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Donkin’s conjecture

Conjecture (Donkin 2024). Let Par (n) be the set of all
partitions of n, partially ordered by dominance.
Let X be an up-set (= order filter) of Par (n). Let

IX = span {∇B,A | A,B are n-tableaux with a shape λ ∈ X} .

Then, the k-module A/IX is free with basis

(w)w∈Sn such that shapew /∈X ,

where shapew denotes the shape of the RSK-tableaux P (w)
and Q (w) of w .

Proved by Donkin when X is a principal up-set (= all
partitions dominating a given µ).
Checked with Sage for all X when n ≤ 7.

Note: IX has a basis consisting of the ∇B,A where the
tableaux A and B are standard. This is a known result
(Murphy basis).
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Bonus: Karp–Purbhoo commutativity

The following is not an open problem but a result of Karp and
Purbhoo (arXiv:2309.04645v1 §3), but the proof is so long
and indirect that I am looking for a new one.

Let z1, z2, . . . , zn ∈ k be constants.

For any class function φ on Sn (= function Sn → k that sends
conjugate permutations to the same value), we set

pφ :=
∑
σ∈Sn

zFixσ · φ (σ)σ ∈ A,

where Fixσ := {i ∈ [n] | σ (i) = i} and zY :=
∏

y∈Y zy .

Theorem (Karp/Purbhoo 2023, after a few Möbius
inversions): Each pφ commutes with each pψ (whenever φ
and ψ are two class functions).

WLOG φ and ψ are conjugacy class indicators, i.e.,

φ (σ) = [σ has cycle type λ] and

ψ (σ) = [σ has cycle type µ] for given partitions λ, µ ⊢ n.
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Bonus: Karp–Purbhoo commutativity, combinatorial restatement

Combinatorial restatement of Karp–Purbhoo
commutativity: There is a bijection

Φ : Sn × Sn → Sn × Sn

with the property that when it sends (σ, τ) 7→ (α, β), we
always have

αβ = στ and α ∼ τ and β ∼ σ

and Fixσ ∩ Fix τ = Fixα ∩ Fixβ

and Fixσ ∪ Fix τ = Fixα ∪ Fixβ.

Here, the symbol ∼ means “conjugate to”.

Maybe we shouldn’t expect this bijection to be very canonical.
Maybe it should be a si- or multijection.
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