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1 Exercise 1: gcd basics

1.1 Problem

Prove the following:

(a) If a1, a2, b1, b2 are integers satisfying a1 | b1 and a2 | b2, then gcd (a1, a2) | gcd (b1, b2).

(b) If a, b, c, s are integers, then gcd (sa, sb, sc) = |s| gcd (a, b, c).

1.2 Solution

(a) See the class notes, where this is Exercise 2.9.4. (The numbering may shift; it is one of
the exercises in the “Common divisors, the Euclidean algorithm and the Bezout theorem”
section.)

(b) See the class notes, where this is Exercise 2.9.6. (The numbering may shift; it is one
of the exercises in the “Common divisors, the Euclidean algorithm and the Bezout theorem”
section.)
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2 Exercise 2: Products of gcds

2.1 Problem

Prove the following:
Any four integers u, v, x, y satisfy gcd (u, v) gcd (x, y) = gcd (ux, uy, vx, vy).

2.2 Solution

See the class notes, where this is Exercise 2.10.10. (The numbering may shift; it is one of
the exercises in the “Coprime integers” section.)

3 Exercise 3: The gcd-lcm connection for three
numbers

3.1 Problem

Let a, b, c be three integers. Prove that lcm (a, b, c) gcd (bc, ca, ab) = |abc|.

3.2 Solution

See the class notes, where this is Exercise 2.11.2 (b). (The numbering may shift; it is one
of the exercises in the “Lowest common multiples” section.)

4 Exercise 4: Divisibility tests for 3, 9, 11, 7

4.1 Problem

Let n be a positive integer. Let “dkdk−1 · · · d0” be the decimal representation of n; this
means that d0, d1, . . . , dk are digits (i.e., elements of {0, 1, . . . , 9}) such that n = dk10

k +
dk−110

k−1 + · · ·+ d010
0. The digits d0, d1, . . . , dk are called the digits of n.

(Incidentally, the quickest way to find these digits is by repeated division with remainder:
To obtain the decimal representation of n ≥ 10, you take the decimal representation of n//10
and append the digit n%10 at the end. Thus,

d0 = n%10, d1 = (n//10)%10, d2 = ((n//10) //10)%10, etc.

But in this exercise, you can just assume that the decimal representation exists.)

(a) Prove that 3 | n if and only if 3 | dk + dk−1 + · · · + d0. (In other words, a positive
integer n is divisible by 3 if and only if the sum of its digits is divisible by 3.)

(b) Prove that 9 | n if and only if 9 | dk + dk−1 + · · · + d0. (In other words, a positive
integer n is divisible by 9 if and only if the sum of its digits is divisible by 9.)
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(c) Prove that 11 | n if and only if 11 | (−1)k dk +(−1)k−1 dk−1 + · · ·+(−1)0 d0. (In other
words, a positive integer n is divisible by 11 if and only if the sum of its digits in the
even positions minus the sum of its digits in the odd positions is divisible by 11.)

(d) Let q = dk10
k−1 + dk−110

k−2 + · · ·+ d110
0. (Equivalently, q = n//10 =

n− d0
10

; this is
the number obtained from n by dropping the least significant digit.) Prove that 7 | n
if and only if 7 | q − 2d0.

(This gives a recursive test for divisibility by 7.)

4.2 Solution sketch

We will use the following quasi-trivial lemma:

Lemma 4.1. Let n, x, y be three integers such that x ≡ ymodn. Then, we have n | x if
and only if n | y.

Proof of Lemma 4.1. =⇒: Assume that n | x. We must prove that n | y.
We have n | x, thus x ≡ 0modn. But x ≡ ymodn and thus y ≡ x ≡ 0modn. Hence,

n | y. This proves the “=⇒” direction of Lemma 4.1.
⇐=: Assume that n | y. We must prove that n | x.
We have n | y, thus y ≡ 0modn. But x ≡ y ≡ 0modn. Hence, n | x. This proves the

“⇐=” direction of Lemma 4.1.

(a) We have 10 ≡ 1mod 3. Thus, each m ∈ N satisfies

10m ≡ 1m = 1mod 3. (1)

Now,

n = dk 10k︸︷︷︸
≡1mod 3
(by (1))

+dk−1 10k−1︸ ︷︷ ︸
≡1mod 3
(by (1))

+ · · ·+ d0 100︸︷︷︸
≡1mod 3
(by (1))

≡ dk + dk−1 + · · ·+ d0mod 3.

Thus, 3 | n if and only if 3 | dk + dk−1 + · · · + d0 (by Lemma 4.1, applied to 3, n and
dk + dk−1 + · · ·+ d0 instead of n, x and y).

This solves part (a).

(b) The solution to part (b) is precisely the same as that for part (a), except that the
3’s need to be replaced by 9’s.

(c) We have 10 ≡ −1mod 11. Hence, each m ∈ N satisfies

10m ≡ (−1)m mod 11. (2)

Now,

n = dk 10k︸︷︷︸
≡(−1)k mod 11

(by (2))

+dk−1 10k−1︸ ︷︷ ︸
≡(−1)k−1 mod11

(by (2))

+ · · ·+ d0 100︸︷︷︸
≡(−1)0 mod11

(by (2))

≡ dk (−1)k + dk−1 (−1)k−1 + · · ·+ d0 (−1)0

= (−1)k dk + (−1)k−1 dk−1 + · · ·+ (−1)0 d0mod 11.
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Thus, 11 | n if and only if 11 | (−1)k dk + (−1)k−1 dk−1 + · · · + (−1)0 d0 (by Lemma 4.1,
applied to 11, n and (−1)k dk + (−1)k−1 dk−1 + · · · + (−1)0 d0 instead of n, x and y). This
solves part (c).

(d) We have

n = dk10
k + dk−110

k−1 + · · ·+ d010
0

=
(
dk10

k + dk−110
k−1 + · · ·+ d110

1
)︸ ︷︷ ︸

=10·(dk10k−1+dk−110k−2+···+d1100)

+d0 100︸︷︷︸
=1

= 10 ·
(
dk10

k−1 + dk−110
k−2 + · · ·+ d110

0
)︸ ︷︷ ︸

=q

+d0 = 10q + d0.

Now, we need to prove two claims:

Claim 1: If 7 | n, then 7 | q − 2d0.

Claim 2: If 7 | q − 2d0, then 7 | n.

Proof of Claim 1: Assume that 7 | n. Then, 7 | n = 10q + d0 = d0 − (−10q), so that
d0 ≡ −10qmod 7. Hence,

q − 2 d0︸︷︷︸
≡−10qmod7

≡ q − 2 (−10q) = 21︸︷︷︸
≡0mod 7

q ≡ 0mod 7,

so that 7 | q − 2d0. This proves Claim 1.
Proof of Claim 2: Assume that 7 | q − 2d0. Thus, q ≡ 2d0mod 7. Hence,

n = 10 q︸︷︷︸
≡2d0 mod 7

+d0 ≡ 10 (2d0) + d0 = 21︸︷︷︸
≡0mod 7

d0 ≡ 0mod 7,

so that 7 | n. This proves Claim 2.
Now, part (d) of the problem is solved.

5 Exercise 5: A divisibility

5.1 Problem

Let n ∈ N. Prove that 7 | 32n+1 + 2n+2.

5.2 Solution

See the class notes, where this is Exercise 2.5.1. (The numbering may shift; it is one of the
exercises in the “Substitutivity for congruences” section.)
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6 Exercise 6: A binomial coefficient sum

6.1 Problem

Let n ∈ N. Prove that
n∑

k=0

(
−2
k

)
= (−1)n ((n+ 2) //2) . (3)

6.2 Solution

Recall the following fact (which was the claim of Exercise 3 (d) on homework set #0):

Proposition 6.1. Any n ∈ Q and k ∈ Q satisfy(
−n
k

)
= (−1)k

(
k + n− 1

k

)
.

Let us also recall another fact (the claim of Exercise 3 (c) on homework set #0):

Proposition 6.2. If n ∈ N and k ∈ Q, then(
n

k

)
=

(
n

n− k

)
.

Next, we show a simple formula for the binomial coefficients in the exercise:

Lemma 6.3. If k ∈ N, then (
−2
k

)
= (−1)k (k + 1) .

Proof of Lemma 6.3. Let k ∈ N. Then, Proposition 6.1 (applied to 2 instead of n) yields(
−2
k

)
= (−1)k

(
k + 2− 1

k

)
= (−1)k

(
k + 1

k

)
(4)

(since k + 2− 1 = k + 1). But k ∈ N and thus k + 1 ∈ N. Hence, Proposition 6.2 (applied
to k + 1 instead of n) yields(
k + 1

k

)
=

(
k + 1

(k + 1)− k

)
=

(
k + 1

1

)
(since (k + 1)− k = 1)

=
(k + 1) ((k + 1)− 1) ((k + 1)− 2) · · · ((k + 1)− 1 + 1)

1!(
by the definition of

(
k + 1

1

))

=
k + 1

1!

 since the
product (k + 1) ((k + 1)− 1) ((k + 1)− 2) · · · ((k + 1)− 1 + 1)

has only one factor


=

k + 1

1
= k + 1.

Hence, (4) becomes (
−2
k

)
= (−1)k

(
k + 1

k

)
︸ ︷︷ ︸

=k+1

= (−1)k (k + 1) .

This proves Lemma 6.3.
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Now, in order to solve the problem at hand, it suffices to prove the identity

n∑
k=0

(−1)k (k + 1) = (−1)n ((n+ 2) //2) . (5)

Indeed, once (5) is proven, it will follow that

n∑
k=0

(
−2
k

)
︸ ︷︷ ︸

=(−1)k(k+1)
(by Lemma 6.3)

=
n∑

k=0

(−1)k (k + 1) = (−1)n ((n+ 2) //2)

(by (5)), and thus the exercise will be solved.
Before we prove (5), let us state some basic facts about even and odd numbers:

Proposition 6.4. Let u be an integer.
(a) The integer u is even if and only if u%2 = 0.
(b) The integer u is odd if and only if u%2 = 1.
(c) The integer u is even if and only if u ≡ 0 mod 2.
(d) The integer u is odd if and only if u ≡ 1 mod 2.
(e) If u is even, then (−1)u = 1.
(f) If u is odd, then (−1)u = −1.
(g) We have u = (u//2) · 2 + (u%2).

Proof of Proposition 6.4. Parts (a), (b), (c) and (d) of Proposition 6.4 are parts of Exercise
3 on homework set #1, and their proofs can be found in the class notes. Thus, we only need
to prove parts (e), (f) and (g) now.

(e) Assume that that u is even. Then, u ≡ 0mod 2 (by Proposition 6.4 (c)). In other
words, 2 | u. In other words, u = 2g for some g ∈ Z. Consider this g. From u = 2g, we

obtain (−1)u = (−1)2g =

(−1)2︸ ︷︷ ︸
=1

g

= 1g = 1. This proves Proposition 6.4 (e).

(f) Assume that that u is odd. Then, u ≡ 1mod 2 (by Proposition 6.4 (d)). In other
words, 2 | u−1. In other words, u−1 = 2g for some g ∈ Z. Consider this g. From u−1 = 2g,

we obtain (−1)u−1 = (−1)2g =

(−1)2︸ ︷︷ ︸
=1

g

= 1g = 1. Now, (−1)u = (−1) (−1)u−1︸ ︷︷ ︸
=1

= −1.

This proves Proposition 6.4 (f).
(g) In Corollary 2.6.9 (d) of the class notes, we have proven u = (u//n)n+ (u%n) for

any positive integer n. Applying this to n = 2, we obtain u = (u//2) · 2 + (u%2). This
proves Proposition 6.4 (g).

In order to prove (5), we distinguish between two cases:
Case 1: The integer n is even.
Case 2: The integer n is odd.
Let us first consider Case 1. In this case, the integer n is even. Thus, (−1)n = 1 (by

Proposition 6.4 (e), applied to u = n). Furthermore, n is even, and thus n ≡ 0mod 2 (by
Proposition 6.4 (c), applied to u = n). Hence, n︸︷︷︸

≡0mod 2

+2 ≡ 0 + 2 = 2 ≡ 0mod 2. In

other words, n + 2 is even (by Proposition 6.4 (c), applied to u = n + 2). In other words,
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(n+ 2)%2 = 0 (by Proposition 6.4 (a), applied to u = n + 2). Now, Proposition 6.4 (g)
(applied to u = n+ 2) yields

(n+ 2) = ((n+ 2) //2) · 2 + ((n+ 2)%2)︸ ︷︷ ︸
=0

= ((n+ 2) //2) · 2.

Solving this for (n+ 2) //2, we find (n+ 2) //2 = (n+ 2) /2.
Now,

n∑
k=0

(−1)k (k + 1) = 1− 2 + 3− 4± · · ·+ (−1)n︸ ︷︷ ︸
=1

(n+ 1)

= 1− 2 + 3− 4± · · ·+ (n+ 1)

= (1− 2)︸ ︷︷ ︸
=−1

+(3− 4)︸ ︷︷ ︸
=−1

+(5− 6)︸ ︷︷ ︸
=−1

+ · · ·+ ((n− 1)− n)︸ ︷︷ ︸
=−1

+(n+ 1)

= ((−1) + (−1) + (−1) + · · ·+ (−1))︸ ︷︷ ︸
n/2 addends︸ ︷︷ ︸

=n/2·(−1)=−n/2

+(n+ 1)

= −n/2 + (n+ 1) = n/2 + 1.

Comparing this with

(−1)n︸ ︷︷ ︸
=1

((n+ 2) //2) = (n+ 2) //2 = (n+ 2) /2 = n/2 + 1,

we obtain
n∑

k=0

(−1)k (k + 1) = (n+ 2) //2. Hence, (5) is proved in Case 1.

Let us next consider Case 2. In this case, the integer n is odd. Thus, (−1)n = −1
(by Proposition 6.4 (f), applied to u = n). Furthermore, n is odd, and thus n ≡ 1mod 2
(by Proposition 6.4 (d), applied to u = n). Hence, n︸︷︷︸

≡1mod 2

+2 ≡ 1 + 2 = 3 ≡ 1mod 2. In

other words, n + 2 is odd (by Proposition 6.4 (d), applied to u = n + 2). In other words,
(n+ 2)%2 = 1 (by Proposition 6.4 (b), applied to u = n + 2). Now, Proposition 6.4 (g)
(applied to u = n+ 2) yields

(n+ 2) = ((n+ 2) //2) · 2 + ((n+ 2)%2)︸ ︷︷ ︸
=1

= ((n+ 2) //2) · 2 + 1.

Solving this for (n+ 2) //2, we find (n+ 2) //2 = ((n+ 2)− 1) /2 = (n+ 1) /2.
Now,

n∑
k=0

(−1)k (k + 1) = 1− 2 + 3− 4± · · ·+ (−1)n︸ ︷︷ ︸
=−1

(n+ 1)

= 1− 2 + 3− 4± · · · − (n+ 1)

= (1− 2)︸ ︷︷ ︸
=−1

+(3− 4)︸ ︷︷ ︸
=−1

+(5− 6)︸ ︷︷ ︸
=−1

+ · · ·+ (n− (n+ 1))︸ ︷︷ ︸
=−1

= ((−1) + (−1) + (−1) + · · ·+ (−1))︸ ︷︷ ︸
(n+1)/2 addends

= (n+ 1) /2 · (−1) = − (n+ 1) /2.
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Comparing this with

(−1)n︸ ︷︷ ︸
=−1

((n+ 2) //2)︸ ︷︷ ︸
=(n+1)/2

= (−1) (n+ 1) /2 = − (n+ 1) /2,

we obtain
n∑

k=0

(−1)k (k + 1) = (n+ 2) //2. Hence, (5) is proved in Case 2.

We have now proven (5) in each of the two Cases 1 and 2. Thus, (5) always holds. As
explained above, by proving (5), we have solved the exercise.

6.3 Remark

I have posed this exercise in a slightly different form as Exercise 1 on homework set #9

of UMN Fall 2017 Math 4990. (The form was different in that I wrote
⌊
n+ 2

2

⌋
instead

of (n+ 2) //2. Of course, this is the same thing.) See also Angela Chen’s solution to that
exercise.

The exercise is more or less a combination of [Grinbe19, Exercise 2.9] and [Grinbe19,
Exercise 3.5 (b)]. In fact, Lemma 6.3 above is the claim of [Grinbe19, Exercise 3.5 (b)],
whereas the identity (5) is the claim of [Grinbe19, Exercise 2.9] (except that [Grinbe19,

Exercise 2.9] writes

{
n/2 + 1, if n is even;
(n+ 1) /2, if n is odd

for (n+ 2) //2, but the equality of these two

expressions is easy to establish).
Yet another way to state the identity in the exercise is

n∑
k=0

(
−2
k

)
=

1 + (−1)n · (2n+ 3)

4
.

(Here, the “oscillator” (−1)n is being used instead of (n+ 2) //2 in order to obtain different
behavior for even and odd n.) Similar identities are

n∑
k=0

(
0

k

)
= 1;

n∑
k=0

(
−1
k

)
=

1 + (−1)n

2
= (n+ 1)%2;

n∑
k=0

(
−3
k

)
=

1 + (−1)n · (2n2 + 8n+ 7)

8
;

n∑
k=0

(
−4
k

)
=

3 + (−1)n · (4n3 + 30n2 + 68n+ 45)

48
.

More generally, I suspect that if u ∈ N, then there is a polynomial qu (x) of degree u with
rational coefficients such that each n ∈ N satisfies

n∑
k=0

(
− (u+ 1)

k

)
=

1

2u+1
+ (−1)n · qu (n) .
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