
LINEAR ALGEBRA IN PYTHON WITH THE SYMPY LIBRARY

There are unfortunately a number of incompatibilities between different versions of Python in how they
handle linear algebra. The notes below refer to the version which you can run in your browser by visiting
http://live.sympy.org. If you install or update Python and sympy on your own PC, then the instructions
should work there as well. However, older versions may require different syntax.

You can enter the matrices

A =

(
5 6 7
4 3 2

)
B =

(
9 5
5 9

)
like this:

A = Matrix([[5,6,7],[4,3,2]])

B = Matrix([[9,5],[5,9]])

You can now do some calculations:

• Enter B*A to calculate BA.
• If you enter A*B then you will get an error message, because AB is not defined. The error message is

long and complicated, but the last line says ShapeError: Matrices size mismatch, which should
not be too hard to understand.

• Enter B**2 to calculate B2, or B**-1 to calculate the inverse matrix B−1.
• Enter transpose(A) or A.T to find the transpose AT .
• Enter det(B) or B.det() to find the determinant of B. The brackets are necessary here. If you

enter B.det without the brackets, you will get

boundmethodMutableDenseMatrix.detofMatrix([[9, 5],[5, 9]])

which is not very helpful. In general, if you get a result starting with boundmethod..., it probably
indicates that you left out a pair of brackets.

• Enter eye(3) for the 3 × 3 identity matrix.
• Enter A.row(0) to get the first row of A, or A.row(1) to get the second row. Python’s indexing

always starts with 0, so many things need to be shifted by 1 compared to how they are in the notes
or in Maple.

• Similarly, you can enter A.col(0) or A.col(1) or A.col(2) to extract one of the columns of A.
• To get the top right entry in A (which is called A13 in the notes), enter A[0,2].
• In many places, it is convenient to give names to the columns of a matrix. For example, we might

take u1, u2 and u3 to be the columns of the matrix A above. To do this in Python you can type

u = [A.col(i) for i in range(3)]

However, this gives the usual shift in indexing, so the columns are u[0], u[1] and u[2].
• To find the reduced row echelon form of A, enter A.rref()[0]. If you just enter A.rref() instead

you will get a list of two things, the first of which is the RREF of A, and the second of which is the
list of pivot columns. If you just enter A.rref then you will get a result like boundmethod... which
you cannot use. You might like to define a more convenient syntax by entering

def RREF(M):

return M.rref()[0]

You can then enter RREF(A) rather than A.rref()[0].
• If you are going to use the RREF of A in further calculations, then you probably want to give it a

name, like this:

A1 = A.rref()[0]

Note, however, that when you do this Python will not immediately print the result; you need to
enter A1 on a separate line if you want to see the RREF matrix.

• To find and factor the characteristic polynomial of B, enter
1

http://live.sympy.org

p = B.charpoly(t)

p

factor(p)

Python will print the characteristic polynomial as

PurePoly(t2 − 4t+ 3, t, domain = Z)

rather than just t2 − 4t + 3, but that should not cause a problem. It is best to stick with t as the
name of the variable here. In particular, you should not try to use the symbol λ for this or anything
else, because it would clash with a completely different use of that symbol in Python; we will not
take the space to explain the background here.

• To find the eigenvalues and eigenvectors of B, enter B.eigenvects(). The result is(
4, 1,

[[
−1
1

]])
,

(
14, 1,

[[
1
1

]])
.

The numbers 4 and 14 are the eigenvalues, and the vectors

(
−1
1

)
and

(
1
1

)
are the corresponding

eigenvectors, and the ones in between the eigenvalues and the eigenvectors can be ignored. In cases
where the matrix has repeated eigenvalues the result will need a bit more interpretation, but that
will be discussed later.

Python with SymPy on your own machine

If have installed Python (from http://www.python.org/download/) on your own PC then you can add
SymPy by following the instructions at http://sympy.org. I recommend that you install version 2.7.5 of
Python and version 1.4 of SymPy. After that you can start Python under IDLE as usual, and enter

from __future__ import division

from sympy import *

t = Symbol(’t’)

The first line effectively tells Python that you want to use exact fractions rather than decimal approximations
everywhere. The second line says that you want to use SymPy. The third line tells SymPy to treat t as an
abstract symbol, which we need when working with characteristic polynomials. All of these things are done
automatically if you use http://live.sympy.org, but on your own PC you need to do them yourself.

2

http://www.python.org/download/
http://sympy.org
http://live.sympy.org

	Python with SymPy on your own machine

