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1. Determinants

Exercise 1. Here is a 4× 4-matrix filled with the numbers 1, 2, 3, ..., 42 by going
from left to right along the first row, then backwards along the second row, then
forward again along the third, etc.:

1 2 3 4
8 7 6 5
9 10 11 12

16 15 14 13

 .

Explain why the determinant of this matrix, but also the determinant of the
similarly constructed n× n-matrix for every n ≥ 3, is 0.

Exercise 2. Let n be a positive integer. Let x1, x2, . . . , xn be n reals, and let
y1, y2, . . . , yn be n further reals. Let Pn denote the n× n-matrix

(
xiyj

)
1≤i≤n, 1≤j≤n =


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn

...
... . . . ...

xny1 xny2 · · · xnyn

 .

(a) Find det (Pn) if n = 2. (In this case, Pn = P2 =

(
x1y1 x1y2
x2y1 x2y2

)
.)

(b) Find det (Pn) if n = 3.
(c) Find det (Pn) if n = 4.
[Hint: The answers are very simple, and can be obtained in a simple way for

all n ≥ 2 simultaneously.
Feel free to use simpler notations, such as renaming x1, x2, x3 as x, y, z and

renaming y1, y2, y3 as a, b, c.]

Exercise 3. Let n be a positive integer. Let x1, x2, . . . , xn be n reals, and let
y1, y2, . . . , yn be n further reals. Let Sn denote the n× n-matrix

(
xi + yj

)
1≤i≤n, 1≤j≤n =


x1 + y1 x1 + y2 · · · x1 + yn
x2 + y1 x2 + y2 · · · x2 + yn

...
... . . . ...

xn + y1 xn + y2 · · · xn + yn

 .

(a) Find det (Sn) if n = 3.
(b) Find det (Sn) if n = 4.
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[Hint: There are very simple answers for all n ≥ 3. If you are getting compli-
cated expressions, you should expand them or use a different approach.]

Exercise 4. For each n ∈N, let An be the n× n-matrix

1 1 0 · · · 0 0 0
−1 1 1 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 1 1 0
0 0 0 · · · −1 1 1
0 0 0 · · · 0 −1 1


.

(This is the n× n-matrix whose entries on the diagonal and just above it are 1,
while its entries just below the diagonal are −1, and all remaining entries are 0.
No exceptional entries hiding in the corners this time!)

(a) Find det (A1). (Note that A1 =
(

1
)
.)

(b) Find det (A2). (Note that A2 =

(
1 1
−1 1

)
.)

(c) Find det (A3). (Note that A3 =

 1 1 0
−1 1 1
0 −1 1

.)

(d) For a general integer n ≥ 2, find an expression for det (An) in terms of
det (An−1) and det (An−2).

(e) Find a formula for det (An) in terms of things we have seen in class.
[Hint: In (d), use Laplace expansion.]

2. Eigenvalues and eigenvectors

Exercise 5. (a) Find the eigenvalues of the matrix A :=

 0 0 3
0 2 −2
1 −1 0

.

(b) Diagonalize this matrix (i.e., find a diagonalization of A).
[Hint: This is one of those rare cases where the roots of χA (t) can be described

nicely. Actually, they are rational numbers. See the rational root theorem for how
to find the rational roots of a polynomial with rational coefficients.]

Exercise 6. (a) Find the eigenvalues and at least two linearly independent eigen-

vectors of the matrix

 1 1 0
−1 2 1
0 1 1

.

(b) Does this matrix have a diagonalization?

https://brilliant.org/wiki/rational-root-theorem/
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Exercise 7. Let (h0, h1, h2, . . .) be the sequence of integers defined by

h0 = 0, h1 = 1, hn = hn−1 + 6hn−2 for all n ≥ 2.

(Thus, h2 = h1 + 6h0 = 1 and h3 = h2 + 6h1 = 7.)
Find an explicit formula for hm for all m ≥ 0.

3. Complex numbers

As usual, we let i denote the imaginary unit in this section. Thus, i2 = −1.
To “find” a complex number always means to write it as a+ bi with a and b being

real. You don’t have to write out a and b in decimal (e.g., you don’t have to expand
210 as 1024).

Exercise 8. (a) Find (1 + i)2.
(b) Find (1 + i)3.
(c) Find (1 + i)4.
(d) Find (1 + i)8.
(e) Find (1 + i)1000.

Exercise 9. Let ω =
1 +
√

3i
2

.

(a) Find ω2.
(b) Find ω3.
(c) Find ω6.
(d) Draw the first 6 powers of ω on the Argand diagram.
(e) Find ω1000.

Exercise 10. Prove that |zw| = |z| · |w| for any two complex numbers z and w.
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4. Solutions

The following solutions are a bit rough at some places, but they have enough detail
to get full scores.

Some of these solutions use tricks instead of systematic methods. You are free
to use the methods – but the tricks are often faster and reveal some ideas that you
would have missed if you just followed the methods.

Solution to Exercise 1. Let A be the 4 × 4-matrix shown in the exercise. Our first
goal is to show that det A = 0. Indeed, as direct consequences of the construction
of A, we have

col2 A− col1 A =


1
−1
1
−1

 and col3 A− col2 A =


1
−1
1
−1

 .

Comparing these two equalities, we obtain col2 A− col1 A = col3 A− col2 A. This
can be rewritten as

(−1) col1 A + 2 col2 A + (−1) col3 A = 0.

This is a nontrivial relation between the columns of A. Thus, the columns of A
are linearly dependent. By the Non-Inverse Matrix Theorem1, this entails that
det A = 0.

Thus, we have shown that the determinant of the 4 × 4-matrix shown in the
exercise is 0. The same argument yields the same statement for the similarly con-
structed n× n-matrix for every n ≥ 3.

First solution to Exercise 2. We claim that det (Pn) = 0 for each n ≥ 2.
Before we prove this claim, let us notice that it does not hold for n = 1 (because

det (P1) = det
(

x1y1
)
= x1y1); nor does it hold for n = 0 (since the 0× 0-matrix

has determinant 1, by definition). Thus, the proof of this claim must necessarily
use the condition n ≥ 2.

So let us prove our claim. Let n be an integer such that n ≥ 2. We must show
that det (Pn) = 0. We shall use the following two properties of determinants:

Property 1: If an n × n-matrix A has two equal rows, then det A = 0.
(This is Theorem 1.3.3 in the class notes from 2019-10-23.)

Property 2: If we scale a row of an n × n-matrix by a number λ, then
det A gets multiplied by λ. (This is Theorem 1.3.5 in the class notes
from 2019-10-23.)

1more precisely: by the implication (b’) =⇒ (l’) in Theorem 2.1.4 from the class notes from 2019-
11-04

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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Now, let Qn be the n× n-matrix

y1 y2 · · · yn
y1 y2 · · · yn

x3y1 x3y2 · · · x3yn
x4y1 x4y2 · · · x4yn

...
... . . . ...

xny1 xny2 · · · xnyn


.

(This is the matrix Pn, except that its first two rows have been replaced by (y1, y2, . . . , yn).)
The matrix Qn has two equal rows (namely, its first two rows are equal)2. Thus,

Property 1 shows that det (Qn) = 0. But the matrix Pn is obtained from Qn by
scaling the first row by x1 and scaling the second row by x2. Thus, Property 2
(applied twice) yields that

det (Pn) = x1 · x2 · det (Qn)︸ ︷︷ ︸
=0

= 0.

Thus, our claim is proved. This solves the exercise.

Second solution to Exercise 2. We claim that det (Pn) = 0 for each n ≥ 2.
This time, we shall derive it from the following two properties of determinants:

Property 3: We have det (XY) = det X · det Y for any two n× n-matrices
X and Y. (This is Theorem 1.5.1 in the class notes from 2019-10-30.)

Property 4: If an n× n-matrix A has a zero row (i.e., a row full of zeroes),
then det A = 0. (This is Corollary 1.2.1 in the class notes from 2019-10-
30.)

Now, let n be an integer such that n ≥ 2. Let X be the n× n-matrix
x1 0 · · · 0
x2 0 · · · 0
...

... . . . ...
xn 0 · · · 0

 .

(The first column of this matrix is (x1, x2, . . . , xn)
T, while all remaining columns are

zero.)
Also, let Y be the n× n-matrix

y1 y2 · · · yn
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 .

(The first row of this matrix is (y1, y2, . . . , yn), while all remaining rows are zero.)
The matrix Y has a zero row (for example, its second row)3. Thus, Property 4

2Here we are using n ≥ 2.
3Here we are using n ≥ 2.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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yields det Y = 0.
But it is easy to see (just compute XY) that Pn = XY. Thus,

det (Pn) = det (XY) = det X · det Y︸ ︷︷ ︸
=0

(by Property 3)

= 0.

Thus, our exercise is solved again.

First solution to Exercise 3. We claim that det (Sn) = 0 for each n ≥ 3.
Before we prove this claim, let us notice that it does not hold for n = 2 (because

det (S2) = det
(

x1 + y1 x1 + y2
x2 + y1 x2 + y2

)
= − (x1 − x2) (y1 − y2)); nor does it hold for

n = 1 (because det (S1) = det
(

x1 + y1
)
= x1 + y1); nor does it hold for n = 0

(since the 0× 0-matrix has determinant 1, by definition). Thus, the proof of this
claim must necessarily use the condition n ≥ 3.

So let us prove our claim. Let n be an integer such that n ≥ 3. We must show
that det (Sn) = 0. We shall use the following two properties of determinants:

Property 1: If an n × n-matrix A has two equal rows, then det A = 0.
(This is Theorem 1.3.3 in the class notes from 2019-10-23.)

Property 2: If we scale a row of an n × n-matrix by a number λ, then
det A gets multiplied by λ. (This is Theorem 1.3.5 in the class notes
from 2019-10-23.)

We shall also use the following property of determinants:

Property 5: Let A be an n × n-matrix, and let p and q be two distinct
elements of [n]. If we add λ · rowp A to the q-th row of A, then det A
does not change. (This is Corollary 1.2.5 in the class notes from 2019-10-
30.)

More precisely, we shall use the following particular case of Property 5:

Property 6: Let A be an n × n-matrix, and let p and q be two distinct
elements of [n]. If we subtract rowp A from the q-th row of A, then
det A does not change.

Property 6 follows from Property 5 (applied to λ = −1), because adding (−1) ·
rowp A to the q-th row of A is the same as subtracting rowp A from the q-th row of
A.

Now, the definition of Sn shows that

det (Sn) = det


x1 + y1 x1 + y2 · · · x1 + yn
x2 + y1 x2 + y2 · · · x2 + yn

...
... . . . ...

xn + y1 xn + y2 · · · xn + yn



http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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= det



x1 + y1 x1 + y2 · · · x1 + yn
x2 + y1 x2 + y2 · · · x2 + yn
x3 + y1 x3 + y2 · · · x3 + yn
x4 + y1 x4 + y2 · · · x4 + yn

...
... . . . ...

xn + y1 xn + y2 · · · xn + yn



= det



x1 + y1 x1 + y2 · · · x1 + yn
x2 − x1 x2 − x1 · · · x2 − x1
x3 + y1 x3 + y2 · · · x3 + yn
x4 + y1 x4 + y2 · · · x4 + yn

...
... . . . ...

xn + y1 xn + y2 · · · xn + yn


 here, we have subtracted the 1-st row of our matrix

from the 2-nd row; this did not change the determinant
(by Property 6)



= det



x1 + y1 x1 + y2 · · · x1 + yn
x2 − x1 x2 − x1 · · · x2 − x1
x3 − x1 x3 − x1 · · · x3 − x1
x4 + y1 x4 + y2 · · · x4 + yn

...
... . . . ...

xn + y1 xn + y2 · · · xn + yn


 here, we have subtracted the 1-st row of our matrix

from the 3-rd row; this did not change the determinant
(by Property 6)



= (x2 − x1)det



x1 + y1 x1 + y2 · · · x1 + yn
1 1 · · · 1

x3 − x1 x3 − x1 · · · x3 − x1
x4 + y1 x4 + y2 · · · x4 + yn

...
... . . . ...

xn + y1 xn + y2 · · · xn + yn


 by Property 2, because the matrix before the

equality sign can be obtained from the matrix after
the equality sign by scaling the 2-nd row by x2 − x1
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= (x2 − x1) (x3 − x1) det



x1 + y1 x1 + y2 · · · x1 + yn
1 1 · · · 1
1 1 · · · 1

x4 + y1 x4 + y2 · · · x4 + yn
...

... . . . ...
xn + y1 xn + y2 · · · xn + yn


︸ ︷︷ ︸

=0
(by Property 1, because this matrix has two equal rows

(namely, its 2-nd and 3-rd rows are equal)) by Property 2, because the matrix before the
equality sign can be obtained from the matrix after
the equality sign by scaling the 3-rd row by x3 − x1


= 0.

This proves our claim, thus solving the exercise.

Second solution to Exercise 3. We claim that det (Sn) = 0 for each n ≥ 3.
This time, we shall derive it from the following two properties of determinants:

Property 3: We have det (XY) = det X · det Y for any two n× n-matrices
X and Y. (This is Theorem 1.5.1 in the class notes from 2019-10-30.)

Property 4: If an n× n-matrix A has a zero row (i.e., a row full of zeroes),
then det A = 0. (This is Corollary 1.2.1 in the class notes from 2019-10-
30.)

Now, let n be an integer such that n ≥ 3. Let X be the n× n-matrix
x1 1 0 · · · 0
x2 1 0 · · · 0
...

...
... . . . ...

xn 1 0 · · · 0

 .

(The first column of this matrix is (x1, x2, . . . , xn)
T; the second column is (1, 1, . . . , 1)T;

all remaining columns are zero.)
Also, let Y be the n× n-matrix

1 1 · · · 1
y1 y2 · · · yn
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 .

(The first row of this matrix is (y1, y2, . . . , yn); the second row is (1, 1, . . . , 1); all
remaining rows are zero.)

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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The matrix Y has a zero row (for example, its third row)4. Thus, Property 4 yields
det Y = 0.

But it is easy to see that Sn = XY (indeed, just compute XY and notice that
xi · 1 + 1 · yj = xi + yj). Thus,

det (Sn) = det (XY) = det X · det Y︸ ︷︷ ︸
=0

(by Property 3)

= 0.

Thus, our exercise is solved again.

Solution to Exercises 4. (a) We have A1 =
(

1
)

and thus det (A1) = det
(

1
)
= 1.

(b) We have A2 =

(
1 1
−1 1

)
and thus det (A2) = det

(
1 1
−1 1

)
= 2.

(c) We have A3 =

 1 1 0
−1 1 1
0 −1 1

 and thus det (A3) = det

 1 1 0
−1 1 1
0 −1 1

 =

3.
(d) Let n be an integer such that n ≥ 2.
We have

An =



1 1 0 · · · 0 0 0
−1 1 1 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 1 1 0
0 0 0 · · · −1 1 1
0 0 0 · · · 0 −1 1


n×n

.

Here, the subscript “n× n” tells us that the matrix you are seeing is understood to
be an n× n-matrix. (Similar notations will be used further below.)

The 1-st row of the matrix An has only two nonzero entries: the 1 in position 1,
and the 1 in position 2. Hence, Laplace expansion along the 1-st row (see Theorem
1.7.1 in the class notes from 2019-10-30) yields

det (An) = 1 · det



1 1 · · · 0 0 0
−1 1 · · · 0 0 0

...
... . . . ...

...
...

0 0 · · · 1 1 0
0 0 · · · −1 1 1
0 0 · · · 0 −1 1


(n−1)×(n−1)︸ ︷︷ ︸

=An−1

4Here we are using n ≥ 3.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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− 1 · det



−1 1 · · · 0 0 0
0 1 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · 1 1 0
0 0 · · · −1 1 1
0 0 · · · 0 −1 1


(n−1)×(n−1)

+ (several addends that equal 0 and thus can be ignored)

= det (An−1)− det



−1 1 · · · 0 0 0
0 1 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · 1 1 0
0 0 · · · −1 1 1
0 0 · · · 0 −1 1


(n−1)×(n−1)

.

Let us denote the second matrix on the right hand side of this equality5 by Bn−1.
The 1-st column of this matrix Bn−1 has only one nonzero entry, namely the −1 in
position 1. Hence, Laplace expansion along the 1-st column (see Theorem 1.2.1 in
the class notes from 2019-11-04) yields

det (Bn−1) = (−1) · det


1 · · · 0 0 0
... . . . ...

...
...

0 · · · 1 1 0
0 · · · −1 1 1
0 · · · 0 −1 1


(n−2)×(n−2)︸ ︷︷ ︸

=An−2

= (−1) · det (An−2)

= −det (An−2) .

Thus, our above computation becomes

det (An) = det (An−1)− det



−1 1 · · · 0 0 0
0 1 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · 1 1 0
0 0 · · · −1 1 1
0 0 · · · 0 −1 1


(n−1)×(n−1)︸ ︷︷ ︸

=Bn−1

5i.e., the matrix



−1 1 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 1 0
0 0 · · · −1 1 1
0 0 · · · 0 −1 1


(n−1)×(n−1)

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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= det (An−1)− det (Bn−1)︸ ︷︷ ︸
=−det(An−2)

= det (An−1)− (−det (An−2))

= det (An−1) + det (An−2) .

This solves part (d) of the exercise.
(e) Recall the Fibonacci numbers f0, f1, f2, . . . defined in the class notes from 2019-

11-06. We claim that

det (An) = fn+1 for each n ≥ 0.

In other words, we claim that the sequence (det (A0) , det (A1) , det (A2) , . . .) is
identical to the sequence ( f1, f2, f3, . . .).

To see why this is true, all we need to show is that

• both of these sequences begin with the entries 1 and 1 (that is, we have
det (A0) = 1 and det (A1) = 1 and f1 = 1 and f2 = 1), and

• both of these sequences are constructed by the same rule (that is, we have
det (An) = det (An−1) + det (An−2) and fn+1 = fn + fn−1 for each n ≥ 2).

But this is clear: The equalities det (A0) = 1 and det (A1) = 1 and f1 = 1 and
f2 = 1 can be verified directly6. The equality det (An) = det (An−1) + det (An−2) is
our answer to part (d) of this exercise. The equality fn+1 = fn + fn−1 follows from
the definition of the Fibonacci numbers.

Thus, our claim is proved, and part (e) of the exercise is solved.
[Remark: An n × n-matrix whose nonzero entries are limited to the diagonal

and the cells just above and just below it is called a tridiagonal matrix. There is a
recursive formula – similarly to the answer we obtained in part (d) of this exercise
– for the determinant of an arbitrary tridiagonal matrix. See [Grinbe15, §6.13] for a
detailed proof of this formula. (Note that our claim that det (An) = fn+1 for each
n ≥ 0 appears in [Grinbe15, Exercise 6.27].)]

Solution to Exercise 5. (a) The characteristic polynomial χA (t) of A is

χA (t) = det (A− tI3) = det

 0− t 0 3
0 2− t −2
1 −1 0− t

 = − (t + 2) (t− 1) (t− 3) .

(Obviously, checking the equality det

 0− t 0 3
0 2− t −2
1 −1 0− t

 = − (t + 2) (t− 1) (t− 3)

is straightforward, but how would you find it? I’m afraid there is no better way than to

expand det

 0− t 0 3
0 2− t −2
1 −1 0− t

 as −t3 + 2t2 + 5t − 6, and then to search for rational

roots using the rational root theorem.)

6Keep in mind that the 0× 0-matrix has determinant 1 (by definition); this is why det (A0) = 1.

https://en.wikipedia.org/wiki/Fibonacci_number
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
https://en.wikipedia.org/wiki/Tridiagonal_matrix
https://en.wikipedia.org/wiki/Tridiagonal_matrix#Determinant
https://en.wikipedia.org/wiki/Tridiagonal_matrix#Determinant
https://en.wikipedia.org/wiki/Rational_root_theorem
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Recall that the eigenvalues of A are the roots of χA (t) (by Proposition 2.1.7 in
the class notes from 2019-11-04). But the roots of χA (t) are −2, 1, 3 (since χA (t) =
− (t + 2) (t− 1) (t− 3)). Hence, the eigenvalues of A are −2, 1, 3.

(b) We have just seen that the eigenvalues of A are −2, 1, 3. Denote these eigen-
values by λ1, λ2, λ3, respectively. Let us find eigenvectors for them:

• The λ1-eigenvectors (i.e., the (−2)-eigenvectors) of A are the nonzero vectors
v ∈ R3 satisfying Av = (−2) v. In other words, they are the nonzero vectors x

y
z

 ∈ R3 such that A

 x
y
z

 = (−2)

 x
y
z

. This is a system of 3 lin-

ear equations in the unknowns x, y, z; solving it by Gaussian elimination, we

obtain


x = −3

2
z

y =
1
2

z
(where z is a free variable). Thus, they are the nonzero

scalar multiples of the vector


−3

2
1
2
1

. For convenience, let us scale this

vector by 2, so it becomes

 −3
1
2

.

• Likewise, the λ2-eigenvectors (i.e., the 1-eigenvectors) of A are the nonzero

scalar multiples of the vector

 3
2
1

.

• Likewise, the λ3-eigenvectors (i.e., the 3-eigenvectors) of A are the nonzero

scalar multiples of the vector

 1
−2
1

.

We have now found three eigenvectors for A: namely,

u1 =

 −3
1
2

 (a λ1-eigenvector) ;

u2 =

 3
2
1

 (a λ2-eigenvector) ;

u3 =

 1
−2
1

 (a λ3-eigenvector) .

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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These 3 vectors u1, u2, u3 form a basis of R3 (indeed, this can either be derived from
Proposition 1.3.3 in the class notes from 2019-11-06, or just checked by hand).

Thus, (u1, u2, u3) is a basis of R3 that consists of eigenvectors of A, and λ1, λ2, λ3
are the corresponding eigenvalues. Hence, we can find a diagonalization of A using
Proposition 1.2.3 (a) in the class notes from 2019-11-11: We set

U = [u1 | u2 | u3] =

 −3 3 1
1 2 −2
2 1 1

 and

D = diag (λ1, λ2, λ3) = diag (−2, 1, 3) =

 −2 0 0
0 1 0
0 0 3

 .

The pair U, D is a diagonalization of A (that is, U is invertible, and D is diagonal,
and we have A = UDU−1).

[Remark: There are many diagonalizations of A. For example, you can obtain a
different diagonalization of A by listing the eigenvalues of A in a different order,
or by scaling the eigenvectors u1, u2, u3 differently.]

Solution to Exercise 6. Let us denote the matrix shown in this exercise by A.
(a) The characteristic polynomial χA (t) of A is

χA (t) = det (A− tI3) = det

 1− t 1 0
−1 2− t 1
0 1 1− t

 = − (t− 1)2 (t− 2) .

Recall that the eigenvalues of A are the roots of χA (t) (by Proposition 2.1.7
in the class notes from 2019-11-04). But the roots of χA (t) are 1 and 2 (since
χA (t) = − (t− 1)2 (t− 2)). Hence, the eigenvalues of A are 1 and 2.

(b) No.
Proof. We have just found the eigenvalues of A: they are 1 and 2. Let us find

eigenvectors for them:

• The 1-eigenvectors of A are the nonzero scalar multiples of the vector

 1
0
1

.

(This can be found by Gaussian elimination, just as in the above solution to
Exercise 5.)

• The 2-eigenvectors of A are the nonzero scalar multiples of the vector

 1
1
1

.

This shows that we cannot find 3 linearly independent eigenvectors for A. Thus,
there is no basis of R3 consisting of eigenvectors of A. But Proposition 1.2.3 (b)
in the class notes from 2019-11-11 shows that every diagonalization of A can be
obtained from such a basis. Thus, there is no diagonalization of A.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-11.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-11.pdf
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Solution to Exercise 7. We proceed in the same way as we analyzed the Fibonacci
numbers (in Example 1.4.1 in the class notes from 2019-11-06).

Instead of computing hm, let us look at the vectors
(

hm
hm+1

)
for m ≥ 0. Each of

these vectors determines the next one:(
hm+1
hm+2

)
=

(
hm+1

hm+1 + 6hm

)
(since the definition of the hn yields hm+2 = hm+1 + 6hm)

=

(
0 1
6 1

)(
hm

hm+1

)
for each m ≥ 0.

Let us define the 2× 2-matrix A =

(
0 1
6 1

)
. Thus, this becomes

(
hm+1
hm+2

)
= A

(
hm

hm+1

)
for each m ≥ 0.

Hence, by induction on m, we can show that(
hm

hm+1

)
= Am

(
h0
h1

)
(1)

for each m ≥ 0. Thus, in order to compute hm, it suffices to compute Am.
From here on, we proceed as in Example 1.2.4 in the class notes from 2019-11-11

(except that our matrix A is a different one now). We seek a diagonalization of
A. Since we have already seen how to diagonalize a matrix (see, e.g., the solution
to Exercise 5 (b) above), let me be brief: The characteristic polynomial of A is

χA (t) = det
(

0− t 1
6 1− t

)
= (t− 3) (t + 2); thus, the eigenvalues of A are 3

and −2; the corresponding eigenvectors are nonzero scalar multiples of
(

1
3

)
and(

−1
2

)
, respectively; thus, we obtain a diagonalization U, D with

U = [u1 | u2] =

(
1 −1
3 2

)
and

D = diag (3,−2) =
(

3 0
0 −2

)
.

Now, let m ≥ 0. Then, Proposition 1.2.1 in the class notes from 2019-11-11 (ap-
plied to n = 2, d1 = 3 and d2 = −2) yields(

UDU−1
)m

= U diag
(
3m, (−2)m)U−1 (since D = diag (3,−2)) .

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-11.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-11.pdf
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In view of UDU−1 = A, this rewrites as

Am = U diag
(
3m, (−2)m)U−1 =

(
1 −1
3 2

)
diag

(
3m, (−2)m) ( 1 −1

3 2

)−1

(
since U =

(
1 −1
3 2

)
and n = 2 and d1 = 3 and d2 = −2

)
=

(
1 −1
3 2

)(
3m 0
0 (−2)m

) (
1 −1
3 2

)−1

︸ ︷︷ ︸
=

1
2− (−1) 3

(
2 1
−3 1

)

(by the formula

(
a b
c d

)1

=
1

ad− bc

(
d −b
−c a

)
for the inverse of a 2×2-matrix)

=
1

2− (−1) 3︸ ︷︷ ︸
=

1
5

(
1 −1
3 2

)(
3m 0
0 (−2)m

)(
2 1
−3 1

)

=
1
5

(
1 −1
3 2

)(
3m 0
0 (−2)m

)(
2 1
−3 1

)
.

We could multiply this out. But we want hm, not Am. There is a faster way to get
hm: From (1), we obtain(

hm
hm+1

)
= Am︸︷︷︸

=
1
5

(
1 −1
3 2

) 3m 0
0 (−2)m

( 2 1
−3 1

)
(

h0
h1

)
︸ ︷︷ ︸
=

(
0
1

)
(since h0=0 and h1=1)

=
1
5

(
1 −1
3 2

)(
3m 0
0 (−2)m

)(
2 1
−3 1

)(
0
1

)
︸ ︷︷ ︸

=

(
1
1

)

=
1
5

(
1 −1
3 2

)(
3m 0
0 (−2)m

)(
1
1

)
︸ ︷︷ ︸

=

 3m

(−2)m


=

1
5

(
1 −1
3 2

)(
3m

(−2)m

)
︸ ︷︷ ︸

=

 3m − (−2)m

∗


(where the asterisk “∗” stands

for an entry that we
are not interested in)
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=
1
5

(
3m − (−2)m

∗

)
=

 1
5
(
3m − (−2)m)
∗

 .

Thus, by comparing the (1, 1)-entries on both sides, we obtain

hm =
1
5
(
3m − (−2)m) .

This solves the exercise.
[Remark: In general, if a 2× 2-matrix has rational entries, then its eigenvalues will

be quadratic irrationalities (i.e., numbers of the form a +
√

b with a, b ∈ Q); they
don’t have to be rational numbers (and they don’t have to be real numbers either;
b can be negative). The reason why the matrix A above has integer eigenvalues is
that I have picked such a matrix deliberately.]

Before we solve the next two exercises, let me mention some basic properties of
powers of complex numbers:

Proposition 4.1. (a) We have αn+1 = ααn for all α ∈ C and n ∈N.
(b) We have αn+m = αnαm for all α ∈ C and n, m ∈N.
(c) We have (αβ)n = αnβn for all α, β ∈ C and n ∈N.
(d) We have (αn)m = αnm for all α ∈ C and n, m ∈N.
(e) We have 1n = 1 for all n ∈N.
(f) We have αn+1 = ααn for all nonzero α ∈ C and all n ∈ Z.
(g) We have α−n =

(
α−1)n for all nonzero α ∈ C and all n ∈ Z.

(h) We have αn+m = αnαm for all nonzero α ∈ C and all n, m ∈ Z.
(i) We have (αβ)n = αnβn for all nonzero α, β ∈ C and all n ∈ Z.
(j) We have 1n = 1 for all n ∈ Z.
(k) We have (αn)−1 = α−n for all nonzero α ∈ C and all n ∈ Z. (In particular,

αn is nonzero, so that (αn)−1 is well-defined.)
(l) We have (αn)m = αnm for all nonzero α ∈ C and all n, m ∈ Z. (In particular,

αn is nonzero, so that (αn)m is well-defined for all m ∈ Z.)
(m) Complex numbers satisfy the binomial formula: That is, if α, β ∈ C, then

(α + β)n =
n

∑
k=0

(
n
k

)
αkβn−k for n ∈N.

This proposition is [19s, Proposition 4.1.20]; see [19s, solution to Exercise 4.1.1]
for a detailed proof. As for us, we will only need its parts (a), (b), (c) and (d), which
are both easy to check directly using the definition of nonnegative integer powers
(i.e., by using the fact that αk = αα · · · α︸ ︷︷ ︸

k times

for each α ∈ C and each k ∈ N, where the

empty product αα · · · α︸ ︷︷ ︸
0 times

is understood to be 1).
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Solution to Exercise 8. (a) We have

(1 + i)2 = (1 + i) (1 + i) = 1 + i + i + i2︸︷︷︸
=−1

= 1 + i + i + (−1) = 2i.

(b) Part (a) of this exercise shows that (1 + i)2 = 2i. But Proposition 4.1 (a)
(applied to α = 1 + i and n = 2) yields

(1 + i)3 = (1 + i) (1 + i)2︸ ︷︷ ︸
=2i

= (1 + i) · (2i) = 2i + i · 2i︸︷︷︸
=2i2

= 2i + 2 i2︸︷︷︸
=−1

= 2i + 2 (−1) = 2i− 2.

(c) Part (a) of this exercise shows that (1 + i)2 = 2i. But Proposition 4.1 (d)

(applied to α = 1 + i, n = 2 and m = 2) yields
(
(1 + i)2

)2
= (1 + i)2·2 = (1 + i)4.

Thus,

(1 + i)4 =

(1 + i)2︸ ︷︷ ︸
=2i

2

= (2i)2 = 22 i2︸︷︷︸
=−1

(by Proposition 4.1 (c))

= 22 (−1) = −4.

(d) Part (c) of this exercise shows that (1 + i)4 = −4. But Proposition 4.1 (d)

(applied to α = 1 + i, n = 4 and m = 2) yields
(
(1 + i)4

)2
= (1 + i)4·2 = (1 + i)8.

Thus,

(1 + i)8 =

(1 + i)4︸ ︷︷ ︸
=−4

2

= (−4)2 = 42 = 16.

(e) By dividing 1000 by 4 with remainder, we obtain 1000 = 4 · 250.
Part (c) of this exercise shows that (1 + i)4 = −4. Now, Proposition 4.1 (d)

(applied to α = 1 + i, n = 4 and m = 250) yields
(
(1 + i)4

)250
= (1 + i)4·250 =

(1 + i)1000. Thus,

(1 + i)1000 =

(1 + i)4︸ ︷︷ ︸
=−4

250

= (−4)250 = 4250 (since 250 is even) .

Solution to Exercise 9. (a) From ω =
1 +
√

3i
2

, we obtain

ω2 =

(
1 +
√

3i
2

)2

=
1 +
√

3i
2

· 1 +
√

3i
2

=
1
4

(
1 +
√

3i
) (

1 +
√

3i
)

︸ ︷︷ ︸
=1+

√
3i+
√

3i+(
√

3i)
2
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=
1
4


1 +
√

3i +
√

3i︸ ︷︷ ︸
=2
√

3i

+
(√

3i
)2

︸ ︷︷ ︸
=(
√

3)
2
i2

(by Proposition 4.1 (c))



=
1
4

1 + 2
√

3i +
(√

3
)2

︸ ︷︷ ︸
=3

i2︸︷︷︸
=−1

 =
1
4

(
1 + 2

√
3i + 3 (−1)

)
︸ ︷︷ ︸

=−2+2
√

3i

=
1
4

(
−2 + 2

√
3i
)
=
−1 +

√
3i

2
.

(b) Part (a) of this exercise shows that ω2 =
−1 +

√
3i

2
. But Proposition 4.1 (a)

(applied to α = ω and n = 2) yields

ω3 = ω︸︷︷︸
=

1 +
√

3i
2

ω2︸︷︷︸
=
−1 +

√
3i

2

=
1 +
√

3i
2

· −1 +
√

3i
2

=
1
4

(
1 +
√

3i
) (
−1 +

√
3i
)

︸ ︷︷ ︸
=−1+

√
3i−
√

3i+(
√

3i)
2

=
1
4


−1 +

√
3i−
√

3i︸ ︷︷ ︸
=0

+
(√

3i
)2

︸ ︷︷ ︸
=(
√

3)
2
i2

(by Proposition 4.1 (c))



=
1
4

−1 +
(√

3
)2

︸ ︷︷ ︸
=3

i2︸︷︷︸
=−1

 =
1
4
(−1 + 3 (−1)) = −1.

(c) Part (b) of this exercise shows that ω3 = −1. But Proposition 4.1 (d) (applied
to α = ω, n = 3 and m = 2) yields

(
ω3)2

= ω3·2 = ω6. Thus,

ω6 =

 ω3︸︷︷︸
=−1

2

= (−1)2 = 1.
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(d) Here is how they look:

ω1ω2

ω3

ω4 ω5

ω0

.

As we can see, they are the vertices of a regular hexagon inscribed in the unit circle,
centered at the origin:

ω1ω2

ω3

ω4 ω5

ω0

.

(e) By dividing 1000 by 3 with remainder, we obtain 1000 = 3 · 333 + 1.
Part (b) of this exercise shows that ω3 = −1. Now, Proposition 4.1 (d) (applied

to α = ω, n = 3 and m = 333) yields
(
ω3)333

= ω3·333 = ω999. Thus,

ω999 =

 ω3︸︷︷︸
=−1

333

= (−1)333 = −1 (since 333 is odd) .

Now, Proposition 4.1 (a) (applied to α = ω and n = 999) yields

ω1000 = ω ω999︸︷︷︸
=−1

= ω (−1) = −ω = −1 +
√

3i
2

(
since ω =

1 +
√

3i
2

)
.
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Solution to Exercise 10. Recall that a complex number has been defined as a pair of
real numbers. Thus, we can write the complex numbers z and w as z = (a, b) and
w = (c, d), respectively, where a, b, c, d are four reals. Consider these a, b, c, d.

From z = (a, b) and w = (c, d), we obtain

zw = (a, b) (c, d) = (ac− bd, ad + bc)

(by the definition of multiplication of complex numbers).
But the definition of the absolute value of a complex number yields

|z| =
√

a2 + b2 (since z = (a, b)) and

|w| =
√

c2 + d2 (since w = (c, d)) and

|zw| =
√
(ac− bd)2 + (ad + bc)2 (since zw = (ac− bd, ad + bc)) .

Multiplying the first two of these three equalities, we find

|z| · |w| =
√

a2 + b2 ·
√

c2 + d2 =
√
(a2 + b2) (c2 + d2) =

√
a2c2 + a2d2 + b2c2 + b2d2.

Comparing this with

|zw| =
√
(ac− bd)2 + (ad + bc)2 =

√
a2c2 + a2d2 + b2c2 + b2d2

since (ac− bd)2 + (ad + bc)2

=
(
a2c2 − 2acbd + b2d2)+ (a2d2 + 2adbc + b2c2)

=
(
a2c2 − 2abcd + b2d2)+ (a2d2 + 2abcd + b2c2)

= a2c2 + a2d2 + b2c2 + b2d2

 ,

we obtain |zw| = |z| · |w|. This solves the exercise.
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