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1. Reminders

Definition 1.1. Let A be an n× n-matrix. Then, the determinant det A of A is
defined to be the sum

∑
σ is a permutation of [n]

sign (σ) · A1,σ(1)A2,σ(2) · · · An,σ(n).

Here, [n] means {1, 2, . . . , n}.

Theorem 1.2 (Laplace expansion). Let A be an n× n-matrix. For each p, q ∈ [n],
we let Mp,q be the (n− 1)× (n− 1)-matrix obtained from A by removing row p
and column q. Then:

(a) For each p ∈ [n], we have

det A =
n

∑
q=1

(−1)p+q Ap,q det
(

Mp,q
)

.

(This is called Laplace expansion along the p-th row.)
(b) For each q ∈ [n], we have

det A =
n

∑
p=1

(−1)p+q Ap,q det
(

Mp,q
)

.

(This is called Laplace expansion along the q-th column.)

Definition 1.3. Let A be an n× n-matrix. Let λ be a scalar (i.e., a real number).
(a) A λ-eigenvector of A means a nonzero vector v ∈ Rn such that Av = λv.
(b) We say that λ is an eigenvalue of A if and only if there exists a λ-

eigenvector of A.
(c) The characteristic polynomial of A is the polynomial

χA (t) = det (A− tIn) .
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2. Determinants

Exercise 1. Let a, b, c, x, y, z be six reals.
(a) Find

det

 a− x a− y a− z
b− x b− y b− z
c− x c− y c− z

 .

(b) Find

det

 1 + ax 1 + ay 1 + az
1 + bx 1 + by 1 + bz
1 + cx 1 + cy 1 + cz

 .

(c) Find

det

 a b c
x y 0
z 0 0

 .

Solution to Exercise 1. Let us recall some properties of determinants:

Property 1: If an n × n-matrix A has two equal rows, then det A = 0.
(This is Theorem 1.3.3 in the class notes from 2019-10-23.)

Property 2: If we scale a row of an n × n-matrix by a number λ, then
det A gets multiplied by λ. (This is Theorem 1.3.5 in the class notes
from 2019-10-23.)

Property 3: We have det (XY) = det X · det Y for any two n× n-matrices
X and Y. (This is Theorem 1.5.1 in the class notes from 2019-10-30.)

Property 4: If an n× n-matrix A has a zero row (i.e., a row full of zeroes),
then det A = 0. (This is Corollary 1.2.1 in the class notes from 2019-10-
30.)

Property 5: Let A be an n × n-matrix, and let p and q be two distinct
elements of [n]. If we add λ · rowp A to the q-th row of A, then det A
does not change. (This is Corollary 1.2.5 in the class notes from 2019-10-
30.)

Property 6: Let A be an n × n-matrix, and let p and q be two distinct
elements of [n]. If we subtract rowp A from the q-th row of A, then
det A does not change. (This follows from Property 5 (applied to λ =
−1), because adding (−1) · rowp A to the q-th row of A is the same as
subtracting rowp A from the q-th row of A.)

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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Property 7: If an n × n-matrix A is triangular (i.e., upper-triangular or
lower-triangular), then its determinant is the product of its diagonal
elements:

det A = A1,1A2,2 · · · An,n.

(This is Theorem 1.1.2 in the class notes from 2019-10-30.)

Property 8: If we swap two rows of an n× n-matrix, then its determinant
gets multiplied by −1 (that is, it flips its sign but preserves its magni-
tude). (This is Theorem 1.2.6 in the class notes from 2019-10-30.)

(a) Part (a) of the exercise is similar to Exercise 3 on midterm training #2 (but we
have minus signs instead of plus signs now, and we have restricted ourselves to a
3× 3-matrix to make the solution more intuitive). Let us give two solutions.

First solution to part (a): We have

det

 a− x a− y a− z
b− x b− y b− z
c− x c− y c− z


= det

 a− x a− y a− z
b− a b− a b− a
c− x c− y c− z


 here, we have subtracted the 1-st row of our matrix

from the 2-nd row; this did not change the determinant
(by Property 6)


= det

 a− x a− y a− z
b− a b− a b− a
c− a c− a c− a


 here, we have subtracted the 1-st row of our matrix

from the 3-rd row; this did not change the determinant
(by Property 6)


= (b− a)det

 a− x a− y a− z
1 1 1

c− a c− a c− a


 by Property 2, because the matrix before the

equality sign can be obtained from the matrix after
the equality sign by scaling the 2-nd row by b− a


= (b− a) (c− a) det

 a− x a− y a− z
1 1 1
1 1 1


︸ ︷︷ ︸

=0
(by Property 1, because this matrix has two equal rows

(namely, its 2-nd and 3-rd rows are equal))

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt2t.pdf


Math 201-003 Fall 2019 (Darij Grinberg): midterm 2 page 4

= 0.

Second solution to part (a): Define two n× n-matrices X and Y by

X =

 a −1 0
b −1 0
c −1 0

 and Y =

 1 1 1
x y z
0 0 0

 .

The matrix Y has a zero row (namely, its third row). Thus, Property 4 yields
det Y = 0.

But it is easy to see that

 a− x a− y a− z
b− x b− y b− z
c− x c− y c− z

 = XY. Hence,

det

 a− x a− y a− z
b− x b− y b− z
c− x c− y c− z

 = det (XY) = det X · det Y︸ ︷︷ ︸
=0

(by Property 3)

= 0.

(b) This is similar to part (a). Again, we will give two solutions:

First solution to part (b): We have

det

 1 + ax 1 + ay 1 + az
1 + bx 1 + by 1 + bz
1 + cx 1 + cy 1 + cz


= det

 1 + ax 1 + ay 1 + az
(b− a) x (b− a) y (b− a) z

1 + cx 1 + cy 1 + cz


 here, we have subtracted the 1-st row of our matrix

from the 2-nd row; this did not change the determinant
(by Property 6)


= det

 1 + ax 1 + ay 1 + az
(b− a) x (b− a) y (b− a) z
(c− a) x (c− a) y (c− a) z


 here, we have subtracted the 1-st row of our matrix

from the 3-rd row; this did not change the determinant
(by Property 6)


= (b− a)det

 1 + ax 1 + ay 1 + az
x y z

(c− a) x (c− a) y (c− a) z
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 by Property 2, because the matrix before the
equality sign can be obtained from the matrix after
the equality sign by scaling the 2-nd row by b− a


= (b− a) (c− a) det

 1 + ax 1 + ay 1 + az
x y z
x y z


︸ ︷︷ ︸

=0
(by Property 1, because this matrix has two equal rows

(namely, its 2-nd and 3-rd rows are equal))

= 0.

Second solution to part (b): Define two n× n-matrices X and Y by

X =

 1 a 0
1 b 0
1 c 0

 and Y =

 1 1 1
x y z
0 0 0

 .

The matrix Y has a zero row (namely, its third row). Thus, Property 4 yields
det Y = 0.

But it is easy to see that

 1 + ax 1 + ay 1 + az
1 + bx 1 + by 1 + bz
1 + cx 1 + cy 1 + cz

 = XY. Hence,

det

 1 + ax 1 + ay 1 + az
1 + bx 1 + by 1 + bz
1 + cx 1 + cy 1 + cz

 = det (XY) = det X · det Y︸ ︷︷ ︸
=0

(by Property 3)

= 0.

(c) Again, let us give two solutions:

First solution to part (c): Recall the explicit formula

det A = A1,1A2,2A3,3 + A1,2A2,3A3,1 + A1,3A2,1A3,2

− A1,1A2,3A3,2 − A1,2A2,1A3,3 − A1,3A2,2A3,1

for the determinant of an arbitrary 3× 3-matrix. Applying this formula to A = a b c
x y 0
z 0 0

, we obtain

det

 a b c
x y 0
z 0 0

 = ay · 0 + b · 0z + cx · 0− a0 · 0− bx · 0− cyz = −cyz.
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Second solution to part (c): We have

det

 a b c
x y 0
z 0 0


= − det

 z 0 0
x y 0
a b c


︸ ︷︷ ︸

=zyc
(by Property 7, since this matrix

is lower-triangular) here, we have swapped the 1-st and 3-rd rows of the matrix;
this caused the determinant to get multiplied by − 1

(by Property 8)


= −zyc = −cyz.

Let us remark that all three parts of Exercise 1 can be generalized to n × n-
matrices. Indeed, Exercise 1 (a) is a particular case of the following fact:

Proposition 2.1. Let n ≥ 3 be an integer. Let x1, x2, . . . , xn be n reals, and let
y1, y2, . . . , yn be n further reals. Let Dn denote the n× n-matrix

(
xi − yj

)
1≤i≤n, 1≤j≤n =


x1 − y1 x1 − y2 · · · x1 − yn
x2 − y1 x2 − y2 · · · x2 − yn

...
... . . . ...

xn − y1 xn − y2 · · · xn − yn

 .

Then, det (Dn) = 0.

This Proposition 2.1 follows from our answer to Exercise 3 on midterm training
#2 (applied to −yj instead of yj).

Exercise 1 (b) is a particular case of the following fact:

Proposition 2.2. Let n ≥ 3 be an integer. Let x1, x2, . . . , xn be n reals, and let
y1, y2, . . . , yn be n further reals. Let Tn denote the n× n-matrix

(
1 + xiyj

)
1≤i≤n, 1≤j≤n =


1 + x1y1 1 + x1y2 · · · 1 + x1yn
1 + x2y1 1 + x2y2 · · · 1 + x2yn

...
... . . . ...

1 + xny1 1 + xny2 · · · 1 + xnyn

 .

Then, det (Tn) = 0.

https://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt2t.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt2t.pdf
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This Proposition 2.2 can be proved by adapating any of our above two solutions
to Exercise 1 (b) in a straightforward manner.

Finally, Exercise 1 (c) is a particular case of the following fact:

Proposition 2.3. Let n ∈N. Let A be an n× n-matrix. The straight line connect-
ing the upper-right corner of A with the bottom-left corner of A will be called
the anti-diagonal of A.

Assume that all entries of A below the anti-diagonal are 0. (In other words,
assume that Ai,j = 0 for all (i, j) satisfying i + j > n + 1.)

Then,
det A = (−1)n(n−1)/2 A1,n A2,n−1 · · · An−1,2An,1.

Applying Proposition 2.3 to n = 3, we recover Exercise 1 (c).
Proposition 2.3 can be proven in the same two ways in which we solved Exercise

1 (c), although each of them requires some more thinking in the general case:

• Imitating the second solution to Exercise 1 (c), we can prove Proposition 2.3
by turning the matrix A into a lower-triangular matrix by a sequence of row
swaps. (There are several ways to do so; the conceptually simplest way is
probably to swap every row with every row.)

• Imitating the first solution to Exercise 1 (c), we can prove Proposition 2.3 by
showing that only 1 of the n! many addends in the definition of det A has any
chance to be nonzero, and that this addend is precisely

(−1)n(n−1)/2 A1,n A2,n−1 · · · An−1,2An,1.

(This addend corresponds to the permutation σ of [n] that sends 1, 2, . . . , n−
1, n to n, n− 1, . . . , 2, 1 respectively; the sign of this permutation is sign (σ) =

(−1)n(n−1)/2, since σ has n (n− 1) /2 inversions.)

We leave the details to the interested reader.
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Exercise 2. For each n ∈N, let Bn be the n× n-matrix

2 1 0 · · · 0 0 0
1 2 1 · · · 0 0 0
0 1 2 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 2 1 0
0 0 0 · · · 1 2 1
0 0 0 · · · 0 1 2


.

(This is the n× n-matrix whose entries on the diagonal are 2, while all entries
just above and just below the diagonal are 1, and all remaining entries are 0.)

(a) Find det (B1). (Note that B1 =
(

2
)
.)

(b) Find det (B2). (Note that B2 =

(
2 1
1 2

)
.)

(c) Find det (B3). (Note that B3 =

 2 1 0
1 2 1
0 1 2

.)

(d) For a general integer n ≥ 2, find an expression for det (Bn) in terms of
det (Bn−1) and det (Bn−2).

(e) Find a formula for det (Bn) in terms of things we have seen in class.
[Hint: In (d), use Laplace expansion.]

Solution to Exercise 2. This exercise is analogous to Exercise 4 on midterm training
#2. Parts (a), (b), (c) and (d) are solved in the exact same way (with some obvi-
ous changes) as the corresponding parts of the latter exercise. Part (e), however,
involves a new twist.

(a) We have B1 =
(

2
)

and thus det (B1) = det
(

2
)
= 2.

(b) We have B2 =

(
2 1
1 2

)
and thus det (B2) = det

(
2 1
1 2

)
= 3.

(c) We have B3 =

 2 1 0
1 2 1
0 1 2

 and thus det (B3) = det

 2 1 0
1 2 1
0 1 2

 = 4.

(d) Let n be an integer such that n ≥ 2.
We have

Bn =



2 1 0 · · · 0 0 0
1 2 1 · · · 0 0 0
0 1 2 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 2 1 0
0 0 0 · · · 1 2 1
0 0 0 · · · 0 1 2


n×n

.

Here, the subscript “n× n” tells us that the matrix you are seeing is understood to

https://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt2t.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt2t.pdf
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be an n× n-matrix. (Similar notations will be used further below.)
The 1-st row of the matrix Bn has only two nonzero entries: the 2 in position 1,

and the 1 in position 2. Hence, Laplace expansion along the 1-st row (see Theorem
1.7.1 in the class notes from 2019-10-30) yields

det (Bn) = 2 · det



2 1 · · · 0 0 0
1 2 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · 2 1 0
0 0 · · · 1 2 1
0 0 · · · 0 1 2


(n−1)×(n−1)︸ ︷︷ ︸

=Bn−1

− 1 · det



1 1 · · · 0 0 0
0 2 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · 2 1 0
0 0 · · · 1 2 1
0 0 · · · 0 1 2


(n−1)×(n−1)

+ (several addends that equal 0 and thus can be ignored)

= 2 · det (Bn−1)− det



1 1 · · · 0 0 0
0 2 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · 2 1 0
0 0 · · · 1 2 1
0 0 · · · 0 1 2


(n−1)×(n−1)

.

Let us denote the second matrix on the right hand side of this equality1 by Cn−1.
The 1-st column of this matrix Cn−1 has only one nonzero entry, namely the 1 in
position 1. Hence, Laplace expansion along the 1-st column (see Theorem 1.2.1 in

1i.e., the matrix



1 1 · · · 0 0 0
0 2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 2 1 0
0 0 · · · 1 2 1
0 0 · · · 0 1 2


(n−1)×(n−1)

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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the class notes from 2019-11-04) yields

det (Cn−1) = 1 · det


2 · · · 0 0 0
... . . . ...

...
...

0 · · · 2 1 0
0 · · · 1 2 1
0 · · · 0 1 2


(n−2)×(n−2)︸ ︷︷ ︸

=Bn−2

= 1 · det (Bn−2)

= det (Bn−2) .

Thus, our above computation becomes

det (Bn) = 2 · det (Bn−1)− det



−1 1 · · · 0 0 0
0 1 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · 1 1 0
0 0 · · · −1 1 1
0 0 · · · 0 −1 1


(n−1)×(n−1)︸ ︷︷ ︸

=Cn−1

= 2 · det (Bn−1)− det (Cn−1)︸ ︷︷ ︸
=det(Bn−2)

= 2 · det (Bn−1)− det (Bn−2) .

This solves part (d) of the exercise.
(e) We claim that

det (Bn) = n + 1 for each n ≥ 1. (1)

[Proof of (1): We shall prove (1) by strong induction on n:
Induction step: Let m ≥ 1 be an integer. Assume (as induction hypothesis) that (1)

holds for all n < m. We must then show that (1) holds for n = m. In other words,
we must show that det (Bm) = m + 1.

This is clearly true when m = 1 (because in part (a) of this exercise, we showed
that det (B1) = 2 = 1 + 1). It is also true when m = 2 (because in part (b) of this
exercise, we showed that det (B2) = 3 = 2 + 1). Thus, for the rest of this induction
step, we can WLOG assume that m 6= 1 and m 6= 2. Assume this; hence, m ≥ 3.

The integer m− 1 satisfies m− 1 ≥ 1 (since m ≥ 3 ≥ 2) and m− 1 < m. Thus,
our induction hypothesis shows that (1) holds for n = m− 1. In other words, we
have det (Bm−1) = (m− 1) + 1.

The integer m− 2 satisfies m− 2 ≥ 1 (since m ≥ 3) and m− 2 < m. Thus, our
induction hypothesis shows that (1) holds for n = m− 2. In other words, we have
det (Bm−2) = (m− 2) + 1.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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But in part (d) of the exercise, we have seen that det (Bn) = 2 · det (Bn−1) −
det (Bn−2) for each n ≥ 2. Applying this to n = m, we find

det (Bm) = 2 · det (Bm−1)︸ ︷︷ ︸
=(m−1)+1

−det (Bm−2)︸ ︷︷ ︸
=(m−2)+1

= 2 · ((m− 1) + 1)− ((m− 2) + 1) = m + 1.

In other words, (1) holds for n = m. This completes the induction step. Thus, (1) is
proved by strong induction.]

Now that (1) is proved, part (e) of the exercise is solved.
[Remark: The above proof of (1) by strong induction is rigorous and completely

straightforward (once you know what you are proving!), but it is somewhat bland
and unmotivated (in the sense that you need to know the formula (1) in order to
find this proof). Of course, this is not a serious issue here, since the formula (1) is
easy to guess (just look at the values of det (Bn) for n = 0, 1, 2, 3, 4, and extend the
obvious pattern). Nevertheless, there is value in having a more motivated proof.
Here is an outline of such a proof: In part (d) of the exercise, we have seen that
det (Bn) = 2 · det (Bn−1)− det (Bn−2) for each n ≥ 2. We can rewrite this equality
as

det (Bn)− det (Bn−1) = det (Bn−1)− det (Bn−2) .

But this equality is just saying that the differences between consecutive elements of
the sequence

(det (B0) , det (B1) , det (B2) , det (B3) , . . .)

don’t change from one pair of consecutive elements to the next. In other words,
these differences are all the same. In other words, the sequence

(det (B0) , det (B1) , det (B2) , det (B3) , . . .)

is an arithmetic sequence. Which arithmetic sequence? Since an arithmetic se-
quence is uniquely determined by any two of its values, we can answer this ques-
tion by finding det (B1) and det (B2) and extending the pattern. Since det (B1) = 2
and det (B2) = 3, we see that the pattern is det (Bn) = n + 1 for all n ≥ 0. This
proves (1) again.]
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3. Eigenvalues and eigenvectors

Exercise 3. Find the eigenvalues and the eigenvectors of the 3 × 3-matrix 0 1 0
1 0 1
0 1 0

.

Solution to Exercise 3. Let A denote this 3× 3-matrix. Then, the characteristic poly-
nomial of A is

χA (t) = det (A− tI3) = det

 −t 1 0
1 −t 1
0 1 −t


= 2t− t3 (this is easy to check by expanding the determinant)

= t
(

2− t2
)

︸ ︷︷ ︸
=(
√

2−t)(
√

2+t)

= t
(√

2− t
) (√

2 + t
)

.

Hence, the roots of χA (t) are 0,
√

2,−
√

2.
Recall that the eigenvalues of A are the roots of χA (t) (by Proposition 2.1.7 in

the class notes from 2019-11-04). But the roots of χA (t) are 0,
√

2,−
√

2. Hence, the
eigenvalues of A are 0,

√
2,−
√

2.
It remains to find the eigenvectors. This is an easy matter of solving systems of

linear equations:

• The 0-eigenvectors of A are the nonzero vectors v ∈ R3 satisfying Av =

0v. In other words, they are the nonzero vectors

 x
y
z

 ∈ R3 such that

A

 x
y
z

 = 0

 x
y
z

. This is a system of 3 linear equations in the unknowns

x, y, z; solving it by Gaussian elimination, we obtain
{

x = −z
y = 0 (where z is

a free variable). Thus, they are the nonzero scalar multiples of the vector −1
0
1

.

• Likewise, the
√

2-eigenvectors of A are the nonzero scalar multiples of the

vector

 1√
2

1

.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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• Likewise, the
(
−
√

2
)

-eigenvectors of A are the nonzero scalar multiples of

the vector

 1
−
√

2
1

.
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Exercise 4. Consider the matrix A =


1 0 0 0
1 2 0 0
0 2 3 0
0 0 3 4

. Here are four eigenvectors

of A: 
0
0
−1
3

 ,


0
1
−2
3

 ,


0
0
0
1

 ,


−1
1
−1
1

 .

(a) What are the eigenvalues corresponding to these four eigenvectors?
(b) Find a diagonalization of A – that is, a pair (U, D) of an invertible matrix

U and a diagonal matrix D such that A = UDU−1.

Solution to Exercise 4. (a) Let us denote these four eigenvectors by u1, u2, u3, u4, in
the order in which they are given. Let λ1, λ2, λ3, λ4 be the corresponding eigenval-
ues of A.

What is the quickest way to find λ1 ? We must have Au1 = λ1u1 (since u1 is

a λ1-eigenvector of A). In view of A =


1 0 0 0
1 2 0 0
0 2 3 0
0 0 3 4

 and u1 =


0
0
−1
3

, this

rewrites as 
1 0 0 0
1 2 0 0
0 2 3 0
0 0 3 4




0
0
−1
3

 = λ1


0
0
−1
3

 .

Multiplying the left hand side of this equation out, we rewrite it as
0
0
−3
9

 = λ1


0
0
−1
3

 .

By comparing the 4-th entries on the vectors of both sides of this equality, we obtain
9 = λ1 · 3. Solving this for λ1, we find λ1 = 3.

[Note that you don’t even need to fully multiply the left hand side out to see this!
Just find one nonzero entry of the product, and compare it with the corresponding
entry on the right hand side.]

Similarly, we can find λ2 = 2 and λ3 = 4 and λ4 = 1. Thus, the eigenvalues
corresponding to our four eigenvectors are 3, 2, 4, 1 (in this order).

(b) The four eigenvectors u1, u2, u3, u4 of A correspond to the four distinct eigen-
values λ1, λ2, λ3, λ4 (indeed, these four eigenvalues are distinct, because they equal
3, 2, 4, 1, as we have just observed). Thus, Proposition 1.3.3 in the class notes from
2019-11-06 shows that u1, u2, u3, u4 form a basis of R4.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
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Hence, the 4-tuple (u1, u2, u3, u4) is a basis of R4 that consists of eigenvectors
of A, and λ1, λ2, λ3, λ4 are the corresponding eigenvalues. Hence, we can find a
diagonalization of A using Proposition 1.2.3 (a) in the class notes from 2019-11-11:
We set

U = [u1 | u2 | u3 | u4] =


0 0 0 −1
0 1 0 1
−1 −2 0 −1
3 3 1 1

 and

D = diag (λ1, λ2, λ3, λ4) = diag (3, 2, 4, 1) =


3 0 0 0
0 2 0 0
0 0 4 0
0 0 0 1

 .

The pair U, D is a diagonalization of A (that is, U is invertible, and D is diagonal,
and we have A = UDU−1).

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-11.pdf
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Exercise 5. Let a, b, c, x, y, z be six reals. Let A be the 3× 3-matrix ax ay az
bx by bz
cx cy cz

 .

(a) Explain why ax + by + cz is an eigenvalue of A, and find a corresponding
eigenvector.

(b) Assume that a, b, c, x, y, z are nonzero. Find a 0-eigenvector of A.

Solution to Exercise 5. (a) It clearly suffices to find an (ax + by + cz)-eigenvector of
A, because if such an eigenvector exists, then ax + by + cz will be an eigenvalue of
A (by the definition of “eigenvalue”).

If a, b, c are all 0, then an (ax + by + cz)-eigenvector of A is easy to find, because
any nonzero vector in R3 is an (ax + by + cz)-eigenvector of A in this case2. Thus,
for the rest of this proof, we WLOG assume that a, b, c are not all 0. Hence, the

vector

 a
b
c

 ∈ R3 is nonzero.

The vector

 a
b
c

 is an (ax + by + cz)-eigenvector of A, since it is nonzero and

satisfies

A

 a
b
c

 =

 ax ay az
bx by bz
cx cy cz

 a
b
c

 =

 a2x + aby + acz
b2y + abx + bcz
c2z + acx + bcy


=

 (ax + by + cz) a
(ax + by + cz) b
(ax + by + cz) c

 = (ax + by + cz)

 a
b
c

 .

Hence, we have found an (ax + by + cz)-eigenvector of A.

(b) The vector

 0
z
−y

 is nonzero (since y is nonzero) and satisfies

A

 a
b
c

 =

 ax ay az
bx by bz
cx cy cz

 0
z
−y

 =

 0
0
0

 = 0

 0
z
−y

 .

2Proof. Assume that a, b, c are all 0. Then, A is the zero matrix, and therefore Av = 0 = 0v for each
v ∈ R3. Hence, any nonzero vector in R3 is a 0-eigenvector of A. In other words, any nonzero
vector is an (ax + by + cz)-eigenvector of A (since a︸︷︷︸

=0

x + b︸︷︷︸
=0

y + c︸︷︷︸
=0

z = 0x + 0y + 0z = 0).

Qed.
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In other words, this vector is a 0-eigenvector of A.
[Remark: Many answers are possible in part (b). In particular, all three vectors 0

z
−y

,

 −z
0
x

 and

 y
−x
0

 as well as all their nonzero linear combinations

are 0-eigenvectors of A.
Note that our above argument only used the assumption that y is nonzero (not

that the rest of a, b, c, x, z are nonzero). Likewise, we can solve the problem if x
is nonzero or if z is nonzero. On the other hand, if all of x, y, z are zero, then
A = 03×3, and thus every nonzero vector in R3 is a 0-eigenvector of A.]
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Exercise 6. True or false? No justifications are required in this exercise. Just
write Y or N into the respective box!

(a) An n× n-matrix A is invertible if and only if 0 is an eigen-

value of A.

(b) An n× n-matrix A is invertible if and only if 0 is not an

eigenvalue of A.

(c) The column vector e1 =


1
0
0
...
0

 ∈ Rn is an eigenvector of

every upper-triangular n× n-matrix.

(d) The column vector en =


0
0
...
0
1

 ∈ Rn is an eigenvector of

every upper-triangular n× n-matrix.

(e) If λ is an eigenvalue of two n× n-matrices A and B, then

λ is an eigenvalue of A + B as well.

(f) If v is an eigenvector of two n× n-matrices A and B, then

v is an eigenvector of A + B as well.

(g) If an n× n-matrix A has n distinct eigenvalues, then it is

diagonalizable.

(h) If two n× n-matrices A and B have the same characteristic

polynomial (that is, χA (t) = χB (t)), then det A = det B.

(i) If all diagonal entries of an n × n-matrix A are 0, then

det A = 0.

(j) If all off-diagonal entries of an n× n-matrix A are 0, then

det A = 0.
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Solution to Exercise 6. (a) NO.
Proof. The identity matrix In is invertible, but 0 is not among its eigenvalues

(indeed, the only eigenvalue of In is 1, since Inv = v = 1v for each v ∈ Rn).

(b) YES.
Proof. Let A be an n× n-matrix. Recall that the eigenvalues of A are the roots of

χA (t) (by Proposition 2.1.7 in the class notes from 2019-11-04).
We have χA (t) = det (A− tIn) (by the definition of χA). Substituting 0 for t in

this equality, we find χA (0) = det (A− 0In)︸ ︷︷ ︸
=A

= det A.

Theorem 1.4.1 in the class notes from 2019-10-30 shows that A is invertible if and
only if det A 6= 0. Thus, we have the following chain of equivalences:

(A is invertible) ⇐⇒ (det A 6= 0)
⇐⇒ (χA (0) 6= 0) (since det A = χA (0))
⇐⇒ (0 is not a root of the polynomial χA (t))
⇐⇒ (0 is not an eigenvalue of A)

(since the eigenvalues of A are the roots of χA (t)). Thus, A is invertible if and only
if 0 is not an eigenvalue of A. This proves the claim of part (b).

(c) YES.
Proof. Let us just prove this in the case when n = 3: Let A be any upper-triangular

3× 3-matrix. Then, we can write A in the form A =

 a b c
0 b′ c′

0 0 c′′

 for some reals

a, b, c, b′, c′, c′′. Thus, we have

Ae1 =

 a b c
0 b′ c′

0 0 c′′

 1
0
0

 since e1 =

 1
0
0


=

 a · 1 + b · 0 + c · 0
0 · 1 + b′ · 0 + c′ · 0
0 · 1 + 0 · 0 + 0 · c′′

 =

 a
0
0

 = a

 1
0
0


︸ ︷︷ ︸

=e1

= ae1.

This shows that e1 is an a-eigenvector of A (since e1 is nonzero). Thus, e1 is an
eigenvector of A.

The same argument works for all n (except that the matrices become larger).
Alternative, you may recall that Ae1 = col1 A (as a consequence of Exercise 4 (b)
on homework set #1), and use this to show that Ae1 = A1,1e1 whenever A is upper-
triangular. Either way, the claim of part (c) is proved.

(d) NO.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw1s.pdf
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Proof. Just check that this fails for the upper-triangular matrix
(

1 1
0 1

)
when

n = 2. (Indeed,
(

1 1
0 1

)
en =

(
1 1
0 1

)(
0
1

)
=

(
1
1

)
is not a scalar multiple of

en.)

(e) NO.
Proof. The number 1 is an eigenvalue of the 1× 1-matrices

(
1
)

and
(

1
)
, but

is not an eigenvalue of their sum
(

1
)
+
(

1
)
=
(

2
)
.

(f) YES.
Proof. Let A and B be two n× n-matrices. Let v ∈ R be an eigenvector of both

matrices A and B. Let λ and µ be the corresponding eigenvalues (so that v is a
λ-eigenvector of A and a µ-eigenvector of B). Thus, Av = λv and Bv = µv. Adding
these two equalities together, we obtain Av + Bv = λv + µv = (λ + µ) v. Hence,
(A + B) v = Av+ Bv = (λ + µ) v. Since v is nonzero (because v is an eigenvector of
A), this shows that v is a (λ + µ)-eigenvector of A + B. Hence, v is an eigenvector
of A + B. This proves the claim of part (f) of the exercise.

(g) YES.
Proof. Let A be an n× n-matrix that has n distinct eigenvalues. Let λ1, λ2, . . . , λn

be these eigenvalues. For each i ∈ {1, 2, . . . , n}, there exists a λi-eigenvector ui
(by the definition of an eigenvalue); consider this ui. Thus, Proposition 1.3.3 in
the class notes from 2019-11-06 shows that u1, u2, . . . , un form a basis of Rn. Thus,
(u1, u2, . . . , un) is a basis of Rn that consists of eigenvectors of A. Hence, we can
find a diagonalization of A using Proposition 1.2.3 (a) in the class notes from 2019-
11-11. Thus, A has a diagonalization, i.e., is diagonalizable. This proves the claim
of part (g).

(h) YES.
Proof. Let A and B be two matrices that have the same characteristic polynomial

(that is, χA (t) = χB (t)).
We have χA (t) = det (A− tIn) (by the definition of χA). Substituting 0 for t in

this equality, we find χA (0) = det (A− 0In)︸ ︷︷ ︸
=A

= det A. Likewise, χB (0) = det B.

But substituting 0 for t in the equality χA (t) = χB (t), we obtain χA (0) = χB (0).
In view of χA (0) = det A and χB (0) = det B, this rewrites as det A = det B. This
proves the claim of part (h).

(i) NO.

Proof. All diagonal entries of the 2× 2-matrix
(

0 1
1 0

)
are 0, yet the determinant

of this matrix is −1 6= 0.

(j) NO.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-11.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-11.pdf
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Proof. All off-diagonal entries of the 2× 2-matrix
(

1 0
0 1

)
are 0, yet the deter-

minant of this matrix is 1 6= 0.


	Reminders
	Determinants
	Eigenvalues and eigenvectors

