
Math 201-003 Fall 2019 (Darij Grinberg): midterm training 1 page 1

Math 201-003 Fall 2019 (Darij Grinberg): midterm training 1

1. Matrix operations

Exercise 1. (a) Let A3 =

 0 1 0
1 0 1
0 1 0

 and B3 =

 1 0 1
0 1 0
1 0 1

. (These matrices

are filled in “checkerboard patterns”: Entries that are 0 alternate with entries
that are 1.)

Compute A2
3, B2

3, A3B3 and B3A3.

(b) Let A4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and B4 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

. (These follow the

same patterns as A3 and B3.)
Compute A2

4, B2
4, A4B4 and B4A4.

Now, let us generalize:
For any positive integer n, define two “checkerboard-pattern” n× n-matrices

An and Bn by

An = ((i + j)%2)1≤i≤n, 1≤j≤n , Bn = ((i + j− 1)%2)1≤i≤n, 1≤j≤n ,

where k%2 denotes the remainder left when k is divided by 2 (so k%2 = 1 when
k is odd, and k%2 = 0 when k is even).

(This is just a formal way to define two matrices that are filled in the same
checkerboard way as A3 and B3 (or as A4 and B4).)

(c) Prove that each even n ∈N satisfies A2
n = B2

n and AnBn = Bn An.
(d) Prove that each odd n ≥ 3 satisfies AnBn 6= Bn An.

2. Gaussian elimination

Exercise 2. Consider the system
a + b + c + d = e
a + 2b + 3c + 4d = 5e
a + 3b + 6c + 10d = 15e

of linear equations in five unknowns a, b, c, d, e.
(a) Find the augmented matrix corresponding to this system.
(b) Find the RREF of this matrix.
(c) Solve the system.
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Exercise 3. (a) Let A7 be the 7× 7-matrix

1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1


.

(Its diagonal entries are 1; its entries just below the diagonal are 1; its entry in
the top-right corner is 1; all its other entries are 0.)

Find the RREF of A7.
(b) Let A8 be the 8× 8-matrix

1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1


.

(It is given by the same rule as A7, except for having one more row and column.)
Find the RREF of A8.

Exercise 4. Let U =


6 3 −2 5
0 0 −1 2
0 0 0 1
0 0 0 0

.

(a) Find all column vectors x ∈ R4 satisfying Ux = b, where b =


1
5
2
0

.

(b) Find all column vectors x ∈ R4 satisfying Ux = b′, where b′ =


1
5
2
1

.

(c) Find all column vectors x ∈ R4 satisfying Ux = x.
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3. Linear combinations, independence and spanning

Exercise 5. Let n ≥ 2 be an integer. Recall the vectors e1, e2, . . . , en in Rn that
were defined in Exercise 4 of homework set #2.

Now, consider the n vectors

e1 + e2, e2 + e3, e3 + e4, . . . , en−1 + en, en + e1.

Let us denote them by f1, f2, . . . , fn. (Thus, fi = ei + ei+1 for each i ∈
{1, 2, . . . , n− 1}, and fn = en + e1.)

(a) Are these n vectors f1, f2, . . . , fn linearly independent when n = 7 ?
(b) Are these n vectors f1, f2, . . . , fn linearly independent when n = 8 ?
(c) Do these n vectors f1, f2, . . . , fn span Rn when n = 7 ?
(d) Do these n vectors f1, f2, . . . , fn span Rn when n = 8 ?

Exercise 6. Fix an integer n ≥ 3. Consider the following four n× n-matrices:

• The n× n-matrix N has all entries in its 1-st row equal to 1, while all other
entries are 0.

• The n× n-matrix E has all entries in its n-th column equal to 1, while all
other entries are 0.

• The n× n-matrix S has all entries in its n-th row equal to 1, while all other
entries are 0.

• The n× n-matrix W has all entries in its 1-st column equal to 1, while all
other entries are 0.

For example, for n = 3, these matrices look as follows:

N =

 1 1 1
0 0 0
0 0 0

 , E =

 0 0 1
0 0 1
0 0 1

 ,

S =

 0 0 0
0 0 0
1 1 1

 , W =

 1 0 0
1 0 0
1 0 0

 .

(For n = 2, these are precisely the matrices N, E, S, W from Exercise 6 on
homework set #2. But here we are assuming n ≥ 3.)

(a) Is the identity matrix In a linear combination of N, E, S, W ?
(b) Are N, E, S, W linearly dependent?

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw2s.pdf
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4. Matrix inversion and invertibility

Exercise 7. Let A be the 4× 4-matrix


1 a b c
0 1 b′ c′

0 0 1 c′′

0 0 0 1

, where a, b, c, b′, c′, c′′ are

arbitrary reals. Compute the inverse A−1.

Exercise 8. Which of the following matrices are invertible?

(a)

 1 1 1
1 1 0
1 0 0

. (b)

 1 0 1
0 1 0
1 0 1

. (c)

 1 0 2
0 2 0
2 0 3

.

(d)
(

1 4 9
5 −1 4

)
.

[Hint: These can be solved without paper.]

Exercise 9. Let n be a nonnegative integer, and let A be an invertible n×n-matrix.
Prove that its transpose AT is also invertible, and its inverse is

(
AT)−1

=
(

A−1)T.

[Hint: By the definition of “inverse”, this means showing that AT (A−1)T
= In

and
(

A−1)T AT = In. Show this.]

5. Permutations

Recall that we are using [n] to denote the n-element set {1, 2, . . . , n} whenever n is
a nonnegative integer.

Exercise 10. Consider three maps α, β, γ from [4] to [4] given in two-line notation
as follows:

α =

(
1 2 3 4
2 4 1 3

)
, β =

(
1 2 3 4
3 4 1 3

)
, γ =

(
1 2 3 4
3 4 1 2

)
.

(a) Which of α, β and γ are permutations?
(b) Express α ◦ β and β ◦ α and γ ◦ γ in two-line notation.
(c) Compute the signs of all permutations among α, β and γ.
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6. Solutions

The following solutions are a bit rough at some places, but they have enough detail
to get full scores.

Some of these solutions use tricks instead of systematic methods. You are free
to use the methods – but the tricks are often faster and reveal some ideas that you
would have missed if you just followed the methods.

Solution to Exercise 1. Recall the following fact ([lina, Proposition 2.19 (b)]): If A is
an n×m-matrix and B is an m× p-matrix, then

(AB)i,j = rowi A · colj B for any i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p} .

Thus, in order to find the product AB, we need to multiply each row of A with
each column of B. This is particularly easy when A has few different rows and
B has few different columns. And this is exactly the situation we have with our
“checkerboard pattern” matrices:

(b) The matrix A4 has only 2 different rows: Namely, all its odd rows are(
0 1 0 1

)
, and all its even rows are

(
1 0 1 0

)
. Likewise, all the odd

columns of B4 are


1
0
1
0

, and all even columns of B4 are


0
1
0
1

. Thus, in or-

der to find A4B4, we only need to compute 4 different products:

(
0 1 0 1

)︸ ︷︷ ︸
an odd row of A4

·


1
0
1
0


︸ ︷︷ ︸

an odd column of B4

= 0;
(

0 1 0 1
)︸ ︷︷ ︸

an odd row of A4

·


0
1
0
1


︸ ︷︷ ︸

an even column of B4

= 2;

(
1 0 1 0

)︸ ︷︷ ︸
an even row of A4

·


1
0
1
0


︸ ︷︷ ︸

an odd column of B4

= 2;
(

1 0 1 0
)︸ ︷︷ ︸

an even row of A4

·


0
1
0
1


︸ ︷︷ ︸

an even column of B4

= 0,

and place them in the appropriate cells of A4B4. Hence, we obtain

A4B4 =


0 2 0 2
2 0 2 0
0 2 0 2
2 0 2 0

 .
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Similarly,

B4A4 =


0 2 0 2
2 0 2 0
0 2 0 2
2 0 2 0

 ; A2
4 =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

 ; B2
4 =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

 .

(a) This is similar to our solution of part (b). The result is

A3B3 =

 0 1 0
2 0 2
0 1 0

 ; B3A3 =

 0 2 0
1 0 1
0 2 0

 ;

A2
3 =

 1 0 1
0 2 0
1 0 1

 ; B2
3 =

 2 0 2
0 1 0
2 0 2

 .

(c) Let n ∈ N be even. As in part (b), we observe that each odd row of An is(
0 1 0 1 · · · 1

)
(with n entries, and the last entry being 1 because n is even),

and each even row of An is
(

1 0 1 0 · · · 0
)

(with n entries, and the last entry
being 0 because n is even). Something similar holds for the columns of Bn. Thus,
we can find AnBn by computing only the four products

(
0 1 0 1 · · · 1

)
·



0
1
0
1
...
1


= n/2;

(
0 1 0 1 · · · 1

)
·



1
0
1
0
...
0


= 0;

(
1 0 1 0 · · · 0

)
·



0
1
0
1
...
1


= 0;

(
1 0 1 0 · · · 0

)
·



1
0
1
0
...
0


= n/2

(where each of the vectors has n entries). We thus obtain

AnBn =



0 n/2 0 n/2 · · · 0 n/2
n/2 0 n/2 0 · · · n/2 0

0 n/2 0 n/2 · · · 0 n/2
n/2 0 n/2 0 · · · n/2 0

...
...

...
... . . . ...

...
0 n/2 0 n/2 · · · 0 n/2

n/2 0 n/2 0 · · · n/2 0


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(note the chessboard pattern again!). Similarly,

Bn An =



0 n/2 0 n/2 · · · 0 n/2
n/2 0 n/2 0 · · · n/2 0

0 n/2 0 n/2 · · · 0 n/2
n/2 0 n/2 0 · · · n/2 0

...
...

...
... . . . ...

...
0 n/2 0 n/2 · · · 0 n/2

n/2 0 n/2 0 · · · n/2 0


;

A2
n =



n/2 0 n/2 0 · · · n/2 0
0 n/2 0 n/2 · · · 0 n/2

n/2 0 n/2 0 · · · n/2 0
0 n/2 0 n/2 · · · 0 n/2
...

...
...

... . . . ...
...

n/2 0 n/2 0 · · · n/2 0
0 n/2 0 n/2 · · · 0 n/2


;

B2
n =



n/2 0 n/2 0 · · · n/2 0
0 n/2 0 n/2 · · · 0 n/2

n/2 0 n/2 0 · · · n/2 0
0 n/2 0 n/2 · · · 0 n/2
...

...
...

... . . . ...
...

n/2 0 n/2 0 · · · n/2 0
0 n/2 0 n/2 · · · 0 n/2


.

Thus, AnBn = Bn An and A2
n = B2

n.
(d) Let n ≥ 3 be odd. Then, the same reasoning that we used in part (c) reveals

that

AnBn =



0 (n− 1) /2 0 (n− 1) /2 · · · 0 (n− 1) /2
(n + 1) /2 0 (n + 1) /2 0 · · · (n + 1) /2 0

0 (n− 1) /2 0 (n− 1) /2 · · · 0 (n− 1) /2
(n + 1) /2 0 (n + 1) /2 0 · · · (n + 1) /2 0

...
...

...
... . . . ...

...
0 (n− 1) /2 0 (n− 1) /2 · · · 0 (n− 1) /2

(n + 1) /2 0 (n + 1) /2 0 · · · (n + 1) /2 0


and
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Bn An =



0 (n + 1) /2 0 (n + 1) /2 · · · 0 (n + 1) /2
(n− 1) /2 0 (n− 1) /2 0 · · · (n− 1) /2 0

0 (n + 1) /2 0 (n + 1) /2 · · · 0 (n + 1) /2
(n− 1) /2 0 (n− 1) /2 0 · · · (n− 1) /2 0

...
...

...
... . . . ...

...
0 (n + 1) /2 0 (n + 1) /2 · · · 0 (n + 1) /2

(n− 1) /2 0 (n− 1) /2 0 · · · (n− 1) /2 0


.

These two matrices clearly differ in their (1, 2)-entry (namely, AnBn has (1, 2)-entry
(n− 1) /2, while Bn An has (1, 2)-entry (n + 1) /2). Thus, they are distinct. In other
words, AnBn 6= Bn An.

Solution to Exercise 2. (a) The system
a + b + c + d = e
a + 2b + 3c + 4d = 5e
a + 3b + 6c + 10d = 15e

can be rewritten as 
a + b + c + d + (−1) e = 0
a + 2b + 3c + 4d + (−5) e = 0
a + 3b + 6c + 10d + (−15) e = 0

.

Hence, its augmented matrix is

A :=

 1 1 1 1 −1 0
1 2 3 4 −5 0
1 3 6 10 −15 0

 .

(Don’t let the look of the system fool you into saying that the augmented matrix is 1 1 1 1 1
1 2 3 4 5
1 3 6 10 15

 ! The expressions e, 5e and 15e on the right hand sides of the

equations are not constants!)
(b) Let us transform A into RREF using [Strickland, Method 6.4]:1

A =

 1 1 1 1 −1 0
1 2 3 4 −5 0
1 3 6 10 −15 0


add (−1)·row 1 to row 2−→

 1 1 1 1 −1 0
0 1 2 3 −4 0
1 3 6 10 −15 0


1As usual, pivots are boxed.
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add (−1)·row 1 to row 3−→

 1 1 1 1 −1 0
0 1 2 3 −4 0
0 2 5 9 −14 0


freeze row 1−→

 1 1 1 1 −1 0 ← frozen
0 1 2 3 −4 0
0 2 5 9 −14 0


add (−1)·row 1 to row 2−→

(keep in mind: frozen rows are not counted!)

 1 1 1 1 −1 0 ← frozen
0 1 2 3 −4 0
0 0 1 3 −6 0


freeze row 1−→

 1 1 1 1 −1 0 ← frozen
0 1 2 3 −4 0 ← frozen
0 0 1 3 −6 0


(now, the unfrozen part of the matrix is in RREF, so we start unfreezing)

unfreeze row 1−→

 1 1 1 1 −1 0 ← frozen
0 1 2 3 −4 0
0 0 1 3 −6 0


add (−2)·row 2 to row 1−→

 1 1 1 1 −1 0 ← frozen
0 1 0 −3 8 0
0 0 1 3 −6 0


unfreeze row 1−→

 1 1 1 1 −1 0
0 1 0 −3 8 0
0 0 1 3 −6 0


add (−1)·row 2 to row 1−→

 1 0 1 4 −9 0
0 1 0 −3 8 0
0 0 1 3 −6 0


add (−1)·row 3 to row 1−→

 1 0 0 1 −3 0
0 1 0 −3 8 0
0 0 1 3 −6 0

 .

Thus,

 1 0 0 1 −3 0
0 1 0 −3 8 0
0 0 1 3 −6 0

 is the RREF of our augmented matrix A.

(c) We have just computed the RREF of the augmented matrix. This RREF corre-
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sponds to the simple system 
a + d + (−3) e = 0

b + (−3) d + 8e = 0
c + 3d + (−6) e = 0

. (1)

We can solve this using [Strickland, Method 5.4]: Since the pivots of our matrix are
in columns 1, 2, 3, we see that the dependent variables will be the 1-st, 2-nd and
3-rd variables, i.e., the variables a, b, c. The remaining two variables d, e will thus be
independent variables. Now, the equations in (1) can be solved for the dependent
variables simply by moving the independent variables on the right hand sides:

a = −d + 3e
b = 3d− 8e

c = −3d + 6e
.

This is the general solution of our system (with d and e being free parameters).

Solution to Exercise 3. (a) Let us start bringing A7 into RREF using [Strickland, Method
6.4]:

A7 =



1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1



add (−1)·row 1 to row 2−→



1 0 0 0 0 0 1
0 1 0 0 0 0 −1
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1



freeze row 1−→



1 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 −1
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1


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add (−1)·row 1 to row 2−→



1 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 −1
0 0 1 0 0 0 1
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1



freeze row 1−→



1 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 1
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1



add (−1)·row 1 to row 2−→



1 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 1
0 0 0 1 0 0 −1
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1


−→ · · · .

At this point it should be clear how the procedure goes on: We pick the topmost
1 on the diagonal as pivot; then we clear out the 1 below it by adding (−1) · row 1
to row 2; then we freeze row 1; rinse, repeat. As we keep doing this, the first n− 1
columns of our matrix turn into the first n − 1 columns of the identity matrix In
(that is, all their off-diagonal entries become 0, while the diagonal entries remain
1), whereas the n-th column takes the form

1
−1
1
−1

...


(that is, its entries alternate between 1 and −1, starting with a 1), except for its
bottommost entry. To see what happens with the bottommost entry, we take a
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closer look at the final steps of this procedure:

· · · −→



1 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 1 ← frozen
0 0 0 1 0 0 −1 ← frozen
0 0 0 0 1 0 1 ← frozen
0 0 0 0 0 1 −1
0 0 0 0 0 1 1



add (−1)·row 1 to row 2−→



1 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 1 ← frozen
0 0 0 1 0 0 −1 ← frozen
0 0 0 0 1 0 1 ← frozen
0 0 0 0 0 1 −1
0 0 0 0 0 0 2



freeze row 1−→



1 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 1 ← frozen
0 0 0 1 0 0 −1 ← frozen
0 0 0 0 1 0 1 ← frozen
0 0 0 0 0 1 −1 ← frozen
0 0 0 0 0 0 2


.

Thus, the bottommost entry of the n-th column becomes a 2 (because it was already
1 before we added (−1) · (−1) = 1 to it). After thus freezing the first n− 1 rows of
our matrix, we obtain the matrix

1 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 1 ← frozen
0 0 0 1 0 0 −1 ← frozen
0 0 0 0 1 0 1 ← frozen
0 0 0 0 0 1 −1 ← frozen
0 0 0 0 0 0 2


.
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Then, we scale the last row by 1/2 in order to make its pivot equal to 1:

1 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 1 ← frozen
0 0 0 1 0 0 −1 ← frozen
0 0 0 0 1 0 1 ← frozen
0 0 0 0 0 1 −1 ← frozen
0 0 0 0 0 0 1


.

Thus, the unfrozen part of our matrix is in RREF, so we unfreeze rows and clear out
the nonzero entries above the pivots. (These nonzero entries only exist in the n-th
column, and can be cleared out by adding appropriate multiples of the last row to
the rows above it.) At the end of this procedure, we obtain the identity matrix

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

which of course is in RREF. So this is the RREF of A7.
(b) The row reduction proceeds as it did for A7 in part (a) of this exercise, but a

surprise happens as we reach the last row:

· · · −→



1 0 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 0 1 ← frozen
0 0 0 1 0 0 0 −1 ← frozen
0 0 0 0 1 0 0 1 ← frozen
0 0 0 0 0 1 0 −1 ← frozen
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1


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add (−1)·row 1 to row 2−→



1 0 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 0 1 ← frozen
0 0 0 1 0 0 0 −1 ← frozen
0 0 0 0 1 0 0 1 ← frozen
0 0 0 0 0 1 0 −1 ← frozen
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0



freeze row 1−→



1 0 0 0 0 0 0 1 ← frozen
0 1 0 0 0 0 0 −1 ← frozen
0 0 1 0 0 0 0 1 ← frozen
0 0 0 1 0 0 0 −1 ← frozen
0 0 0 0 1 0 0 1 ← frozen
0 0 0 0 0 1 0 −1 ← frozen
0 0 0 0 0 0 1 1 ← frozen
0 0 0 0 0 0 0 0


.

As you see, the bottommost entry in the n-th column is now 0 rather than 2 (because
it was initially 1, but now we added (−1) · 1 to it rather than (−1) · (−1)). This
means that the last remaining unfrozen row has no pivot at all, and so it is already
in RREF. We thus start unfreezing the frozen rows. As we do this, we realize
that the columns containing pivots have already been cleared, so we don’t need to
perform any further row operations; our matrix at this point is already in RREF.
Thus, the RREF of A8 is

1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 −1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0


.

[Remark: The different behaviors in parts (a) and (b) come from the fact that 7
is odd while 8 is even. By the same logic, we can find the RREF of the analogous
matrices of any given size:
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Let n ≥ 2 be an integer. Let An be the n× n-matrix

1 0 0 0 · · · 0 1
1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 1 1


.

(Its diagonal entries are 1; its entries just below the diagonal are 1; its entry in the
top-right corner is 1; all its other entries are 0.) Then:

• If n is odd, then the RREF of An is the identity matrix In.

• If n is even, then the RREF of An is the n× n-matrix

1 0 0 0 · · · 0 1
0 1 0 0 · · · 0 −1
0 0 1 0 · · · 0 1
0 0 0 1 · · · 0 −1
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 1
0 0 0 0 · · · 0 0


(whose first n− 1 columns are the corresponding columns of In, while its last
column is

(
1 −1 1 −1 · · · 1 0

)T).]

Solution to Exercise 4. (a) Write the unknown vector x as x =


x1
x2
x3
x4

. Then, the

equation Ux = b rewrites as the system


6x1 + 3x2 + (−2) x3 + 5x4 = 1
(−1) x3 + 2x4 = 5
1x4 = 2
0 = 0

. This

system can be solved by Gaussian elimination, or simpler by back-substitution:
The fourth equation (0 = 0) is automatically satisfied; the third equation can be
solved for x4 (yielding x4 = 2); the second equation can then be solved for x3 using
our already-obtained value of x4 (yielding x3 = −1); the lack of an equation with
“leading variable” x2 shows that x2 will be a free variable; finally, the first equation
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can be solved for x1 using our already-obtained values for x2, x3, x4 (this yields

x1 = −1
2

x2 −
11
6

). Thus, the solution is


x1 = −1

2
x22 −

11
6

,

x3 = −1
x4 = 2

, that is, x =


−1

2
x2 −

11
6

x2
−1
2

 .

(b) Write the unknown vector x as x =


x1
x2
x3
x4

. Then, the equation Ux =

b′ rewrites as the system


6x1 + 3x2 + (−2) x3 + 5x4 = 1
(−1) x3 + 2x4 = 5
1x4 = 2
0 = 1

. This system can be

solved by back-substitution: The fourth equation (0 = 1) is unsatisfiable, so there
are no solutions.

(c) Write the unknown vector x as x =


x1
x2
x3
x4

. Then, the equation Ux = x

rewrites as the system


6x1 + 3x2 + (−2) x3 + 5x4 = x1
(−1) x3 + 2x4 = x2
1x4 = x3
0 = x4

. Bringing the x1, x2, x3, x4

onto the left hand sides transforms this into


5x1 + 3x2 + (−2) x3 + 5x4 = 0
(−1) x2 + (−1) x3 + 2x4 = 0
(−1) x3 + 1x4 = 0
(−1) x4 = 0

.

This system can again be solved by back-substitution, leading to the only solution
x1 = 0
x2 = 0
x3 = 0
x4 = 0

, that is, x =


0
0
0
0

 .

(Or, alternatively, you can take a look at the augmented matrix of the system and
immediately see that it has a pivot in each of its first 4 columns; we know already

that this forces the system to have a unique solution. Since


0
0
0
0

 is obviously a
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solution to Ux = x, we thus can conclude that


0
0
0
0

 is the only solution.)

Solution to Exercise 5. (a) Yes.
Proof. Let n = 7.
Recall the method we learned for checking whether some vectors in Rn are

linearly independent (see [Strickland, Method 8.8] or Theorem 1.1.7 in the notes
from 2019-10-07). Following this method, in order to check whether the n vec-
tors f1, f2, . . . , fn are linearly independent, we need to form the n× 7-matrix A :=
[ f1 | f2 | · · · | fn], then bring it into RREF and check whether every column of the
resulting matrix will have a pivot. But the n × 7-matrix A = [ f1 | f2 | · · · | fn] is
precisely the matrix A7 from Exercise 3 (a)2. Thus, we already know how it RREF
looks like from the solution of Exercise 3 (a). In particular, we know that this RREF
is the identity matrix I7, and thus has a pivot in every column. Hence, the n vectors
f1, f2, . . . , fn are linearly independent.

(b) No.
Proof. Let n = 8.
We use the same method as in the solution to part (a). But now, the n× 8-matrix

A = [ f1 | f2 | · · · | fn] will be the matrix A8 from Exercise 3 (b) rather than the
matrix A7 from Exercise 3 (a). We have computed the RREF of this matrix A8 in
our solution of Exercise 3 (b). In particular, we know that some column of this
RREF has no pivot (namely, the 8-th column has no pivot). Thus, the n vectors
f1, f2, . . . , fn are linearly dependent.

(c) Yes.
Proof. Let n = 7.
We know (from the answer to part (a)) that the n vectors f1, f2, . . . , fn in Rn are

linearly independent. Hence, [Strickland, Proposition 10.12 (a)] (or, equivalently,

2because we have fi = ei + ei+1 =



0
0
...
0
1
1
0
0
...
0


(with the 1’s in positions i and i + 1) for each i ∈

{1, 2, . . . , n− 1}, and because we have fn = en + e1 =



1
0
0
...
0
1



http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-07.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-07.pdf
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Proposition 1.2.7 (a) from the notes from 2019-10-09) yields that the list f1, f2, . . . , fn
is a basis of Rn. Thus, in particular, f1, f2, . . . , fn span Rn.

(d) No.
Proof. Let n = 8.
We must prove that f1, f2, . . . , fn don’t span Rn. Indeed, assume the contrary.

Thus, the n vectors f1, f2, . . . , fn span Rn. Hence, [Strickland, Proposition 10.12 (b)]
(or, equivalently, Proposition 1.2.7 (b) from the notes from 2019-10-09) yields that
the list f1, f2, . . . , fn is a basis of Rn. Thus, in particular, f1, f2, . . . , fn are linearly
independent. But this contradicts our result from solving part (b) of this exercise.
This contradiction shows that our assumption was false. Hence, part (d) is solved.

[Remark: There are alternative ways to solve this exercise. We have solved parts
(a) and (b) first, and then used them to get answers to (c) and (d). It could also be
done the other way round. In particular, the positive answer to part (c) can also
be obtained by explicitly writing the standard basis vectors e1, e2, . . . , e7 as linear
combinations of f1, f2, . . . , f7, namely as follows:

e1 =
1
2
( f1 + f3 + f5 + f7 − f2 − f4 − f6) ;

e2 =
1
2
( f2 + f4 + f6 + f1 − f3 − f5 − f7) ;

e3 =
1
2
( f3 + f5 + f7 + f2 − f4 − f6 − f1) ;

e4 =
1
2
( f4 + f6 + f1 + f3 − f5 − f7 − f2) ;

e5 =
1
2
( f5 + f7 + f2 + f4 − f6 − f1 − f3) ;

e6 =
1
2
( f6 + f1 + f3 + f5 − f7 − f2 − f4) ;

e7 =
1
2
( f7 + f2 + f4 + f6 − f1 − f3 − f5) .

(Note that there is a cyclic symmetry inherent in the problem3, which makes it
sufficient to find one of these 7 equations; the others can then be obtained by
cyclically rotating the subscripts.) More generally, for each odd n, we have

e1 =
1
2
( f1 + f3 + f5 + · · ·+ fn − f2 − f4 − f6 − · · · − fn−1) =

1
2

(
∑

i is odd
fi − ∑

i is even
fi

)

and similar equalities for e2, e3, . . . , en.
It is even easier to solve part (b) by a good guess: Just observe that when n is

even, we have

f1 + f3 + f5 + · · ·+ fn−1 = e1 + e2 + · · ·+ en = f2 + f4 + f6 + · · ·+ fn

3Namely, if you arrange the vectors e1, e2, . . . , en on a circle, then each fi is the sum of two consec-
utive vectors.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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and thus
f1 − f2 + f3 − f4 ± · · ·+ fn−1 − fn = 0,

which is a nontrivial relation between f1, f2, . . . , fn. Hence, f1, f2, . . . , fn are linearly
dependent whenever n is even.]

Solution to Exercise 6. (a) No.
Proof. Any linear combination of N, E, S, W has the form aN + bE + cS + dW for

some a, b, c, d ∈ R (by the definition of a linear combination). Thus, its (2, 2)-th
entry is

(aN + bE + cS + dW)2,2

= a N2,2︸︷︷︸
=0

+b E2,2︸︷︷︸
=0

+c S2,2︸︷︷︸
=0

+d W2,2︸︷︷︸
=0

= a · 0 + b · 0 + c · 0 + d · 0 = 0.

But the (2, 2)-th entry of In is not 0 (indeed, it is 1, since it is a diagonal entry).
Thus, a linear combination of N, E, S, W cannot be I2 (since it has the wrong (2, 2)-
th entry). Qed.

(b) No.
Proof. We want to prove that N, E, S, W are linearly independent. In other words,

we must prove that every relation between N, E, S, W is trivial.
So let aN + bE+ cS+ dW = 0 be any relation between N, E, S, W. We must prove

that this relation is trivial, i.e., that a = b = c = d = 0.
From aN + bE + cS + dW = 0, we obtain (aN + bE + cS + dW)1,2 = 0 (since the

(1, 2)-th entry of a zero matrix is 0). Thus,

0 = (aN + bE + cS + dW)1,2

= a N1,2︸︷︷︸
=1

(since the (1,2)-th
entry of an n×n-matrix
belongs to its 1-st row)

+b E1,2︸︷︷︸
=0

(since n≥3, so the (1,2)-th
entry of an n×n-matrix

does not belong to its n-th column)

+ c S1,2︸︷︷︸
=0

(since n≥3>1, so the (1,2)-th
entry of an n×n-matrix

does not belong to its n-th row)

+d W1,2︸︷︷︸
=0

(since the (1,2)-th
entry of an n×n-matrix

does not belong to its 1-st column)

= a · 1 + b · 0 + c · 0 + d · 0 = a.

Thus, a = 0.
So we have obtained a = 0 by comparing the (1, 2)-th entries in the equality

aN + bE + cS + dW = 0. Similarly,

• we can obtain b = 0 by comparing the (2, n)-th entries in the equality aN +
bE + cS + dW = 0.
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• we can obtain c = 0 by comparing the (n, 2)-th entries in the equality aN +
bE + cS + dW = 0.

• we can obtain d = 0 by comparing the (2, 1)-th entries in the equality aN +
bE + cS + dW = 0.

Altogether, we now know that a = 0 and b = 0 and c = 0 and d = 0. Thus,
a = b = c = d = 0. And this completes our proof.

[Remark: Let us illustrate this argument in the case n = 3:

aN + bE + cS + dW

= a

 1 1 1
0 0 0
0 0 0

+ b

 0 0 1
0 0 1
0 0 1

+ c

 0 0 0
0 0 0
1 1 1

+ d

 1 0 0
1 0 0
1 0 0


=

 a + d a a + b
d 0 b

c + d c b + c

 .

If this matrix is to be 0, then in particular its entries a, b, c, d (which are its (1, 2)-th
entry, its (2, n)-th entry, its (n, 2)-th entry and its (2, 1)-th entry, respectively) must
be 0.]

Solution to Exercise 7. The inverse of A always exists (i.e., the matrix A is invertible),
and equals

A−1 =


1 −a ab′ − b ac′ − c + bc′′ − ab′c′′

0 1 −b′ b′c′′ − c′

0 0 1 −c′′

0 0 0 1

 .

Proof. There are many ways to find this. The simplest one is probably using our
method for finding inverses via row-reduction (Theorem 1.3.5 in the notes from
2019-10-16):

[A | I4] =


1 a b c 1 0 0 0
0 1 b′ c′ 0 1 0 0
0 0 1 c′′ 0 0 1 0
0 0 0 1 0 0 0 1


add −a·row 2 to row 1−→


1 0 b− ab′ c− ac′ 1 −a 0 0
0 1 b′ c′ 0 1 0 0
0 0 1 c′′ 0 0 1 0
0 0 0 1 0 0 0 1



−→ · · · −→


1 0 0 0 1 −a ab′ − b ac′ − c + bc′′ − ab′c′′

0 1 0 0 0 1 −b′ b′c′′ − c′

0 0 1 0 0 0 1 −c′′

0 0 0 1 0 0 0 1



http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
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=

I4 |


1 −a ab′ − b ac′ − c + bc′′ − ab′c′′

0 1 −b′ b′c′′ − c′

0 0 1 −c′′

0 0 0 1




(where I am leaving out the intermediate steps because you have seen row reduc-
tion happen quite a few times by now).

Solution to Exercise 8. (a) This matrix is invertible.
Proof. One way to see it is simply to compute its inverse; namely, its inverse is 0 0 1
0 1 −1
1 −1 0

.

But here is a quicker way, which you can do in your head: It is easy to see that

the matrix

 1 1 1
1 1 0
1 0 0

 can be turned into an identity matrix by row operations

(namely, first swap row 1 with row 3, thus obtaining the lower-triangular matrix 1 0 0
1 1 0
1 1 1

, and then use the 1’s on the diagonal to clear out the entries below

them, obtaining the identity matrix I3). In other words, the matrix

 1 1 1
1 1 0
1 0 0


can be row-reduced to I3. Hence, the Inverse Matrix Theorem (Theorem 1.2.1 in
the notes from 2019-10-16)4 shows that our matrix is invertible.

(b) This matrix is not invertible.
Proof. Denote the columns of this matrix by v1, v2, v3 (from first to last). Then,

v1 = v3 (since both v1 and v3 equal (1, 0, 1)T); in other words, 1v1 + 0v2 + (−1) v3 =
0. This is a nontrivial relation between the columns of this matrix. Thus, the
columns of this matrix are linearly dependent. Hence, the matrix cannot be invert-
ible (because if it was invertible, then the Inverse Matrix Theorem (Theorem 1.2.1 in
the notes from 2019-10-16)5 would show that its columns are linearly independent).

(c) This matrix is invertible.
Proof. One way to see it is simply to compute its inverse; namely, its inverse is
−3 0 2

0
1
2

0

2 0 −1

.

4More specifically, we are using the implication (a) =⇒ (k) of the Inverse Matrix Theorem.
5More specifically, we are using the implication (k) =⇒ (b) of the Inverse Matrix Theorem.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
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But here is a quicker way, which you can do in your head: It is easy to see that

the matrix

 1 0 2
0 2 0
2 0 3

 can be turned into an identity matrix by row operations

(namely, first add (−2) ·row 1 with row 3, thus obtaining the upper-triangular

matrix

 1 0 2
0 2 0
0 0 −1

, and then scale the rows to turn the pivots into 1’s, and

finally use the pivots to clear out the entries above them, obtaining the identity

matrix I3). In other words, the matrix

 1 0 2
0 2 0
2 0 3

 can be row-reduced to I3.

Hence, the Inverse Matrix Theorem (Theorem 1.2.1 in the notes from 2019-10-16)6

shows that our matrix is invertible.

(d) This matrix is not invertible.
Proof. Corollary 1.2.7 in the notes from 2019-10-16 shows that if an n×m-matrix

has an inverse, then n = m. In other words, if a matrix has an inverse, then it is a
square matrix. Hence, our matrix does not have an inverse (since it is not a square
matrix). In other words, it is not invertible.

For the solution of Exercise 9, we will need the following fact ([lina, Proposition
3.18 (e)]):

Proposition 6.1. Let n ∈N, m ∈N and p ∈N. Let A be an n×m-matrix. Let B
be an m× p-matrix. Then, (AB)T = BT AT.

Solution to Exercise 9. We need to prove that
(

A−1)T is an inverse of AT. By the
definition of an “inverse”, this means that we need to prove the two equalities

AT
(

A−1
)T

= In and
(

A−1
)T

AT = In (2)

(because these equalities are what makes
(

A−1)T into an inverse of AT).
So let us prove them. The identity matrix In is diagonal; thus, it has the same

numbers below and above the diagonal (namely, zeroes). Hence, it does not change
if we transpose it. In other words, (In)

T = In.
Proposition 6.1 (applied to m = n, p = n and B = A−1) yields

(
AA−1)T

=

(
A−1)T AT. Hence,

(
A−1)T AT =

AA−1︸ ︷︷ ︸
=In

T

= (In)
T = In.

6More specifically, we are using the implication (a) =⇒ (k) of the Inverse Matrix Theorem.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
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Also, Proposition 6.1 (applied to n, n, A−1 and A instead of m, p, A and B) yields(
A−1A

)T
= AT (A−1)T. Hence, AT (A−1)T

=

A−1A︸ ︷︷ ︸
=In

T

= (In)
T = In.

Thus, we have proved the two equalities in (2). This shows that
(

A−1)T is an

inverse of AT. Hence, the matrix AT is invertible, and its inverse is
(

AT)−1
=(

A−1)T. This solves Exercise 9.

Solution to Exercise 10. From α =

(
1 2 3 4
2 4 1 3

)
, we read off all values of α, namely

α (1) = 2, α (2) = 4, α (3) = 1, α (4) = 3.

Similarly,

β (1) = 3, β (2) = 4, β (3) = 1, β (4) = 3

and
γ (1) = 3, γ (2) = 4, γ (3) = 1, γ (4) = 2.

(a) The maps α and γ are permutations, but β is not.
Proof. The map β is not injective (indeed, it sends the distinct elements 1 and 4

to the same image, because β (1) = 3 = β (4)). Thus, β is not bijective. Hence, β is
not a permutation.

The map α sends the elements 1, 2, 3, 4 to the distinct elements 2, 4, 1, 3; thus, it is
injective. Furthermore, all of the 4 elements of [4] appear as values of α. Thus, α is
surjective. Hence, the map α is both injective and surjective. In other words, α is
bijective. Hence, α is a permutation (since α is a map from [4] to [4]).

A similar argument shows that γ is a permutation.

(b) We have

(α ◦ β) (1) = α

β (1)︸︷︷︸
=3

 = α (3) = 1;

(α ◦ β) (2) = α

β (2)︸︷︷︸
=4

 = α (4) = 3;

(α ◦ β) (3) = α

β (3)︸︷︷︸
=1

 = α (1) = 2;

(α ◦ β) (4) = α

β (4)︸︷︷︸
=3

 = α (3) = 1.
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Tabulating these values of α ◦ β, we obtain

α ◦ β =

(
1 2 3 4
1 3 2 1

)
in two-line notation.

Similarly,

β ◦ α =

(
1 2 3 4
4 3 3 1

)
in two-line notation;

γ ◦ γ =

(
1 2 3 4
1 2 3 4

)
in two-line notation.

(Thus, γ ◦ γ is the identity map id[4].)

(c) We have sign (α) = −1 and sign (γ) = 1.
Proof. The inversions of α are (1, 3) (since α (1) > α (3)) and (2, 3) (since α (2) >

α (3)) and (2, 4) (since α (2) > α (4)). Hence, α has 3 inversions. In other words,
the Coxeter length of α is ` (α) = 3. Hence, the definition of sign yields sign (α) =

(−1)`(α) = (−1)3 = −1.
A similar argument shows that sign (γ) = 1. (Alternatively, you can conclude

this from the corollary in the notes from 2019-10-23, once you realize that γ =
t2,3 ◦ α.)
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