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Math 201-003 Fall 2019 (Darij Grinberg): midterm 1

1. Reminders

• For any two matrices A and B, if the product AB is well-defined, then

(AB)i,j = Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j (1)

= rowi A · colj B (2)

for all indices i and j.

• The transpose AT of an n×m-matrix A is the m× n-matrix whose entries are(
AT)

i,j = Aj,i.

• A matrix is in RREF if and only if it satisfies the following four conditions:

– RREF0: Any zero row (= row full of zeros) is below any nonzero row (=
row with at least some nonzero entries).

– RREF1: In any nonzero row, the first nonzero entry is equal to 1. This
entry is called the pivot of the row.

– RREF2: The pivot of any nonzero row must be further to the right than
the pivot of the previous nonzero row.

– RREF3: If a column contains a pivot, then all other entries in the column
are zero.

For the last exercise:

• If n is a nonnegative integer, then [n] means the n-element set {1, 2, . . . , n}.

• The composition α ◦ β of two maps α and β is defined by (α ◦ β) (x) =
α (β (x)) for all x.

• A permutation of [n] means a map from [n] to [n] that is bijective (i.e., both in-
jective and surjective). Equivalently, it is a map from [n] to [n] that is invertible
(i.e., has an inverse map).

• The transposition tu,v between two distinct elements u and v of [n] is the per-
mutation of [n] that interchanges u with v and leaves all other elements of [n]
unchanged.

• Writing a map f : [n] → [n] in two-line notation means writing it as a table of

values:
(

1 2 · · · n
f (1) f (2) · · · f (n)

)
.
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2. Matrix operations

Exercise 1. For each n ∈N, let

An =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
... . . . ...

1 1 1 · · · 1


be the lower-triangular n × n-matrix whose entries on and below the diagonal
are all 1. Let furthermore Bn be its transpose (that is, Bn = (An)

T).
(a) Compute A3B3 and B3A3.
(b) Compute A10B10 and B10A10. (Feel free to describe the matrices in words

instead of writing down each entry.)

Solution to Exercise 1. (a) Multiplying

A3 =

 1 0 0
1 1 0
1 1 1

 with B3 = (A3)
T =

 1 1 1
0 1 1
0 0 1

 ,

we obtain

A3B3 =

 1 1 1
1 2 2
1 2 3

 and B3A3 =

 3 2 1
2 2 1
1 1 1

 .

(b) We have

A10B10 =



1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3 3 3
1 2 3 4 4 4 4 4 4 4
1 2 3 4 5 5 5 5 5 5
1 2 3 4 5 6 6 6 6 6
1 2 3 4 5 6 7 7 7 7
1 2 3 4 5 6 7 8 8 8
1 2 3 4 5 6 7 8 9 9
1 2 3 4 5 6 7 8 9 10
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and

B10A10 =



10 9 8 7 6 5 4 3 2 1
9 9 8 7 6 5 4 3 2 1
8 8 8 7 6 5 4 3 2 1
7 7 7 7 6 5 4 3 2 1
6 6 6 6 6 5 4 3 2 1
5 5 5 5 5 5 4 3 2 1
4 4 4 4 4 4 4 3 2 1
3 3 3 3 3 3 3 3 2 1
2 2 2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1 1 1


.

More generally, we can compute AnBn and Bn An. For this, we need a piece of
notation:

• If S is any nonempty finite set of real numbers, then let min S denote the
smallest element of S.

Now, fix n ∈N. We claim that

AnBn = (min {i, j})1≤i≤n, 1≤j≤n (3)

=


1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
... . . . ...

1 2 3 · · · n


and

Bn An = (min {n + 1− i, n + 1− j})1≤i≤n, 1≤j≤n (4)

=


n n− 1 n− 2 · · · 1

n− 1 n− 1 n− 2 · · · 1
n− 2 n− 2 n− 2 · · · 1

...
...

... . . . ...
1 1 1 · · · 1

 .

Proof of (3): We must prove that AnBn = (min {i, j})1≤i≤n, 1≤j≤n. In other words,
we must prove that

(AnBn)i,j = min {i, j} for each i, j ∈ {1, 2, . . . , n} .

So let i, j ∈ {1, 2, . . . , n}. Then,

rowi (An) = (1, 1, . . . , 1, 0, 0, . . . , 0)
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(with the first i entries equal to 1 and the remaining n− i entries equal to 0) and

rowj (An) = (1, 1, . . . , 1, 0, 0, . . . , 0) (5)

(with the first j entries equal to 1 and the remaining n− j entries equal to 0). Also,
recall that transposing a matrix turns rows into columns (or, more precisely, the
columns of the transpose of a matrix are the transposes of the rows of the original
matrix). Hence, from Bn = (An)

T, we obtain

colj (Bn) =
(
rowj (An)

)T
=



1
1
...
1
0
0
...
0


(with the first j entries equal to 1 and the remaining n− j entries equal to 0), because
of (5).

Now, (2) (applied to A = An and B = Bn) yields

(AnBn)i,j = rowi (An)︸ ︷︷ ︸
=(1,1,...,1,0,0,...,0)

(with the first i entries
equal to 1)

· colj (Bn)︸ ︷︷ ︸

=



1
1
...
1
0
0
...
0


(with the first j entries

equal to 1)

= (1, 1, . . . , 1, 0, 0, . . . , 0)︸ ︷︷ ︸
with the first i entries

equal to 1

·



1
1
...
1
0
0
...
0


︸ ︷︷ ︸

with the first j entries
equal to 1

. (6)
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Multiplying out the right hand side yields a sum of n terms, each of which is either
1 · 1 or 1 · 0 or 0 · 1 or 0 · 0. More precisely, the first min {i, j} addends in this sum
are 1 · 1 (because in order to get a 1 · 1, you have to multiply one of the first i entries

of (1, 1, . . . , 1, 0, 0, . . . , 0)︸ ︷︷ ︸
with the first i entries

equal to 1

with one of the first j entries of



1
1
...
1
0
0
...
0


︸ ︷︷ ︸

with the first j entries
equal to 1

, and this

is what is happening for the first min {i, j} entries of the product1), while all the
remaining addends have one of the forms 1 · 0 and 0 · 1 and 0 · 0 (we don’t care
which one, since all these forms evaluate to 0). Thus, the whole sum is

1 · 1 + 1 · 1 + · · ·+ 1 · 1︸ ︷︷ ︸
min{i,j} times

+ (a sum of addends of the forms 1 · 0 and 0 · 1 and 0 · 0)︸ ︷︷ ︸
=0

= 1 · 1 + 1 · 1 + · · ·+ 1 · 1︸ ︷︷ ︸
min{i,j} times

= min {i, j} · 1 · 1 = min {i, j} .

Hence, (6) rewrites as
(AnBn)i,j = min {i, j} .

This completes our proof of (3).]
The proof of (4) is similar, except that we now have to analyze the product

rowi (Bn) · colj (An)

= (0, 0, . . . , 0, 1, 1, . . . , 1)︸ ︷︷ ︸
with the last n+1−i entries

equal to 1

·



0
0
...
0
1
1
...
1


︸ ︷︷ ︸

with the last n+1−j entries
equal to 1

.

1whereas from entry min {i, j}+ 1 on, at least one of your factors will be 0
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3. Gaussian elimination

Note: When row-reducing a matrix, you have to either show all row operations or
describe them verbally (if they follow a common pattern) and show the result. You
don’t need to follow the Gaussian elimination algorithm; you can use any sequence
of row operations that leads to a matrix in RREF.2 In particular, you don’t need to
freeze rows. When solving a system of linear equations, you are free to use any
method.

Exercise 2. Solve the system 
a + b = c + d
a + c = b + d
a + d = b + c

of linear equations in four unknowns a, b, c, d.

Solution to Exercise 2. Here is the straightforward way of solving this system: Its
augmented matrix is  1 1 −1 −1 0

1 −1 1 −1 0
1 −1 −1 1 0

 .

We transform this matrix into RREF by the usual row reduction algorithm: 1 1 −1 −1 0
1 −1 1 −1 0
1 −1 −1 1 0


add (−1)·row 1 to row 2−→

 1 1 −1 −1 0
0 2 −2 0 0
1 −1 −1 1 0


add (−1)·row 1 to row 3−→

 1 1 −1 −1 0
0 2 −2 0 0
0 −2 0 2 0


freeze row 1−→

 1 1 −1 −1 0 ← frozen
0 2 −2 0 0
0 −2 0 2 0


scale row 1 by 1/2−→

 1 1 −1 −1 0 ← frozen
0 1 −1 0 0
0 −2 0 2 0


2Any given matrix has only one RREF; thus, no matter which way you get to a RREF, you will

always get to the same RREF.
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add 2·row 1 to row 2−→

 1 1 −1 −1 0 ← frozen
0 1 −1 0 0
0 0 −2 2 0


freeze row 1−→

 1 1 −1 −1 0 ← frozen
0 1 −1 0 0 ← frozen
0 0 −2 2 0


scale row 1 by −1/2−→

 1 1 −1 −1 0 ← frozen
0 1 −1 0 0 ← frozen
0 0 1 −1 0


(now our (non-frozen) matrix is in RREF)

unfreeze row 1−→

 1 1 −1 −1 0 ← frozen
0 1 −1 0 0
0 0 1 −1 0


add 1·row 2 to row 1−→

 1 1 −1 −1 0 ← frozen
0 1 0 −1 0
0 0 1 −1 0


unfreeze row 1−→

 1 1 −1 −1 0
0 1 0 −1 0
0 0 1 −1 0


add 1·row 3 to row 1−→

 1 1 0 −2 0
0 1 0 −1 0
0 0 1 −1 0


add (−1)·row 2 to row 1−→

 1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0

 .

The resulting matrix is the augmented matrix of the system
a− d = 0
b− d = 0
c− d = 0

.

The solutions of this system can be read off from it immediately: The variable d is
a free variable, and the other three variables are given by a = d, b = d and c = d.
In other words, the solutions of our system are precisely the 4-tuples (a, b, c, d)
consisting of four equal numbers.
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[Remark: Here is an easier way to see this, without computing an RREF: Consider

any solution (a, b, c, d) of the system


a + b = c + d
a + c = b + d
a + d = b + c

. Then, adding together the

first two equations of this system, we find (a + b) + (a + c) = (c + d) + (b + d).
This simplifies to 2a + b + c = 2d + b + c. After subtracting b + c from both sides of
this, we obtain 2a = 2d. Hence, a = d. Likewise, we find a = b (by adding together
the last two equations of the system) and a = c (by adding together the first and
the last equations of the system). Combining a = b with a = c and a = d, we
obtain a = b = c = d. In other words, the 4-tuple (a, b, c, d) consists of four equal
numbers. Thus, we have shown that any solution (a, b, c, d) of our system must
be a 4-tuple consisting of four equal numbers. Conversely, it is clear that every
4-tuple consisting of four equal numbers is a solution of our system. Combining
these observations, we conclude that the solutions of our system are precisely the
4-tuples (a, b, c, d) consisting of four equal numbers.]

Exercise 3. Let B6 be the 6× 6-matrix
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1

 .

(Its diagonal entries are 1; its entries just above the diagonal are 1; its entry in
the bottom-left corner is 1; all its other entries are 0.)

Find the RREF of B6.

Solution to Exercise 3. Let us start bringing B6 into RREF using [Strickland, Method
6.4]:

B6 =


1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1



add (−1)·row 1 to row 6−→


1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 −1 0 0 0 1
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freeze row 1−→



1 1 0 0 0 0 ← frozen
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 −1 0 0 0 1



add 1·row 1 to row 5−→



1 1 0 0 0 0 ← frozen
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 1 0 0 1



freeze row 1−→



1 1 0 0 0 0 ← frozen
0 1 1 0 0 0 ← frozen
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 1 0 0 1



add (−1)·row 1 to row 4−→



1 1 0 0 0 0 ← frozen
0 1 1 0 0 0 ← frozen
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 −1 0 1


−→ · · · .

At this point it should be clear how the procedure goes on: We pick the topmost
1 on the diagonal as pivot; then we clear out the 1 or the −1 in the last cell of
its column by adding either (−1) · row 1 or 1 · row 1 to the last row; then we freeze
row 1; rinse, repeat. As we keep doing this, the entries of our matrix on the diagonal
and above the diagonal do not change, whereas the entries below the diagonal
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become 0. Let us take a closer look at the final step of this procedure:3

· · · −→



1 1 0 0 0 0 ← frozen
0 1 1 0 0 0 ← frozen
0 0 1 1 0 0 ← frozen
0 0 0 1 1 0 ← frozen
0 0 0 0 1 1
0 0 0 0 1 1



add (−1)·row 1 to row 2−→



1 1 0 0 0 0 ← frozen
0 1 1 0 0 0 ← frozen
0 0 1 1 0 0 ← frozen
0 0 0 1 1 0 ← frozen
0 0 0 0 1 1
0 0 0 0 0 0


.

At this point, the unfrozen part of our matrix is in RREF, so we unfreeze rows and
clear out the nonzero entries above the pivots. At the end of this procedure, we
obtain the matrix 

1 0 0 0 0 1
0 1 0 0 0 −1
0 0 1 0 0 1
0 0 0 1 0 −1
0 0 0 0 1 1
0 0 0 0 0 0


,

which differs from the identity matrix only in its last column. The last column has
a 0 at the very bottom and then alternates between 1’s and −1’s (starting with a 1)
as you move upwards. This matrix is in RREF. So this is the RREF of B6.

[Remark: For any n ∈ N, we can define an n× n-matrix Bn similarly to B6. We
then get a similar answer for the RREF of Bn whenever n is even: namely, the RREF
differs from In only in its last column, which has a 0 at the very bottom and then

3It is important to keep track of the last row of the matrix. Every time we pick a new pivot, the
column that contains this pivot has either a 1 or a −1 in the bottommost position, whereas all
other columns except for the last column of the matrix have 0’s in their bottommost position.
(Thus, the last row of the matrix has only two nonzero entries.) We clear out the 1 or the −1 in
the bottommost position of the column with the current pivot by adding (−1) · row 1 or 1 · row 1
to the last row. Thus, this 1 or −1 disappears, but the neighboring entry to its right (previously
a 0) becomes a −1 or a 1 (which will have to be cleared in the next step). Thus, we can imagine
that there is a “wandering” 1 in the last row of our matrix, which starts in the leftmost position
and then moves a step to the right every time we perform a row operation; it also flips its sign
when doing so. Thus, after k row operations, it will have flipped its sign k times (so it will
equal (−1)k) and will have taken k steps to the right (so it will be in the (k + 1)-st column of the
matrix).
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alternates between 1’s and −1’s (starting with a 1) as you move upwards. When n
is odd, the RREF of Bn is simply the identity matrix In.]

4. Linear combinations, independence and spanning

Exercise 4. Let

v1 =

(
1
2

)
, v2 =

(
2
1

)
, w =

(
1
1

)
.

(a) Are the vectors v1, v2 linearly dependent?
(b) Is w a linear combination of v1, v2 ? (If yes, then find the coefficients λ1, λ2

such that w = λ1v1 + λ2v2.)

Solution to Exercise 4. (a) No. They are linearly independent.
Proof. We must show that any linear relation between v1 and v2 is trivial.
So let λ1v1 + λ2v2 = 0 be any linear relation between v1 and v2. We must show

that it is trivial, i.e., that λ1 = λ2 = 0.

From v1 =

(
1
2

)
and v2 =

(
2
1

)
, we obtain

λ1v1 + λ2v2 = λ1

(
1
2

)
+ λ2

(
2
1

)
=

(
λ1 · 1 + λ2 · 2
λ1 · 2 + λ2 · 1

)
=

(
λ1 + 2λ2
2λ1 + λ2

)
,

so that (
λ1 + 2λ2
2λ1 + λ2

)
= λ1v1 + λ2v2 = 0.

In other words, the two equalities λ1 + 2λ2 = 0 and 2λ1 + λ2 = 0 hold. We could
now treat these two equalities as a system of equations and solve it, but it is easier
to use a common-sense strategy: Subtracting the equality λ1 + 2λ2 = 0 from the
equality 2λ1 + λ2 = 0, we obtain λ1 − λ2 = 0. Thus, λ1 = λ2. Hence, the equality
λ1 + 2λ2 = 0 rewrites as λ2 + 2λ2 = 0, i.e., as 3λ2 = 0. Thus, λ2 = 0. Hence,
λ1 = λ2 = 0, which is precisely what we desired to show.

(b) Yes. Indeed, w =
1
3

v1 +
1
3

v2.

[This is easily seen by eyeballing: Just observe that v1 + v2 =

(
3
3

)
= 3w. Of

course, you can also obtain the answer by solving a system of linear equations.]

Exercise 5. Let n ≥ 2 be an integer. Recall the vectors e1, e2, . . . , en in Rn that were
defined in Exercise 4 of homework set #2. (Thus, ei = (0, 0, . . . , 0, 1, 0, 0, . . . , 0)T

with the 1 in position i.)
Now, consider the n vectors

e1 − e2, e2 − e3, e3 − e4, . . . , en−1 − en, en − e1.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw2s.pdf
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Let us denote them by d1, d2, . . . , dn. (Thus, di = ei − ei+1 for each i ∈
{1, 2, . . . , n− 1}, and dn = en − e1.)

(a) Are these n vectors d1, d2, . . . , dn linearly independent when n = 7 ?
(b) Do these n vectors d1, d2, . . . , dn span Rn when n = 7 ?

Solution to Exercise 5. We shall ignore the “when n = 7” part, since the answers and
the proofs work equally for all values of n ≥ 2.

(a) The n vectors d1, d2, . . . , dn are linearly dependent.
Proof. The following is a nontrivial linear relation between them:

1d1 + 1d2 + · · ·+ 1dn

= d1 + d2 + · · ·+ dn

= (e1 − e2) + (e2 − e3) + · · ·+ (en−1 − en) + (en − e1)

(since di = ei − ei+1 for each i ∈ {1, 2, . . . , n− 1} , and dn = en − e1)

= 0 (since all addends and subtrahends cancel) .

(b) The n vectors d1, d2, . . . , dn do not span Rn.
First proof. A vector w ∈ Rn shall be called zero-sum if the sum of its entries

is 0. (Thus, a vector w = (w1, w2, . . . , wn)
T ∈ Rn is zero-sum if and only if w1 +

w2 + · · ·+ wn = 0.) Each of the vectors d1, d2, . . . , dn is zero-sum (since one of its
entries is 1, another of its entries is −1, and all the remaining entries are 0). Thus,
any linear combination of d1, d2, . . . , dn is zero-sum as well (because it is easy to
see that any linear combination of zero-sum vectors is again zero-sum). But there
are certainly vectors in Rn that are not zero-sum (for example, e1). Thus, there
are vectors in Rn that are not linear combinations of d1, d2, . . . , dn. In other words,
d1, d2, . . . , dn do not span Rn.

Second proof. We must prove that the n vectors d1, d2, . . . , dn do not span Rn.
Indeed, assume the contrary. Thus, the n vectors d1, d2, . . . , dn span Rn. Hence,
[Strickland, Proposition 10.12 (b)] (or, equivalently, Proposition 1.2.7 (b) from the
notes from 2019-10-09) yields that the list (d1, d2, . . . , dn) is a basis of Rn. Thus,
in particular, d1, d2, . . . , dn are linearly independent. But this contradicts our result
from solving part (a) of this exercise. This contradiction shows that our assumption
was false. Hence, part (b) is solved.

5. Matrix inversion and invertibility

Exercise 6. Let A be the 2× 2-matrix
(

1 0
a 1

)
, where a is any real. Compute

the inverse A−1.

Solution to Exercise 6. The inverse of A always exists (i.e., the matrix A is invertible),
and equals

A−1 =

(
1 0
−a 1

)
.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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Proof. There are many ways to find this. The simplest one is probably using our
method for finding inverses via row-reduction (Theorem 1.3.5 in the notes from
2019-10-16):

[A | I2] =

(
1 0 1 0
a 1 0 1

)
add −a·row 1 to row 2−→

(
1 0 1 0
0 1 −a 1

)
=

[
I2 |

(
1 0
−a 1

)]
(that’s it, we’re done).

Alternatively, you can just “guess” that the inverse should be
(

1 0
−a 1

)
, and

then verify this by checking that
(

1 0
−a 1

)
· A = I2 and A ·

(
1 0
−a 1

)
= I2.

(By some results we proved in class, it suffices to verify only one of these two
equalities.)

Exercise 7. Which of the following matrices are invertible?

(a)

 1 0 0
1 1 0
0 1 0

. (b)

 1 0 0
1 1 0
0 1 1

. (c)


1 2 3 4
0 0 0 5
0 0 0 6
0 0 0 7

.

(d)
(

1 0 0
1 1 0

)
. (e)

 1 2 3
4 5 6
7 8 9

.

Solution to Exercise 7. (a) This matrix is not invertible.
Proof. Denote the columns of this matrix by v1, v2, v3 (from first to last). Then,

v3 = 0; in other words, 0v1 + 0v2 + 1v3 = 0. This is a nontrivial relation between the
columns of this matrix. Thus, the columns of this matrix are linearly dependent.
Hence, the matrix cannot be invertible (because if it was invertible, then the Inverse
Matrix Theorem (Theorem 1.2.1 in the notes from 2019-10-16)4 would show that its
columns are linearly independent).

(b) This matrix is invertible.
Proof. It is easy to see that the RREF of this matrix is I3 (indeed, row-reduction

will get rid of the two 1’s below the diagonal without disturbing any other entries
of the matrix). Thus, the matrix can be row-reduced to I3. Hence, the Inverse Matrix
Theorem (Theorem 1.2.1 in the notes from 2019-10-16)5 shows that it is invertible.

(c) This matrix is not invertible.
Proof. Let A be this matrix. Denote the columns of the matrix AT by v1, v2, v3, v4

(from first to last). Then, 6v2 = 5v3 (since v2 = (0, 0, 0, 5)T and v3 = (0, 0, 0, 6)T).

4More specifically, we are using the implication (k) =⇒ (b) of the Inverse Matrix Theorem.
5More specifically, we are using the implication (a) =⇒ (k) of the Inverse Matrix Theorem.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
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In other words, 0v1 + 6v2 + (−5) v3 + 0v4 = 0. This is a nontrivial relation between
the columns of the matrix AT. Thus, the columns of AT are linearly dependent.
Hence, the matrix A cannot be invertible (because if it was invertible, then the
Inverse Matrix Theorem (Theorem 1.2.1 in the notes from 2019-10-16)6 would show
that the columns of AT are linearly independent).

(d) This matrix is not invertible.
Proof. Corollary 1.2.7 in the notes from 2019-10-16 shows that if an n×m-matrix

has an inverse, then n = m. In other words, if a matrix has an inverse, then it is a
square matrix. Hence, our matrix does not have an inverse (since it is not a square
matrix). In other words, it is not invertible.

(e) This matrix is not invertible.
Proof. Denote the columns of this matrix by v1, v2, v3 (from first to last). Then,

v1 + v3 = 2v2 (because each entry in the middle column of the matrix is the average
of its left and right neighbors); in other words, 1v1 + (−2) v2 + 1v3 = 0. This is a
nontrivial relation between the columns of this matrix. Thus, the columns of this
matrix are linearly dependent. Hence, the matrix cannot be invertible (because if it
was invertible, then the Inverse Matrix Theorem (Theorem 1.2.1 in the notes from
2019-10-16)7 would show that its columns are linearly independent).

6. Permutations

Exercise 8. (a) Write the three transpositions t1,2, t1,3 and t2,3 of [3] in two-line
notation.

(b) Compute t1,2 ◦ t2,3.
(c) Compute sign (t1,2 ◦ t2,3).
(d) Which of the maps (written in two-line notation as)

α =

(
1 2 3
3 1 2

)
, β =

(
1 2 3
1 3 2

)
, γ =

(
1 2 3
3 1 3

)
are permutations of [3] ?

Solution to Exercise 8. (a) We have

t1,2 =

(
1 2 3
2 1 3

)
, t1,3 =

(
1 2 3
3 2 1

)
, t2,3 =

(
1 2 3
1 3 2

)
.

(b) We have

t1,2 ◦ t2,3 =

(
1 2 3
2 3 1

)
.

6More specifically, we are using the implication (k) =⇒ (f) of the Inverse Matrix Theorem.
7More specifically, we are using the implication (k) =⇒ (b) of the Inverse Matrix Theorem.
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This is because

(t1,2 ◦ t2,3) (1) = t1,2

t2,3 (1)︸ ︷︷ ︸
=1

 = t1,2 (1) = 2;

(t1,2 ◦ t2,3) (2) = t1,2

t2,3 (2)︸ ︷︷ ︸
=3

 = t1,2 (3) = 3;

(t1,2 ◦ t2,3) (3) = t1,2

t2,3 (3)︸ ︷︷ ︸
=2

 = t1,2 (2) = 1.

(c) One way to do this is by counting the inversions: The inversions of t1,2 ◦ t2,3
are (1, 2) and (1, 3) (as you can easily see from the two-line notation of t1,2 ◦ t2,3).
Thus, t1,2 ◦ t2,3 has 2 inversions. In other words, ` (t1,2 ◦ t2,3) = 2. Hence, the
definition of sign yields sign (t1,2 ◦ t2,3) = (−1)`(t1,2◦t2,3) = (−1)2 = 1.

An alternative way to do this is by recalling the following two facts:

1. We have sign
(
σ ◦ tp,q

)
= − sign (σ) for any permutation σ of [n] and any two

distinct elements p and q of [n]. (This is part of the Corollary in the notes
from 2019-10-23.)

2. We have sign
(
tp,q
)
= −1 for any two distinct elements p and q of [n]. (This

is a Proposition in the notes from 2019-10-23.)

Applying fact 2 to p = 1 and q = 2, we find sign (t1,2) = −1. Now, applying fact
1 to σ = t1,2, p = 2 and q = 3, we find sign (t1,2 ◦ t2,3) = − sign (t1,2)︸ ︷︷ ︸

=−1

= − (−1) = 1.

Thus, part (c) is solved again.
(d) The maps α and β are permutations (indeed, they are both injective and

surjective), whereas the map γ is not a permutation (indeed, γ (1) = 3 = γ (3)
shows that γ is not injective, and thus γ is not bijective, so that γ cannot be a
permutation).
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