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Math 201-003 Fall 2019 (Darij Grinberg): homework set 3 with solutions

Exercise 1. Prove that
det (AB) = det A · det B

holds for any 2× 2-matrices A =

(
a b
a′ b′

)
and B =

(
c d
c′ d′

)
.

[In class, I said that this holds for square matrices of any size, but I didn’t give
a proof. You cannot use this general fact without proof here.]

Solution to Exercise 1. Recall that every 2× 2-matrix C satisfies

det C = C1,1C2,2 − C1,2C2,1. (1)

(This is what the definition of a determinant boils down to when applied to a
2× 2-matrix.)

Let A and B be two 2× 2-matrices. Write A and B in the forms

A =

(
a b
a′ b′

)
and B =

(
c d
c′ d′

)
.

Thus,

AB =

(
a b
a′ b′

)(
c d
c′ d′

)
=

(
ac + bc′ ad + bd′

a′c + b′c′ a′d + b′d′

)
(by the definition of the product of two matrices). Hence, (1) yields

det (AB) =
(
ac + bc′

) (
a′d + b′d′

)
−
(
ad + bd′

) (
a′c + b′c′

)
. (2)

On the other hand, (1) also yields

det A = ab′ − ba′ and det B = cd′ − dc′.

Multiplying these two equalities, we find

det A · det B =
(
ab′ − ba′

)
·
(
cd′ − dc′

)
. (3)

Now, straightforward expanding (and cancelling terms) shows that the right
hand sides of (2) and (3) are equal (and, in fact, equal to ab′cd′ − ab′dc′ − ba′cd′ +
ba′dc′). Thus, the left hand sides of (2) and (3) are equal as well. In other words,
det (AB) = det A · det B. This solves the exercise.

Exercise 2. Let a, b, c, d, e, f , g, h, i, j, k, `, m, n, o, p be any numbers.
(a) Find a simple formula for the determinant

det


a b c d
` 0 0 e
k 0 0 f
j i h g

 .
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(b) Find a simple formula for the determinant

det


a b c d e
f 0 0 0 g
h 0 0 0 i
j 0 0 0 k
` m n o p

 .

(Do not mistake the “o” for a “0”.)
[Hint: Part (b) is simpler than part (a).]

Solution to Exercise 2. Of course, both parts of Exercise 2 can be proved by straight-
forward application of the definition of a determinant, provided you are willing to
write down a sum of 24 products (for part (a)) and a sum of 120 products (for part
(b)). But it is easier to “haggle” the sizes of these sums down before doing so:

(a) Let A be the matrix


a b c d
` 0 0 e
k 0 0 f
j i h g

. We want to find det A.

Note that we have A2,2 = 0 and A2,3 = 0 and A3,2 = 0 and A3,3 = 0. (These are
the four 0 entries in the middle of the matrix A.)

The definition of a determinant yields

det A = ∑
σ is a permutation of [4]

sign (σ) · A1,σ(1)A2,σ(2)A3,σ(3)A4,σ(4). (4)

The sum on the right hand side of (4) has 24 addends. However, some of them
are 0. Namely, every addend corresponding to a permutation σ of [4] satisfying
σ (2) /∈ {1, 4} must be 0 1. Hence, all such addends can be removed from the sum
(without changing the value of this sum). Similarly, all addends corresponding to
permutations σ of [4] satisfying σ (3) /∈ {1, 4} must be 0, and can therefore also be
removed from the sum. The addends that survive these two removals are the ones
that correspond to permutations σ of [4] satisfying σ (2) ∈ {1, 4} and σ (3) ∈ {1, 4}.
It is easy to see that there are exactly four such permutations: In two-line notation,
these permutations are(

1 2 3 4
2 1 4 3

)
,

(
1 2 3 4
2 4 1 3

)
,

(
1 2 3 4
3 1 4 2

)
,

(
1 2 3 4
3 4 1 2

)
.

1Proof. Let σ be a permutaiton of [4] such that σ (2) /∈ {1, 4}. We must then show that the addend
on the right hand side of (4) corresponding to this σ must be 0. In other words, we have to show
that sign (σ) · A1,σ(1)A2,σ(2)A3,σ(3)A4,σ(4) = 0.

We have σ (2) /∈ {1, 4}, and thus σ (2) ∈ {2, 3}. Hence, A2,σ(2) = 0 (because A2,2 = 0 and
A2,3 = 0), and thus sign (σ) · A1,σ(1) A2,σ(2)︸ ︷︷ ︸

=0

A3,σ(3)A4,σ(4) = 0, qed.
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The addends corresponding to these permutations are A1,2A2,1A3,4A4,3, −A1,2A2,4A3,1A4,3,
−A1,3A2,1A3,4A4,2 and A1,3A2,4A3,1A4,2. Hence, (4) simplifies to

det A
= A1,2︸︷︷︸

=b

A2,1︸︷︷︸
=`

A3,4︸︷︷︸
= f

A4,3︸︷︷︸
=h

− A1,2︸︷︷︸
=b

A2,4︸︷︷︸
=e

A3,1︸︷︷︸
=k

A4,3︸︷︷︸
=h

− A1,3︸︷︷︸
=c

A2,1︸︷︷︸
=`

A3,4︸︷︷︸
= f

A4,2︸︷︷︸
=i

+ A1,3︸︷︷︸
=c

A2,4︸︷︷︸
=e

A3,1︸︷︷︸
=k

A4,2︸︷︷︸
=i

= b` f h− bekh− c` f i + ceki.

This is a simple enough formula to consider an answer to Exercise 2 (a), but we can
simplify it even further. Namely,

det A = b` f h− bekh− c` f i + ceki = (bh− ci) (` f − ek) .

Exercise 2 (a) is solved.

(b) Let A be the matrix


a b c d e
f 0 0 0 g
h 0 0 0 i
j 0 0 0 k
` m n o p

. We want to find det A.

The most important property of A is that the 3× 3-submatrix in the middle of A
is filled with zeroes. In other words,

Au,v = 0 for every u ∈ {2, 3, 4} and v ∈ {2, 3, 4} . (5)

Now, the definition of a determinant yields

det A = ∑
σ is a permutation of [5]

sign (σ) · A1,σ(1)A2,σ(2)A3,σ(3)A4,σ(4)A5,σ(5). (6)

But every permutation σ of [5] satisfies A2,σ(2)A3,σ(3)A4,σ(4) = 0 2. Hence, (6)
becomes

det A = ∑
σ is a permutation of [5]

sign (σ) · A1,σ(1) A2,σ(2)A3,σ(3)A4,σ(4)︸ ︷︷ ︸
=0

A5,σ(5)

= ∑
σ is a permutation of [5]

sign (σ) · A1,σ(1)0A5,σ(5) = 0.

Exercise 2 (b) is thus solved.
2Proof. Let σ be a permutation of [5]. Then, σ is a bijective map, and hence an injective map.

Therefore, the numbers σ (2) , σ (3) , σ (4) are pairwise distinct.
We now claim that there exists an u ∈ {2, 3, 4} such that σ (u) ∈ {2, 3, 4}. In order to prove

this, we assume the contrary. Thus, every u ∈ {2, 3, 4} satisfies σ (u) /∈ {2, 3, 4}. Hence, every
u ∈ {2, 3, 4} satisfies σ (u) ∈ {1, 5} (since σ (u) ∈ {1, 2, 3, 4, 5} but σ (u) /∈ {2, 3, 4}). In other
words, the numbers σ (2) , σ (3) , σ (4) belong to {1, 5}. Hence, σ (2) , σ (3) , σ (4) are three distinct
numbers belonging to the set {1, 5}. But this is absurd, since the set {1, 5} does not contain three
distinct numbers. Hence, we have obtained a contradiction. This shows that our assumption was
wrong.

We thus have shown that there exists an u ∈ {2, 3, 4} such that σ (u) ∈ {2, 3, 4}. Consider such
a u. Applying (5) to v = σ (u), we now obtain Au,σ(u) = 0. But u ∈ {2, 3, 4}, so that Au,σ(u) is a
factor in the product A2,σ(2)A3,σ(3)A4,σ(4). Hence, the product A2,σ(2)A3,σ(3)A4,σ(4) is 0 (since its
factor Au,σ(u) is 0), qed.
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Exercise 3. Find

det


5 4 3 2 1
1 0 0 3 0
2 0 0 0 0
2 2 4 3 0
−3 0 1 2 0

 .

First solution to Exercise 3 (sketched). The easiest way to solve this is by repeated
Laplace expansion (i.e., expanding the determinant along one row, then expanding
the results along a row of theirs, etc.). Indeed, usually, if A is an n× n-matrix, then
Laplace expansion along a row will express det A as a sum of n addends, each of
which is (up to sign) a product of an entry of this row times a smaller determinant.
However, if this row has many zero entries, then the corresponding addends are
zero, and thus the expression greatly simplifies. Here is how this works out for our
matrix:

• We expand det


5 4 3 2 1
1 0 0 3 0
2 0 0 0 0
2 2 4 3 0
−3 0 1 2 0

 along the 3-rd row. We obtain a sum of

5 addends:

det


5 4 3 2 1
1 0 0 3 0
2 0 0 0 0
2 2 4 3 0
−3 0 1 2 0



= (−1)3+1 2 det


4 3 2 1
0 0 3 0
2 4 3 0
0 1 2 0

+ (−1)3+2 0 det (∗)

+ (−1)3+3 0 det (∗) + (−1)3+4 0 det (∗) + (−1)3+5 0 det (∗) ,

where the symbol “∗” signifies a matrix that we need not compute because
its determinant will be multiplied by 0 anyway. This simplifies to

det


5 4 3 2 1
1 0 0 3 0
2 0 0 0 0
2 2 4 3 0
−3 0 1 2 0



= (−1)3+1︸ ︷︷ ︸
=1

2 det


4 3 2 1
0 0 3 0
2 4 3 0
0 1 2 0

 = 2 det


4 3 2 1
0 0 3 0
2 4 3 0
0 1 2 0

 .
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• Thus, we need to find det


4 3 2 1
0 0 3 0
2 4 3 0
0 1 2 0

. We expand this determinant along

its 2-nd row:

det


4 3 2 1
0 0 3 0
2 4 3 0
0 1 2 0


= (−1)2+1 0 det (∗) + (−1)2+2 0 det (∗) + (−1)2+3 3 det

 4 3 1
2 4 0
0 1 0


+ (−1)2+4 0 det (∗)

= (−1)2+3︸ ︷︷ ︸
=−1

3 det

 4 3 1
2 4 0
0 1 0

 = −3 det

 4 3 1
2 4 0
0 1 0

 .

• Thus, we need to find det

 4 3 1
2 4 0
0 1 0

. We expand this determinant along

its 3-rd row:

det

 4 3 1
2 4 0
0 1 0

 = (−1)3+1 0 det (∗) + (−1)3+2 1 det
(

4 1
2 0

)
+ (−1)3+3 0 det (∗)

= (−1)3+2︸ ︷︷ ︸
=−1

1 det
(

4 1
2 0

)
= −det

(
4 1
2 0

)
.

• Thus, we need to find det
(

4 1
2 0

)
. We can do this by playing the same game

further (expanding it along its 2-nd row), but alternatively we can just use the

simple formula det
(

a b
c d

)
= ad − bc to realize that this determinant is

4 · 0− 1 · 2 = −2.
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Combining these arguments, we obtain

det


5 4 3 2 1
1 0 0 3 0
2 0 0 0 0
2 2 4 3 0
−3 0 1 2 0



= 2 det


4 3 2 1
0 0 3 0
2 4 3 0
0 1 2 0


︸ ︷︷ ︸
=−3 det


4 3 1
2 4 0
0 1 0



= 2 (−3)︸ ︷︷ ︸
=−6

det

 4 3 1
2 4 0
0 1 0


︸ ︷︷ ︸
=−det

(
4 1
2 0

)

= (−6)
(
−det

(
4 1
2 0

))
= 6 det

(
4 1
2 0

)
︸ ︷︷ ︸

=−2

= 6 (−2) = −12.

Second solution to Exercise 3 (sketched). We recall three properties of determinants:

• Property 1: If we swap two rows of an n× n-matrix, then its determinant gets
multiplied by −1 (that is, it flips its sign but preserves its magnitude). (This
is Theorem 1.2.6 in the class notes from 2019-10-30.)

• Property 2: If we swap two columns of an n× n-matrix, then its determinant
gets multiplied by −1 (that is, it flips its sign but preserves its magnitude).
(This is the analogue of Property 1 for columns instead of rows. It can be
deduced from Property 1, as we have seen in Theorem 1.6.1 in the class notes
from 2019-10-30.)

• Property 3: If an n× n-matrix A is triangular (i.e., upper-triangular or lower-
triangular), then its determinant is the product of its diagonal elements:

det A = A1,1A2,2 · · · An,n.

(This is Theorem 1.1.2 in the class notes from 2019-10-30.)

These properties suffice to quickly solve the exercise: Just keep swapping rows

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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and columns until the matrix becomes triangular. To wit:

det


5 4 3 2 1
1 0 0 3 0
2 0 0 0 0
2 2 4 3 0
−3 0 1 2 0



= −det


−3 0 1 2 0
1 0 0 3 0
2 0 0 0 0
2 2 4 3 0
5 4 3 2 1


(

by Property 1, since we have
swapped the 1-st and 5-th rows here

)

= det


2 0 0 0 0
1 0 0 3 0
−3 0 1 2 0
2 2 4 3 0
5 4 3 2 1


(

by Property 1, since we have
swapped the 1-st and 3-rd rows here

)

= −det


2 0 0 0 0
1 3 0 0 0
−3 2 1 0 0
2 3 4 2 0
5 2 3 4 1


︸ ︷︷ ︸

=2·3·1·2·1
(by Property 3, since

this matrix is lower-triangular)

(
by Property 2, since we have

swapped the 2-nd and 4-th columns here

)

= −2 · 3 · 1 · 2 · 1 = −12.

Exercise 4. Here is a 5× 5-matrix:


0 1 0 0 0
0 0 4 0 0
0 0 1 2 0
0 0 3 0 0
1 0 2 2 1

. Its determinant is 0.

Find a 0 entry which can be replaced by a 1 to give a nonzero determinant.
(You can box this entry in the matrix. Note that you cannot replace more than
one entry simultaneously.)

Solution to Exercise 4 (sketched). These 0 entries are boxed:


0 1 0 0 0
0 0 4 0 0
0 0 1 2 0
0 0 3 0 0
1 0 2 2 1

.
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Why is it these entries and no others? Well, you can just check every one until
you find one that works. But this requires some patience; there are faster ways.
Here is one: Recall Properties 1, 2 and 3 from the second solution to Exercise 3.
Let us transform our matrix into a lower-triangular one by swapping rows and
swapping columns:

0 1 0 0 0
0 0 4 0 0
0 0 1 2 0
0 0 3 0 0
1 0 2 2 1

 swap 1-st and 3-rd columns−→


0 1 0 0 0
4 0 0 0 0
1 0 0 2 0
3 0 0 0 0
2 0 1 2 1



swap 3-rd and 4-th columns−→


0 1 0 0 0
4 0 0 0 0
1 0 2 0 0
3 0 0 0 0
2 0 2 1 1



swap 1-st and 2-nd columns−→


1 0 0 0 0
0 4 0 0 0
0 1 2 0 0
0 3 0 0 0
0 2 2 1 1

 .

We have thus obtained a lower-triangular matrix with diagonal entries 1, 4, 2, 0, 1.
Thus, its determinant is 0, but if we replace the 0 on the diagonal by a 1, then it
will become 1 · 4 · 2 · 1 · 1 6= 0. Thus we have found a 0 that we can replace by a 1 to
obtain a nonzero determinant. All we need is to trace it through our swaps in order
to learn what cell it occupied in the original matrix. (This is left to the reader.)


