Math 201-003 Fall 2019 (Darij Grinberg): homework set 3

due date: Wednesday 2019-11-11 at the beginning of class, or earlier by Blackboard
Exercise 1. Prove that

$$
\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B
$$

holds for any 2×2-matrices $A=\left(\begin{array}{cc}a & b \\ a^{\prime} & b^{\prime}\end{array}\right)$ and $B=\left(\begin{array}{cc}c & d \\ c^{\prime} & d^{\prime}\end{array}\right)$.
[In class, I said that this holds for square matrices of any size, but I didn't give a proof. You cannot use this general fact without proof here.]

Exercise 2. Let $a, b, c, d, e, f, g, h, i, j, k, \ell, m, n, o, p$ be any numbers.

(a) Find a simple formula for the determinant

$$
\operatorname{det}\left(\begin{array}{llll}
a & b & c & d \\
\ell & 0 & 0 & e \\
k & 0 & 0 & f \\
j & i & h & g
\end{array}\right) .
$$

(b) Find a simple formula for the determinant

$$
\operatorname{det}\left(\begin{array}{ccccc}
a & b & c & d & e \\
f & 0 & 0 & 0 & g \\
h & 0 & 0 & 0 & i \\
j & 0 & 0 & 0 & k \\
\ell & m & n & o & p
\end{array}\right) .
$$

(Do not mistake the " 0 " for a " 0 ".)
[Hint: Part (b) is simpler than part (a).]
Exercise 3. Find

$$
\operatorname{det}\left(\begin{array}{ccccc}
5 & 4 & 3 & 2 & 1 \\
1 & 0 & 0 & 3 & 0 \\
2 & 0 & 0 & 0 & 0 \\
2 & 2 & 4 & 3 & 0 \\
-3 & 0 & 1 & 2 & 0
\end{array}\right)
$$

Exercise 4. Here is a $5 \times$ 5-matrix: $\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 1 & 0 & 2 & 2 & 1\end{array}\right)$. Its determinant is 0 .
Find a 0 entry which can be replaced by a 1 to give a nonzero determinant. (You can box this entry in the matrix. Note that you cannot replace more than one entry simultaneously.)

