Math 201-003 Fall 2019 (Darij Grinberg): homework set 2 with solutions

Exercise 1. Let $n \in \mathbb{N}$. For any *n* numbers $d_1, d_2, \ldots, d_n \in \mathbb{R}$, we let diag (d_1, d_2, \ldots, d_n) denote the $n \times n$ -matrix whose diagonal entries are d_1, d_2, \ldots, d_n (in this order from top to bottom), while its off-diagonal entries are all 0. In other words,

diag
$$(d_1, d_2, \dots, d_n) = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix}.$$

This is called the *diagonal matrix with diagonal entries* d_1, d_2, \ldots, d_n .

(a) Given any $d_1, d_2, d_3 \in \mathbb{R}$ and any 3×3 -matrix $A = \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix}$, compute diag $(d_1, d_2, d_3) \in A$

pute diag $(d_1, d_2, d_3) \cdot A$.

(b) State a rule for computing diag $(d_1, d_2, ..., d_n) \cdot A$, where $d_1, d_2, ..., d_n \in \mathbb{R}$ and where *A* is any $n \times m$ -matrix (with *m* being any nonnegative integer).

(c) State a rule for computing $A \cdot \text{diag}(d_1, d_2, \dots, d_n)$, where $d_1, d_2, \dots, d_n \in \mathbb{R}$ and where A is any $m \times n$ -matrix (with m being any nonnegative integer).

[You don't have to prove these rules.]

Solution to Exercise 1. (a) We have

diag
$$(d_1, d_2, d_3) = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$$
 (by the definition of diag (d_1, d_2, d_3))

and

$$A = \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix}.$$

Multiplying these equalities, we obtain

$$\begin{aligned} \operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right) \cdot A &= \begin{pmatrix} d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3} \end{pmatrix} \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix} \\ &= \begin{pmatrix} d_{1}a + 0a' + 0a'' & d_{1}b + 0b' + 0b'' & d_{1}c + 0c' + 0c'' \\ 0a + d_{2}a' + 0a'' & 0b + d_{2}b' + 0b'' & 0c + d_{2}c' + 0c'' \\ 0a + 0a' + d_{3}a'' & 0b + 0b' + d_{3}b'' & 0c + 0c' + d_{3}c'' \end{pmatrix} \\ &= \begin{pmatrix} d_{1}a & d_{1}b & d_{1}c \\ d_{2}a' & d_{2}b' & d_{2}c' \\ d_{3}a'' & d_{3}b'' & d_{3}c'' \end{pmatrix}. \end{aligned}$$

(b) Let $d_1, d_2, \ldots, d_n \in \mathbb{R}$. Let $m \in \mathbb{N}$. Let A be any $n \times m$ -matrix. Then, the matrix diag $(d_1, d_2, \ldots, d_n) \cdot A$ is obtained from A by scaling the *i*-th row by d_i for each $i \in \{1, 2, \ldots, n\}$. In other words,

$$(\operatorname{diag}\left(d_{1}, d_{2}, \dots, d_{n}\right) \cdot A)_{i,i} = d_{i}A_{i,j} \tag{1}$$

for each $i \in \{1, 2, ..., n\}$ and $j \in \{1, 2, ..., m\}$. [*Proof of (1):* Set $D = \text{diag}(d_1, d_2, ..., d_n)$. Thus,

$$D_{i,k} = 0$$
 for any two distinct elements *i* and *k* of $\{1, 2, ..., n\}$, (2)

and

$$D_{i,i} = d_i \qquad \text{for each } i \in \{1, 2, \dots, n\}.$$
(3)

But the definition of the product of two matrices yields

$$DA = (D_{i,1}A_{1,j} + D_{i,2}A_{2,j} + \dots + D_{i,n}A_{n,j})_{1 \le i \le n, \ 1 \le j \le m}.$$
(4)

Hence,

$$(DA)_{i,j} = D_{i,1}A_{1,j} + D_{i,2}A_{2,j} + \dots + D_{i,n}A_{n,j}$$
(5)

for each $i \in \{1, 2, ..., n\}$ and $j \in \{1, 2, ..., m\}$.

Fix $i \in \{1, 2, ..., n\}$ and $j \in \{1, 2, ..., m\}$. The sum $D_{i,1}A_{1,j} + D_{i,2}A_{2,j} + \cdots + D_{i,n}A_{n,j}$ has n addends. One of these n addends (to be specific: the *i*-th one) is

$$\underbrace{\begin{array}{c} D_{i,i} \\ =d_i \\ \text{(by (3))} \end{array}}_{i,j} A_{i,j} = d_i A_{i,j}$$

whereas all the other addends are 0 (because each of them has the form $D_{i,k}A_{k,j}$ for some $k \in \{1, 2, ..., n\}$ distinct from *i*, and thus rewrites as $D_{i,k}A_{k,j} = 0$). Hence, this sum equals

=0 (by (2))

 $d_i A_{i,j}$. In other words,

$$D_{i,1}A_{1,j} + D_{i,2}A_{2,j} + \dots + D_{i,n}A_{n,j} = d_i A_{i,j}.$$

Hence, (5) rewrites as $(DA)_{i,j} = d_i A_{i,j}$. In view of $D = \text{diag}(d_1, d_2, \dots, d_n)$, this further rewrites as

$$(\operatorname{diag}(d_1, d_2, \ldots, d_n) \cdot A)_{i,i} = d_i A_{i,j}$$

This proves (1).]

(c) Let $d_1, d_2, \ldots, d_n \in \mathbb{R}$. Let $m \in \mathbb{N}$. Let A be any $m \times n$ -matrix. Then, the matrix $A \cdot \text{diag}(d_1, d_2, \ldots, d_n)$ is obtained from A by scaling the j-th column by d_j for each $j \in \{1, 2, \ldots, n\}$. In other words,

$$(A \cdot \operatorname{diag} (d_1, d_2, \dots, d_n))_{i,i} = d_i A_{i,i}$$

for each $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}$.

[The proof of this is similar to the proof of (1); we omit it.]

We recall the definition of linear combinations ([Strickland, Definition 7.1]):

Definition 0.1. Let $v_1, v_2, ..., v_k$ be some vectors in \mathbb{R}^n . Then, a *linear combination* of $v_1, v_2, ..., v_k$ means a vector that can be written in the form

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k$$
 for some $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$.

The numbers $\lambda_1, \lambda_2, ..., \lambda_k$ in this definition are called *coefficients* of this linear combination; but they are not necessarily unique (in fact, they are unique if $v_1, v_2, ..., v_k$ are linearly independent; we shall see this later in class). For example, if $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, then the vector $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ is a linear combination of v_1 and v_2 , and can be written as $\lambda_1 v_1 + \lambda_2 v_2$ in many ways:

$$\begin{pmatrix} 3\\3 \end{pmatrix} = 1v_1 + 1v_2 = 3v_1 + 0v_2 = 0v_1 + \frac{3}{2}v_2 = 2v_1 + \frac{1}{2}v_2 = \cdots$$

We recall the definition of linear independence ([Strickland, §8]):

Definition 0.2. Let v_1, v_2, \ldots, v_k be some vectors in \mathbb{R}^n .

(a) A *relation* (more precisely: *linear relation*) between $v_1, v_2, ..., v_k$ means a choice of reals $\lambda_1, \lambda_2, ..., \lambda_k$ satisfying

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k = 0.$$

(Here, 0 denotes the zero vector $0_{n \times 1} \in \mathbb{R}^n$.)

(b) The *trivial relation* between $v_1, v_2, ..., v_k$ is the relation obtained by choosing $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$. Clearly, $v_1, v_2, ..., v_k$ always have this trivial relation.

(c) We say that the vectors $v_1, v_2, ..., v_k$ (or, more precisely, the list $(v_1, v_2, ..., v_k)$ of these vectors) are *independent* (more precisely: *linearly independent*) if the only relation between $v_1, v_2, ..., v_k$ is the trivial relation. Otherwise, we say that these vectors are *dependent*.

For example, if we set

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$,

then the vectors v_1, v_2, v_3 are linearly dependent, since they have the nontrivial relation $1v_1 + (-2)v_2 + 1v_3 = 0$.

$$v_1 = \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$.

(a) Are v_1, v_2, v_3 dependent? (If yes, show a nontrivial relation between them.)

(b) Is $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ a linear combination of v_1, v_2, v_3 ? (If yes, provide a choice of coefficients $\lambda_1, \lambda_2, \lambda_3$ that demonstrate it.) **(c)** Is $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ a linear combination of v_1, v_2, v_3 ? (If yes, provide a choice of coefficients $\lambda_1, \lambda_2, \lambda_3$ that demonstrate it.)

Solution to Exercise 2. (a) The vectors v_1, v_2, v_3 are dependent.

Proof. It is easy to see that $1v_1 + 1v_2 + 1v_3 = 0$, which is a nontrivial relation. (b) No.

Proof. Each of the three vectors v_1, v_2, v_3 has the property that the sum of its coordinates is 0. Thus, every combination of v_1, v_2, v_3 has this property as well¹.

But the vector $\begin{pmatrix} 2\\2\\3 \end{pmatrix}$ does not have this property. Thus, the latter vector is not a

combination of v_1, v_2, v_3 .

(c) Yes.

Proof. We have
$$\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = v_3 + 3v_1 = 3v_1 + 0v_2 + 1v_3.$$

[*Remark:* The above proofs rely on pattern-spotting and educated guesses, which require a bit of ingenuity or experience to find. But you can just as well solve the exercise by following algorithms. Indeed, [Strickland, Method 8.8] is a surefire way to answer questions like part (a) of this exercise, whereas [Strickland, Method 7.6] can be used to solve parts (b) and (c).]

Clearly, rearranging a list of vectors does not change the set of its linear combinations: In fact, the rearranged vectors will have the same linear combinations as the original vectors; only the coefficients will change their order. For example, the linear combinations of v_1 , v_2 , v_3 are the same as the linear combinations of v_3 , v_1 , v_2 , since $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = \lambda_3 v_3 + \lambda_1 v_1 + \lambda_2 v_2$.

Rearranging a list of vectors also does not change its linear dependence or independence: In fact, any linear relation between the rearranged vectors is a rearranged linear relation between the original vectors, and vice versa. Thus, v_1 , v_2 , v_3 are dependent if and only if v_3 , v_1 , v_2 are dependent.

What happens to lists of vectors when we duplicate a vector? The following exercise answers this question (at least when it's the last vector that is duplicated):

Exercise 3. Let $v_1, v_2, ..., v_k$ be some vectors in \mathbb{R}^n . Assume that $v_{k-1} = v_k$. Justify the following (i.e., sketch the proofs):

¹Make sure you understand why! (Also make sure you understand why a property like "one of the coordinates is 0" would **not** be transferred from v_1 , v_2 , v_3 to all their combinations.

(a) The vectors v_1, v_2, \ldots, v_k are linearly dependent.

(b) The linear combinations of v_1, v_2, \ldots, v_k are the same vectors as the linear combinations of $v_1, v_2, \ldots, v_{k-1}$.

Solution to Exercise 3. (a) We have

 $0v_1 + 0v_2 + \dots + 0v_{k-2} + 1v_{k-1} + (-1)v_k = v_{k-1} - v_k = 0$

(since $v_{k-1} = v_k$). Thus, the relation

$$0v_1 + 0v_2 + \dots + 0v_{k-2} + 1v_{k-1} + (-1)v_k = 0$$

between v_1, v_2, \ldots, v_k holds. This relation is clearly nontrivial, since $1 \neq 0$. Hence, the vectors v_1, v_2, \ldots, v_k are linearly dependent. This solves part (a) of the exercise.

(b) We need to show the following two claims:

Claim 1: Every linear combination of $v_1, v_2, ..., v_k$ is a linear combination of $v_1, v_2, ..., v_{k-1}$.

Claim 2: Every linear combination of $v_1, v_2, ..., v_{k-1}$ is a linear combination of $v_1, v_2, ..., v_k$.

[*Proof of Claim 1:* Let w be a linear combination of v_1, v_2, \ldots, v_k . We must show that w is a linear combination of $v_1, v_2, \ldots, v_{k-1}$.

We know that w is a linear combination of $v_1, v_2, ..., v_k$. In other words, there exist numbers $\lambda_1, \lambda_2, ..., \lambda_k$ such that $w = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_k v_k$. Thus,

$$w = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k$$

= $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{k-2} v_{k-2} + \lambda_{k-1} v_{k-1} + \lambda_k \underbrace{v_k}_{=v_{k-1}}$
= $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{k-2} v_{k-2} + \underbrace{\lambda_{k-1} v_{k-1} + \lambda_k v_{k-1}}_{=(\lambda_{k-1} + \lambda_k) v_{k-1}}$
= $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{k-2} v_{k-2} + (\lambda_{k-1} + \lambda_k) v_{k-1}.$

This shows that w is a linear combination of $v_1, v_2, \ldots, v_{k-1}$. This proves Claim 1.]

[*Proof of Claim 2:* Let *w* be a linear combination of $v_1, v_2, ..., v_{k-1}$. We must show that *w* is a linear combination of $v_1, v_2, ..., v_k$.

We know that w is a linear combination of $v_1, v_2, \ldots, v_{k-1}$. In other words, there exist numbers $\lambda_1, \lambda_2, \ldots, \lambda_{k-1}$ such that $w = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_{k-1} v_{k-1}$. Thus,

$$w = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{k-1} v_{k-1} = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{k-1} v_{k-1} + 0 = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{k-1} v_{k-1} + 0 v_k.$$

This shows that *w* is a linear combination of v_1, v_2, \ldots, v_k . This proves Claim 2.]

[*Remark:* In our proof of Claim 2, we did not use the assumption that $v_{k-1} = v_k$. More generally, it is always true that a linear combination of a subsequence of a given list of vectors must always be a linear combination of the whole sequence. It is the other direction that is usually not valid.]

Exercise 4. Let $n \in \mathbb{N}$. For each $k \in \{1, 2, ..., n\}$, we let e_k denote the column vector of size n whose k-th entry is 1 and whose all other entries are 0.

(For example: If
$$n = 3$$
, then $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.)
Explain why each vector in \mathbb{R}^n is a linear combination of e_1, e_2, \dots, e_n .

Solution to Exercise 4. Let v be any vector in \mathbb{R}^n . We must prove that v is a linear combination of e_1, e_2, \ldots, e_n .

Write
$$v$$
 in the form $v = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$, where $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$ are its coordinates.

For each $i \in \{1, 2, \ldots, n\}$, we have

$$e_i = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(with the 1 being in the *i*-th position)

and thus

$$\lambda_{i}e_{i} = \begin{pmatrix} \lambda_{i}0\\\lambda_{i}0\\\vdots\\\lambda_{i}0\\\lambda_{i}1\\\lambda_{i}0\\\vdots\\\lambda_{i}0 \end{pmatrix} = \begin{pmatrix} 0\\0\\\vdots\\0\\\lambda_{i}\\0\\\vdots\\0 \end{pmatrix}$$

(where the entry λ_i is in the *i*-th position). Hence,

$$\lambda_{1}e_{1} + \lambda_{2}e_{2} + \dots + \lambda_{n}e_{n}$$

$$= \begin{pmatrix} \lambda_{1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \lambda_{2} \\ \vdots \\ 0 \end{pmatrix} + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \lambda_{n} \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_{1} + 0 + 0 + \dots + 0 \\ 0 + \lambda_{2} + 0 + \dots + 0 \\ \vdots \\ 0 + 0 + 0 + \dots + \lambda_{n} \end{pmatrix} = \begin{pmatrix} \lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n} \end{pmatrix} = v.$$

In other words, $v = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n$. Hence, v is a linear combination of e_1, e_2, \ldots, e_n .

Definition 0.1 and Definition 0.2 make sense not only for vectors in \mathbb{R}^n . For example, we can replace "vectors in \mathbb{R}^n " by "polynomials" in both definitions, and obtain definitions for linear combinations and linear independence of polynomials (in one variable *x*, with real coefficients).² Thus:

• The polynomial $x^2 + 2x - 1$ is a linear combination of the polynomials x^2 and $(x - 1)^2$, since

$$x^{2} + 2x - 1 = 2 \cdot x^{2} + (-1) \cdot (x - 1)^{2}.$$

• The polynomials x^2 , $(x-1)^2$, $(x-2)^2$ and $(x-3)^2$ are linearly dependent, since there exists a nontrivial linear relation between them: If we take $\lambda_1 = 1$, $\lambda_2 = -3$, $\lambda_3 = 3$ and $\lambda_4 = -1$, then

$$\lambda_1 x^2 + \lambda_2 (x - 1)^2 + \lambda_3 (x - 2)^2 + \lambda_4 (x - 3)^2$$

= 1 \cdot x^2 + (-3) \cdot (x - 1)^2 + 3 \cdot (x - 2)^2 + (-1) \cdot (x - 3)^2 = 0

• The polynomials x^2 , $(x - 1)^2$ and $(x - 2)^2$ are linearly independent, because the only relation

$$\lambda_1 x^2 + \lambda_2 (x - 1)^2 + \lambda_3 (x - 2)^2 = 0$$
(6)

between them is the trivial one. How to be sure of this? One way is to assume that (6) holds, and try to derive $\lambda_1 = \lambda_2 = \lambda_3 = 0$ from it. This can be done, for example, by comparing coefficients: Straightforward expansion yields

$$\begin{split} \lambda_1 x^2 &+ \lambda_2 \, (x-1)^2 + \lambda_3 \, (x-2)^2 \\ &= \lambda_1 x^2 + \lambda_2 \, \left(x^2 - 2x + 1 \right) + \lambda_3 \, \left(x^2 - 4x + 4 \right) \\ &= \left(\lambda_1 + \lambda_2 + \lambda_3 \right) x^2 + \left(-2\lambda_2 - 4\lambda_3 \right) x + \left(\lambda_2 + 4\lambda_3 \right), \end{split}$$

²Of course, we then have to interpret 0 as the zero polynomial rather than the zero vector $0_{n \times 1}$.

and thus (6) rewrites as

$$(\lambda_1 + \lambda_2 + \lambda_3) x^2 + (-2\lambda_2 - 4\lambda_3) x + (\lambda_2 + 4\lambda_3) = 0.$$

Since equal polynomials have equal coefficients, this is equivalent to the following system of linear equations:

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 0\\ -2\lambda_2 - 4\lambda_3 = 0\\ \lambda_2 + 4\lambda_3 = 0 \end{cases}$$

whose only solution is $(\lambda_1, \lambda_2, \lambda_3) = (0, 0, 0)$ (you know how to check this) – and thus the relation must be trivial. So the polynomials x^2 , $(x - 1)^2$ and $(x - 2)^2$ are linearly independent.

Exercise 5. (a) Are the four polynomials x^3 , $(x - 1)^3$, $(x - 2)^3$, $(x - 3)^3$ linearly independent?

(b) Is 1 a linear combination of these four polynomials?

Solution to Exercise 5. (a) Yes.

Proof. Let $ax^3 + b(x-1)^3 + c(x-2)^3 + d(x-3)^3 = 0$ be any relation between these four polynomials. We must show that this relation is trivial, i.e., that a = b = c = d = 0.

We have

$$\begin{aligned} ax^{3} + b \underbrace{(x-1)^{3}}_{=x^{3}-3x^{2}+3x-1} + c \underbrace{(x-2)^{3}}_{=x^{3}-6x^{2}+12x-8} + d \underbrace{(x-3)^{3}}_{=x^{3}-9x^{2}+27x-27} \\ &= ax^{3} + b \left(x^{3}-3x^{2}+3x-1\right) + c \left(x^{3}-6x^{2}+12x-8\right) + d \left(x^{3}-9x^{2}+27x-27\right) \\ &= ax^{3}+bx^{3}-3bx^{2}+3bx-b+cx^{3}-6cx^{2}+12cx-8c+dx^{3}-9dx^{2}+27dx-27d \\ &= (a+b+c+d) x^{3} + (-3b-6c-9d) x^{2} + (3b+12c+27d) x + (-b-8c-27d) . \end{aligned}$$

Thus, our relation $ax^3 + b(x-1)^3 + c(x-2)^3 + d(x-3)^3 = 0$ rewrites as the following equality:

$$(a+b+c+d) x^{3} + (-3b-6c-9d) x^{2} + (3b+12c+27d) x + (-b-8c-27d) = 0.$$

But a polynomial can only be 0 if all its coefficients are 0 (since a polynomial is defined as a sequence of coefficients). Thus, the equality that we have just showed entails that

$$a + b + c + d = 0;$$

 $-3b - 6c - 9d = 0;$
 $3b + 12c + 27d = 0;$
 $-b - 8c - 27d = 0.$

This is a system of 4 linear equations in a, b, c, d. Solving it (e.g., by Gaussian elimination), we find that the only solution is a = b = c = d = 0. Thus, we conclude that a = b = c = d = 0, which is exactly what we needed to show.

[*Remark*: The claim generalizes: For any $n \in \mathbb{N}$ and any n + 1 distinct reals a_0, a_1, \ldots, a_n , the n + 1 polynomials $(x - a_0)^n, (x - a_1)^n, \ldots, (x - a_n)^n$ are linearly independent. To prove this, we would need some more advanced tools (such as the Vandermonde determinant), since the system of linear equations would get larger and larger as n grows.]

(b) Yes.

Proof. We have

$$\frac{1}{6}x^3 + \frac{-1}{2}(x-1)^3 + \frac{1}{2}(x-2)^3 + \frac{-1}{6}(x-3)^3 = 1.$$
 (7)

[*Remark:* How did we find this relation? Well, we need to find four numbers *a*, *b*, *c*, *d* such that

$$ax^{3} + b(x-1)^{3} + c(x-2)^{3} + d(x-3)^{3} = 1.$$

We can expand the left hand side of this equation (as we already did in the proof of part (a)), thus rewriting the equation as

$$(a+b+c+d) x^3 + (-3b-6c-9d) x^2 + (3b+12c+27d) x + (-b-8c-81d) = 1.$$

But two polynomials are equal if and only if their respective coefficients are equal (since a polynomial is defined as a sequence of coefficients). Thus, our equation amounts to the following system of 4 linear equations in a, b, c, d:

$$a + b + c + d = 0;$$

 $-3b - 6c - 9d = 0;$
 $3b + 12c + 27d = 0;$
 $-b - 8c - 81d = 1.$

Now, Gaussian elimination shows that its solution is $a = \frac{1}{6}$, $b = \frac{-1}{2}$, $c = \frac{1}{2}$ and $b = \frac{-1}{2}$.

 $d = \frac{-1}{6}$. This leads exactly to (7).]

[*Another remark:* If you know the notion of factorials (*n*!), then you can generalize (7): For any nonnegative integer *n*, we have

$$\sum_{k=0}^{n} \frac{(-1)^{k}}{k! \cdot (n-k)!} (x-k)^{n} = 1$$

Or, rewritten without the summation sign:

$$\frac{(-1)^0}{0! \cdot (n-0)!} (x-0)^n + \frac{(-1)^1}{1! \cdot (n-1)!} (x-1)^n + \frac{(-1)^2}{2! \cdot (n-2)!} (x-2)^n + \dots + \frac{(-1)^n}{n! \cdot (n-n)!} (x-n)^n = 1$$

Proving this for all *n* is a different matter, however; this is often done in courses on enumerative combinatorics³.]

Similarly, we can define linear combinations and linear independence of matrices: Just replace "vectors in \mathbb{R}^{n} " by " $n \times m$ -matrices" in Definition 0.1 and Definition 0.2⁴. For example, the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ is a linear combination of the matrices

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \text{ since}$$
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + (-1) \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Exercise 6. Consider the four matrices

$$N = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \qquad E = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \qquad S = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \qquad W = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}.$$

(The letter *E* stands for "east", not for the identity matrix, which some also call *E*.)

(a) Is the identity matrix I_2 a linear combination of N, E, S, W?

(b) Are *N*, *E*, *S*, *W* linearly dependent?

Solution to Exercise 6. (a) No.

Proof. Each of the four matrices N, E, S, W has the property that the sum of the two diagonal entries equals the sum of the two off-diagonal entries⁵. Thus, every linear combination of N, E, S, W has this property as well⁶. But I_2 does not have this property.

(b) Yes. Indeed, $N + S = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = E + W$; in other words, 1N + (-1)E + S + (-1)W = 0. This is a partrivial relation between N = S.

 $1S + (-1)W = 0_{2 \times 2}$. This is a nontrivial relation between *N*, *E*, *S*, *W*.

[*Remark:* These answers can be found without lucky inspiration: For part (a), you want to write I_2 in the form

$$I_2 = aN + bE + cS + dW$$
 for some $a, b, c, d \in \mathbb{R}$;

³Combinatorialists usually restate this equality in the form

$$(-1)^{0} \binom{n}{0} (x-0)^{n} + (-1)^{1} \binom{n}{1} (x-1)^{n} + \dots + (-1)^{n} \binom{n}{n} (x-n)^{n} = n!.$$

It is not hard to derive it from the result in https://math.stackexchange.com/a/1943039/. ⁴Of course, we then have to interpret 0 as the zero matrix $0_{n \times m}$ rather than the zero vector $0_{n \times 1}$. ⁵For example, for *E*, this holds because 0 + 1 = 1 + 0.

⁶Make sure you understand why!

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 = aN + bE + cS + dW = a \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + d \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a \cdot 1 + b \cdot 0 + c \cdot 0 + d \cdot 1 & a \cdot 1 + b \cdot 1 + c \cdot 0 + d \cdot 0 \\ a \cdot 0 + b \cdot 0 + c \cdot 1 + d \cdot 1 & a \cdot 0 + b \cdot 1 + c \cdot 1 + d \cdot 0 \end{pmatrix} = \begin{pmatrix} a + d & a + b \\ c + d & b + c \end{pmatrix};$$

this would mean that the equations

1 = a + d, 0 = a + b, 0 = c + d, 1 = b + c

hold (because two matrices are equal if and only if their respective entries are equal); but this is a system of linear equations that has no solutions. For part (b), you are similarly trying to solve the equation $0_{2\times 2} = aN + bE + cS + dW$, but this time you are looking for a nontrivial solution.]

References

- [lina] Darij Grinberg, Notes on linear algebra, version of 13 December 2016. https://github.com/darijgr/lina
- [Strickland] Neil Strickland, MAS201 Linear Mathematics for Applications, lecture notes, 28 September 2013. http://neil-strickland.staff.shef.ac.uk/courses/MAS201/