Math 201-003 Fall 2019 (Darij Grinberg): homework set 2 with solutions

Exercise 1. Let $n \in \mathbb{N}$. For any n numbers $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}$, we let $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ denote the $n \times n$-matrix whose diagonal entries are $d_{1}, d_{2}, \ldots, d_{n}$ (in this order from top to bottom), while its off-diagonal entries are all 0 . In other words,

$$
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right)
$$

This is called the diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$.
(a) Given any $d_{1}, d_{2}, d_{3} \in \mathbb{R}$ and any 3×3-matrix $A=\left(\begin{array}{ccc}a & b & c \\ a^{\prime} & b^{\prime} & c^{\prime} \\ a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}\end{array}\right)$, compute diag $\left(d_{1}, d_{2}, d_{3}\right) \cdot A$.
(b) State a rule for computing $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \cdot A$, where $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}$ and where A is any $n \times m$-matrix (with m being any nonnegative integer).
(c) State a rule for computing $A \cdot \operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}$ and where A is any $m \times n$-matrix (with m being any nonnegative integer).
[You don't have to prove these rules.]
Solution to Exercise 1 (a) We have

$$
\left.\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)=\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right) \quad \text { (by the definition of } \operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)\right)
$$

and

$$
A=\left(\begin{array}{ccc}
a & b & c \\
a^{\prime} & b^{\prime} & c^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}
\end{array}\right)
$$

Multiplying these equalities, we obtain

$$
\begin{aligned}
\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right) \cdot A & =\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right)\left(\begin{array}{ccc}
a & b & c \\
a^{\prime} & b^{\prime} & c^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
d_{1} a+0 a^{\prime}+0 a^{\prime \prime} & d_{1} b+0 b^{\prime}+0 b^{\prime \prime} & d_{1} c+0 c^{\prime}+0 c^{\prime \prime} \\
0 a+d_{2} a^{\prime}+0 a^{\prime \prime} & 0 b+d_{2} b^{\prime}+0 b^{\prime \prime} & 0 c+d_{2} c^{\prime}+0 c^{\prime \prime} \\
0 a+0 a^{\prime}+d_{3} a^{\prime \prime} & 0 b+0 b^{\prime}+d_{3} b^{\prime \prime} & 0 c+0 c^{\prime}+d_{3} c^{\prime \prime}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
d_{1} a & d_{1} b & d_{1} c \\
d_{2} a^{\prime} & d_{2} b^{\prime} & d_{2} c^{\prime} \\
d_{3} a^{\prime \prime} & d_{3} b^{\prime \prime} & d_{3} c^{\prime \prime}
\end{array}\right) .
\end{aligned}
$$

(b) Let $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}$. Let $m \in \mathbb{N}$. Let A be any $n \times m$-matrix. Then, the matrix $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \cdot A$ is obtained from A by scaling the i-th row by d_{i} for each $i \in\{1,2, \ldots, n\}$. In other words,

$$
\begin{equation*}
\left(\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \cdot A\right)_{i, j}=d_{i} A_{i, j} \tag{1}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2, \ldots, m\}$.
[Proof of ($\mathbb{1}$): Set $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Thus,

$$
\begin{equation*}
D_{i, k}=0 \quad \text { for any two distinct elements } i \text { and } k \text { of }\{1,2, \ldots, n\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{i, i}=d_{i} \quad \text { for each } i \in\{1,2, \ldots, n\} . \tag{3}
\end{equation*}
$$

But the definition of the product of two matrices yields

$$
\begin{equation*}
D A=\left(D_{i, 1} A_{1, j}+D_{i, 2} A_{2, j}+\cdots+D_{i, n} A_{n, j}\right)_{1 \leq i \leq n, 1 \leq j \leq m} \tag{4}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
(D A)_{i, j}=D_{i, 1} A_{1, j}+D_{i, 2} A_{2, j}+\cdots+D_{i, n} A_{n, j} \tag{5}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2, \ldots, m\}$.
Fix $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2, \ldots, m\}$. The sum $D_{i, 1} A_{1, j}+D_{i, 2} A_{2, j}+\cdots+D_{i, n} A_{n, j}$ has n addends. One of these n addends (to be specific: the i-th one) is

$$
\underbrace{D_{i, i}}_{\substack{=d_{+} \\ \text {(by } \\ D_{i} \text {) }}} A_{i, j}=d_{i} A_{i, j},
$$

whereas all the other addends are 0 (because each of them has the form $D_{i, k} A_{k, j}$ for some $k \in\{1,2, \ldots, n\}$ distinct from i, and thus rewrites as $\underbrace{D_{i, k}}_{=0} A_{k, j}=0)$. Hence, this sum equals
$d_{i} A_{i, j}$. In other words,

$$
D_{i, 1} A_{1, j}+D_{i, 2} A_{2, j}+\cdots+D_{i, n} A_{n, j}=d_{i} A_{i, j}
$$

Hence, (5) rewrites as $(D A)_{i, j}=d_{i} A_{i, j}$. In view of $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, this further rewrites as

$$
\left(\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \cdot A\right)_{i, j}=d_{i} A_{i, j} .
$$

This proves (11.]
(c) Let $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}$. Let $m \in \mathbb{N}$. Let A be any $m \times n$-matrix. Then, the matrix $A \cdot \operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is obtained from A by scaling the j-th column by d_{j} for each $j \in\{1,2, \ldots, n\}$. In other words,

$$
\left(A \cdot \operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)\right)_{i, j}=d_{j} A_{i, j}
$$

for each $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, n\}$.
[The proof of this is similar to the proof of (1); we omit it.]
We recall the definition of linear combinations ([Strickland, Definition 7.1]):

Definition 0.1. Let $v_{1}, v_{2}, \ldots, v_{k}$ be some vectors in \mathbb{R}^{n}. Then, a linear combination of $v_{1}, v_{2}, \ldots, v_{k}$ means a vector that can be written in the form

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k} v_{k} \quad \text { for some } \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}
$$

The numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ in this definition are called coefficients of this linear combination; but they are not necessarily unique (in fact, they are unique if $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent; we shall see this later in class). For example, if $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{2}{2}$, then the vector $\binom{3}{3}$ is a linear combination of v_{1} and v_{2}, and can be written as $\lambda_{1} v_{1}+\lambda_{2} v_{2}$ in many ways:

$$
\binom{3}{3}=1 v_{1}+1 v_{2}=3 v_{1}+0 v_{2}=0 v_{1}+\frac{3}{2} v_{2}=2 v_{1}+\frac{1}{2} v_{2}=\cdots .
$$

We recall the definition of linear independence ([Strickland, §8]):
Definition 0.2. Let $v_{1}, v_{2}, \ldots, v_{k}$ be some vectors in \mathbb{R}^{n}.
(a) A relation (more precisely: linear relation) between $v_{1}, v_{2}, \ldots, v_{k}$ means a choice of reals $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ satisfying

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k} v_{k}=0
$$

(Here, 0 denotes the zero vector $0_{n \times 1} \in \mathbb{R}^{n}$.)
(b) The trivial relation between $v_{1}, v_{2}, \ldots, v_{k}$ is the relation obtained by choosing $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0$. Clearly, $v_{1}, v_{2}, \ldots, v_{k}$ always have this trivial relation.
(c) We say that the vectors $v_{1}, v_{2}, \ldots, v_{k}$ (or, more precisely, the list $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of these vectors) are independent (more precisely: linearly independent) if the only relation between $v_{1}, v_{2}, \ldots, v_{k}$ is the trivial relation. Otherwise, we say that these vectors are dependent.

For example, if we set

$$
v_{1}=\binom{1}{1}, \quad v_{2}=\binom{1}{2} \quad \text { and } \quad v_{3}=\binom{1}{3}
$$

then the vectors v_{1}, v_{2}, v_{3} are linearly dependent, since they have the nontrivial relation $1 v_{1}+(-2) v_{2}+1 v_{3}=0$.

Exercise 2. Let

$$
v_{1}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \quad \text { and } \quad v_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \quad \text { and } \quad v_{3}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

(a) Are v_{1}, v_{2}, v_{3} dependent? (If yes, show a nontrivial relation between them.)
(b) Is $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ a linear combination of v_{1}, v_{2}, v_{3} ? (If yes, provide a choice of coefficients $\lambda_{1}, \lambda_{2}, \lambda_{3}$ that demonstrate it.)
(c) Is $\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)$ a linear combination of v_{1}, v_{2}, v_{3} ? (If yes, provide a choice of coefficients $\lambda_{1}, \lambda_{2}, \lambda_{3}$ that demonstrate it.)

Solution to Exercise 2 (a) The vectors v_{1}, v_{2}, v_{3} are dependent.
Proof. It is easy to see that $1 v_{1}+1 v_{2}+1 v_{3}=0$, which is a nontrivial relation.
(b) No.

Proof. Each of the three vectors v_{1}, v_{2}, v_{3} has the property that the sum of its coordinates is 0 . Thus, every combination of v_{1}, v_{2}, v_{3} has this property as well ${ }^{1 /}$. But the vector $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ does not have this property. Thus, the latter vector is not a combination of v_{1}, v_{2}, v_{3}.
(c) Yes.

Proof. We have $\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)=v_{3}+3 v_{1}=3 v_{1}+0 v_{2}+1 v_{3}$.
[Remark: The above proofs rely on pattern-spotting and educated guesses, which require a bit of ingenuity or experience to find. But you can just as well solve the exercise by following algorithms. Indeed, [Strickland, Method 8.8] is a surefire way to answer questions like part (a) of this exercise, whereas [Strickland, Method 7.6] can be used to solve parts (b) and (c).]

Clearly, rearranging a list of vectors does not change the set of its linear combinations: In fact, the rearranged vectors will have the same linear combinations as the original vectors; only the coefficients will change their order. For example, the linear combinations of v_{1}, v_{2}, v_{3} are the same as the linear combinations of v_{3}, v_{1}, v_{2}, since $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{3} v_{3}=\lambda_{3} v_{3}+\lambda_{1} v_{1}+\lambda_{2} v_{2}$.

Rearranging a list of vectors also does not change its linear dependence or independence: In fact, any linear relation between the rearranged vectors is a rearranged linear relation between the original vectors, and vice versa. Thus, v_{1}, v_{2}, v_{3} are dependent if and only if v_{3}, v_{1}, v_{2} are dependent.

What happens to lists of vectors when we duplicate a vector? The following exercise answers this question (at least when it's the last vector that is duplicated):

Exercise 3. Let $v_{1}, v_{2}, \ldots, v_{k}$ be some vectors in \mathbb{R}^{n}. Assume that $v_{k-1}=v_{k}$. Justify the following (i.e., sketch the proofs):

[^0](a) The vectors $v_{1}, v_{2}, \ldots, v_{k}$ are linearly dependent.
(b) The linear combinations of $v_{1}, v_{2}, \ldots, v_{k}$ are the same vectors as the linear combinations of $v_{1}, v_{2}, \ldots, v_{k-1}$.

Solution to Exercise 3 (a) We have

$$
0 v_{1}+0 v_{2}+\cdots+0 v_{k-2}+1 v_{k-1}+(-1) v_{k}=v_{k-1}-v_{k}=0
$$

(since $v_{k-1}=v_{k}$). Thus, the relation

$$
0 v_{1}+0 v_{2}+\cdots+0 v_{k-2}+1 v_{k-1}+(-1) v_{k}=0
$$

between $v_{1}, v_{2}, \ldots, v_{k}$ holds. This relation is clearly nontrivial, since $1 \neq 0$. Hence, the vectors $v_{1}, v_{2}, \ldots, v_{k}$ are linearly dependent. This solves part (a) of the exercise.
(b) We need to show the following two claims:

Claim 1: Every linear combination of $v_{1}, v_{2}, \ldots, v_{k}$ is a linear combination of $v_{1}, v_{2}, \ldots, v_{k-1}$.

Claim 2: Every linear combination of $v_{1}, v_{2}, \ldots, v_{k-1}$ is a linear combination of $v_{1}, v_{2}, \ldots, v_{k}$.
[Proof of Claim 1: Let w be a linear combination of $v_{1}, v_{2}, \ldots, v_{k}$. We must show that w is a linear combination of $v_{1}, v_{2}, \ldots, v_{k-1}$.

We know that w is a linear combination of $v_{1}, v_{2}, \ldots, v_{k}$. In other words, there exist numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ such that $w=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k} v_{k}$. Thus,

$$
\begin{aligned}
w & =\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k} v_{k} \\
& =\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k-2} v_{k-2}+\lambda_{k-1} v_{k-1}+\lambda_{k} \underbrace{v_{k}}_{=v_{k-1}} \\
& =\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k-2} v_{k-2}+\underbrace{\lambda_{k-1} v_{k-1}+\lambda_{k} v_{k-1}}_{=\left(\lambda_{k-1}+\lambda_{k}\right) v_{k-1}} \\
& =\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k-2} v_{k-2}+\left(\lambda_{k-1}+\lambda_{k}\right) v_{k-1} .
\end{aligned}
$$

This shows that w is a linear combination of $v_{1}, v_{2}, \ldots, v_{k-1}$. This proves Claim 1.]
[Proof of Claim 2: Let w be a linear combination of $v_{1}, v_{2}, \ldots, v_{k-1}$. We must show that w is a linear combination of $v_{1}, v_{2}, \ldots, v_{k}$.

We know that w is a linear combination of $v_{1}, v_{2}, \ldots, v_{k-1}$. In other words, there exist numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k-1}$ such that $w=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k-1} v_{k-1}$. Thus,

$$
\begin{aligned}
w & =\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k-1} v_{k-1} \\
& =\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k-1} v_{k-1}+0 \\
& =\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k-1} v_{k-1}+0 v_{k} .
\end{aligned}
$$

This shows that w is a linear combination of $v_{1}, v_{2}, \ldots, v_{k}$. This proves Claim 2.]
[Remark: In our proof of Claim 2, we did not use the assumption that $v_{k-1}=v_{k}$. More generally, it is always true that a linear combination of a subsequence of a given list of vectors must always be a linear combination of the whole sequence. It is the other direction that is usually not valid.]

Exercise 4. Let $n \in \mathbb{N}$. For each $k \in\{1,2, \ldots, n\}$, we let e_{k} denote the column vector of size n whose k-th entry is 1 and whose all other entries are 0 .
(For example: If $n=3$, then $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. .
Explain why each vector in \mathbb{R}^{n} is a linear combination of $e_{1}, e_{2}, \ldots, e_{n}$.
Solution to Exercise 4 Let v be any vector in \mathbb{R}^{n}. We must prove that v is a linear combination of $e_{1}, e_{2}, \ldots, e_{n}$.

Write v in the form $v=\left(\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n}\end{array}\right)$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ are its coordinates. For each $i \in\{1,2, \ldots, n\}$, we have

$$
e_{i}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \quad \text { (with the } 1 \text { being in the } i \text {-th position) }
$$

and thus

$$
\lambda_{i} e_{i}=\left(\begin{array}{c}
\lambda_{i} 0 \\
\lambda_{i} 0 \\
\vdots \\
\lambda_{i} 0 \\
\lambda_{i} 1 \\
\lambda_{i} 0 \\
\vdots \\
\lambda_{i} 0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\lambda_{i} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

(where the entry λ_{i} is in the i-th position). Hence,

$$
\begin{aligned}
& \lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{n} e_{n} \\
& =\left(\begin{array}{c}
\lambda_{1} \\
0 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
\lambda_{2} \\
\vdots \\
0
\end{array}\right)+\cdots+\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
\lambda_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
\lambda_{1}+0+0+\cdots+0 \\
0+\lambda_{2}+0+\cdots+0 \\
\vdots \\
0+0+0+\cdots+\lambda_{n}
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{n}
\end{array}\right)=v .
\end{aligned}
$$

In other words, $v=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{n} e_{n}$. Hence, v is a linear combination of $e_{1}, e_{2}, \ldots, e_{n}$.

Definition 0.1 and Definition 0.2 make sense not only for vectors in \mathbb{R}^{n}. For example, we can replace "vectors in $\mathbb{R}^{n "}$ by "polynomials" in both definitions, and obtain definitions for linear combinations and linear independence of polynomials (in one variable x, with real coefficients) ${ }_{2}^{2}$ Thus:

- The polynomial $x^{2}+2 x-1$ is a linear combination of the polynomials x^{2} and $(x-1)^{2}$, since

$$
x^{2}+2 x-1=2 \cdot x^{2}+(-1) \cdot(x-1)^{2} .
$$

- The polynomials $x^{2},(x-1)^{2},(x-2)^{2}$ and $(x-3)^{2}$ are linearly dependent, since there exists a nontrivial linear relation between them: If we take $\lambda_{1}=1$, $\lambda_{2}=-3, \lambda_{3}=3$ and $\lambda_{4}=-1$, then

$$
\begin{aligned}
& \lambda_{1} x^{2}+\lambda_{2}(x-1)^{2}+\lambda_{3}(x-2)^{2}+\lambda_{4}(x-3)^{2} \\
& =1 \cdot x^{2}+(-3) \cdot(x-1)^{2}+3 \cdot(x-2)^{2}+(-1) \cdot(x-3)^{2}=0
\end{aligned}
$$

- The polynomials $x^{2},(x-1)^{2}$ and $(x-2)^{2}$ are linearly independent, because the only relation

$$
\begin{equation*}
\lambda_{1} x^{2}+\lambda_{2}(x-1)^{2}+\lambda_{3}(x-2)^{2}=0 \tag{6}
\end{equation*}
$$

between them is the trivial one. How to be sure of this? One way is to assume that (6) holds, and try to derive $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$ from it. This can be done, for example, by comparing coefficients: Straightforward expansion yields

$$
\begin{aligned}
& \lambda_{1} x^{2}+\lambda_{2}(x-1)^{2}+\lambda_{3}(x-2)^{2} \\
& =\lambda_{1} x^{2}+\lambda_{2}\left(x^{2}-2 x+1\right)+\lambda_{3}\left(x^{2}-4 x+4\right) \\
& =\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) x^{2}+\left(-2 \lambda_{2}-4 \lambda_{3}\right) x+\left(\lambda_{2}+4 \lambda_{3}\right)
\end{aligned}
$$

[^1]and thus (6) rewrites as
$$
\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) x^{2}+\left(-2 \lambda_{2}-4 \lambda_{3}\right) x+\left(\lambda_{2}+4 \lambda_{3}\right)=0 .
$$

Since equal polynomials have equal coefficients, this is equivalent to the following system of linear equations:

$$
\left\{\begin{array}{c}
\lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
-2 \lambda_{2}-4 \lambda_{3}=0 \\
\lambda_{2}+4 \lambda_{3}=0
\end{array}\right.
$$

whose only solution is $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(0,0,0)$ (you know how to check this) - and thus the relation must be trivial. So the polynomials $x^{2},(x-1)^{2}$ and $(x-2)^{2}$ are linearly independent.

Exercise 5. (a) Are the four polynomials $x^{3},(x-1)^{3},(x-2)^{3},(x-3)^{3}$ linearly independent?
(b) Is 1 a linear combination of these four polynomials?

Solution to Exercise 5 (a) Yes.
Proof. Let $a x^{3}+b(x-1)^{3}+c(x-2)^{3}+d(x-3)^{3}=0$ be any relation between these four polynomials. We must show that this relation is trivial, i.e., that $a=b=$ $c=d=0$.

We have

$$
\begin{aligned}
& a x^{3}+b \underbrace{(x-1)^{3}}_{=x^{3}-3 x^{2}+3 x-1}+c \underbrace{(x-2)^{3}}_{=x^{3}-6 x^{2}+12 x-8}+d \underbrace{(x-3)^{3}}_{=x^{3}-9 x^{2}+27 x-27} \\
& =a x^{3}+b\left(x^{3}-3 x^{2}+3 x-1\right)+c\left(x^{3}-6 x^{2}+12 x-8\right)+d\left(x^{3}-9 x^{2}+27 x-27\right) \\
& =a x^{3}+b x^{3}-3 b x^{2}+3 b x-b+c x^{3}-6 c x^{2}+12 c x-8 c+d x^{3}-9 d x^{2}+27 d x-27 d \\
& =(a+b+c+d) x^{3}+(-3 b-6 c-9 d) x^{2}+(3 b+12 c+27 d) x+(-b-8 c-27 d) .
\end{aligned}
$$

Thus, our relation $a x^{3}+b(x-1)^{3}+c(x-2)^{3}+d(x-3)^{3}=0$ rewrites as the following equality:
$(a+b+c+d) x^{3}+(-3 b-6 c-9 d) x^{2}+(3 b+12 c+27 d) x+(-b-8 c-27 d)=0$.
But a polynomial can only be 0 if all its coefficients are 0 (since a polynomial is defined as a sequence of coefficients). Thus, the equality that we have just showed entails that

$$
\begin{aligned}
a+b+c+d & =0 ; \\
-3 b-6 c-9 d & =0 \\
3 b+12 c+27 d & =0 \\
-b-8 c-27 d & =0
\end{aligned}
$$

This is a system of 4 linear equations in a, b, c, d. Solving it (e.g., by Gaussian elimination), we find that the only solution is $a=b=c=d=0$. Thus, we conclude that $a=b=c=d=0$, which is exactly what we needed to show.
[Remark: The claim generalizes: For any $n \in \mathbb{N}$ and any $n+1$ distinct reals $a_{0}, a_{1}, \ldots, a_{n}$, the $n+1$ polynomials $\left(x-a_{0}\right)^{n},\left(x-a_{1}\right)^{n}, \ldots,\left(x-a_{n}\right)^{n}$ are linearly independent. To prove this, we would need some more advanced tools (such as the Vandermonde determinant), since the system of linear equations would get larger and larger as n grows.]
(b) Yes.

Proof. We have

$$
\begin{equation*}
\frac{1}{6} x^{3}+\frac{-1}{2}(x-1)^{3}+\frac{1}{2}(x-2)^{3}+\frac{-1}{6}(x-3)^{3}=1 . \tag{7}
\end{equation*}
$$

[Remark: How did we find this relation? Well, we need to find four numbers a, b, c, d such that

$$
a x^{3}+b(x-1)^{3}+c(x-2)^{3}+d(x-3)^{3}=1
$$

We can expand the left hand side of this equation (as we already did in the proof of part (a)), thus rewriting the equation as
$(a+b+c+d) x^{3}+(-3 b-6 c-9 d) x^{2}+(3 b+12 c+27 d) x+(-b-8 c-81 d)=1$.
But two polynomials are equal if and only if their respective coefficients are equal (since a polynomial is defined as a sequence of coefficients). Thus, our equation amounts to the following system of 4 linear equations in a, b, c, d :

$$
\begin{aligned}
a+b+c+d & =0 ; \\
-3 b-6 c-9 d & =0 \\
3 b+12 c+27 d & =0 \\
-b-8 c-81 d & =1
\end{aligned}
$$

Now, Gaussian elimination shows that its solution is $a=\frac{1}{6}, b=\frac{-1}{2}, c=\frac{1}{2}$ and $d=\frac{-1}{6}$. This leads exactly to (7).]
[Another remark: If you know the notion of factorials ($n!$), then you can generalize (7): For any nonnegative integer n, we have

$$
\sum_{k=0}^{n} \frac{(-1)^{k}}{k!\cdot(n-k)!}(x-k)^{n}=1 .
$$

Or, rewritten without the summation sign:
$\frac{(-1)^{0}}{0!\cdot(n-0)!}(x-0)^{n}+\frac{(-1)^{1}}{1!\cdot(n-1)!}(x-1)^{n}+\frac{(-1)^{2}}{2!\cdot(n-2)!}(x-2)^{n}+\cdots+\frac{(-1)^{n}}{n!\cdot(n-n)!}(x-n)^{n}=1$.

Proving this for all n is a different matter, however; this is often done in courses on enumerative combinatoric 3^{3}]]

Similarly, we can define linear combinations and linear independence of matrices: Just replace "vectors in $\mathbb{R}^{n "}$ by " $n \times m$-matrices" in Definition 0.1 and Definition 0.2 . For example, the matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ is a linear combination of the matrices $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$, since

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=1 \cdot\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+(-1) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+1 \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) .
$$

Exercise 6. Consider the four matrices

$$
N=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad E=\left(\begin{array}{cc}
0 & 1 \\
0 & 1
\end{array}\right), \quad S=\left(\begin{array}{cc}
0 & 0 \\
1 & 1
\end{array}\right), \quad W=\left(\begin{array}{cc}
1 & 0 \\
1 & 0
\end{array}\right)
$$

(The letter E stands for "east", not for the identity matrix, which some also call E.)
(a) Is the identity matrix I_{2} a linear combination of N, E, S, W ?
(b) Are N, E, S, W linearly dependent?

Solution to Exercise 6 (a) No.

Proof. Each of the four matrices N, E, S, W has the property that the sum of the two diagonal entries equals the sum of the two off-diagonal entries ${ }^{5}$. Thus, every linear combination of N, E, S, W has this property as well ${ }^{6}$. But I_{2} does not have this property.
(b) Yes. Indeed, $N+S=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=E+W$; in other words, $1 N+(-1) E+$ $1 S+(-1) W=0_{2 \times 2}$. This is a nontrivial relation between N, E, S, W.
[Remark: These answers can be found without lucky inspiration: For part (a), you want to write I_{2} in the form

$$
I_{2}=a N+b E+c S+d W \quad \text { for some } a, b, c, d \in \mathbb{R} ;
$$

[^2]this would entail
\[

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & =I_{2}=a N+b E+c S+d W \\
& =a\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)+d\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
a \cdot 1+b \cdot 0+c \cdot 0+d \cdot 1 & a \cdot 1+b \cdot 1+c \cdot 0+d \cdot 0 \\
a \cdot 0+b \cdot 0+c \cdot 1+d \cdot 1 & a \cdot 0+b \cdot 1+c \cdot 1+d \cdot 0
\end{array}\right)=\left(\begin{array}{ll}
a+d & a+b \\
c+d & b+c
\end{array}\right) ;
\end{aligned}
$$
\]

this would mean that the equations

$$
1=a+d, \quad 0=a+b, \quad 0=c+d, \quad 1=b+c
$$

hold (because two matrices are equal if and only if their respective entries are equal); but this is a system of linear equations that has no solutions. For part (b), you are similarly trying to solve the equation $0_{2 \times 2}=a N+b E+c S+d W$, but this time you are looking for a nontrivial solution.]

References

[lina] Darij Grinberg, Notes on linear algebra, version of 13 December 2016. https://github.com/darijgr/lina
[Strickland] Neil Strickland, MAS201 Linear Mathematics for Applications, lecture notes, 28 September 2013.
http://neil-strickland.staff.shef.ac.uk/courses/MAS201/

[^0]: ${ }^{1}$ Make sure you understand why! (Also make sure you understand why a property like "one of the coordinates is $0^{\prime \prime}$ would not be transferred from v_{1}, v_{2}, v_{3} to all their combinations.

[^1]: ${ }^{2}$ Of course, we then have to interpret 0 as the zero polynomial rather than the zero vector $0_{n \times 1}$.

[^2]: ${ }^{3}$ Combinatorialists usually restate this equality in the form

 $$
 (-1)^{0}\binom{n}{0}(x-0)^{n}+(-1)^{1}\binom{n}{1}(x-1)^{n}+\cdots+(-1)^{n}\binom{n}{n}(x-n)^{n}=n!.
 $$

 It is not hard to derive it from the result in https://math.stackexchange.com/a/1943039/.
 ${ }^{4}$ Of course, we then have to interpret 0 as the zero matrix $0_{n \times m}$ rather than the zero vector $0_{n \times 1}$.
 ${ }^{5}$ For example, for E, this holds because $0+1=1+0$.
 ${ }^{6}$ Make sure you understand why!

