Math 201-003 Fall 2019 (Darij Grinberg): homework set 2

due date: Wednesday 2019-10-16 at the beginning of class, or before that by email or Blackboard

Please solve 5 of the 6 exercises!

Exercise 1. Let $n \in \mathbb{N}$. For any n numbers $d_1, d_2, \ldots, d_n \in \mathbb{R}$, we let diag (d_1, d_2, \ldots, d_n) denote the $n \times n$ -matrix whose diagonal entries are d_1, d_2, \ldots, d_n (in this order from top to bottom), while its off-diagonal entries are all 0. In other words,

diag
$$(d_1, d_2, \dots, d_n) = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix}$$
.

This is called the *diagonal matrix with diagonal entries* d_1, d_2, \ldots, d_n .

- (a) Given any $d_1, d_2, d_3 \in \mathbb{R}$ and any 3×3 -matrix $A = \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix}$, com-
- pute diag $(d_1, d_2, d_3) \cdot A$. **(b)** State a rule for computing diag $(d_1, d_2, \dots, d_n) \cdot A$, where $d_1, d_2, \dots, d_n \in \mathbb{R}$ and where A is any $n \times m$ -matrix (with m being any nonnegative integer).
- (c) State a rule for computing $A \cdot \text{diag}(d_1, d_2, \dots, d_n)$, where $d_1, d_2, \dots, d_n \in \mathbb{R}$ and where A is any $m \times n$ -matrix (with m being any nonnegative integer).

[You don't have to prove these rules.]

We recall the definition of linear combinations ([Strickland, Definition 7.1]):

Definition 0.1. Let v_1, v_2, \ldots, v_k be some vectors in \mathbb{R}^n . Then, a *linear combination* of v_1, v_2, \ldots, v_k means a vector that can be written in the form

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k$$
 for some $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$.

The numbers $\lambda_1, \lambda_2, \ldots, \lambda_k$ in this definition are called *coefficients* of this linear combination; but they are not necessarily unique (in fact, they are unique if v_1, v_2, \ldots, v_k are linearly independent; we shall see this later in class). For example, if $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, then the vector $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ is a linear combination of v_1 and v_2 , and can be written as $\lambda_1 v_1 + \lambda_2 v_2$ in many ways:

$$\begin{pmatrix} 3 \\ 3 \end{pmatrix} = 1v_1 + 1v_2 = 3v_1 + 0v_2 = 0v_1 + \frac{3}{2}v_2 = 2v_1 + \frac{1}{2}v_2 = \cdots$$

We recall the definition of linear independence ([Strickland, §8]):

Definition 0.2. Let v_1, v_2, \ldots, v_k be some vectors in \mathbb{R}^n .

(a) A relation (more precisely: linear relation) between v_1, v_2, \ldots, v_k means a choice of reals $\lambda_1, \lambda_2, \dots, \lambda_k$ satisfying

$$\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_k v_k = 0.$$

(Here, 0 denotes the zero vector $0_{n\times 1} \in \mathbb{R}^n$.)

- **(b)** The *trivial relation* between v_1, v_2, \ldots, v_k is the relation obtained by choosing $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$. Clearly, v_1, v_2, \ldots, v_k always have this trivial relation.
- (c) We say that the vectors v_1, v_2, \ldots, v_k (or, more precisely, the list (v_1, v_2, \dots, v_k) of these vectors) are independent (more precisely: linearly indepen*dent*) if the only relation between v_1, v_2, \ldots, v_k is the trivial relation. Otherwise, we say that these vectors are *dependent*.

For example, if we set

$$v_1=\left(egin{array}{c}1\\1\end{array}
ight)$$
 , $v_2=\left(egin{array}{c}1\\2\end{array}
ight)$ and $v_3=\left(egin{array}{c}1\\3\end{array}
ight)$,

then the vectors v_1, v_2, v_3 are linearly dependent, since they have the nontrivial relation $1v_1 + (-2)v_2 + 1v_3 = 0$.

Exercise 2. Let

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.

- (a) Are v_1, v_2, v_3 dependent? (If yes, show a nontrivial relation between them.)
- **(b)** Is $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ a linear combination of v_1, v_2, v_3 ? (If yes, provide a choice of coefficients $\lambda_1, \lambda_2, \lambda_3$ that demonstrate it.) **(c)** Is $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ a linear combination of v_1, v_2, v_3 ? (If yes, provide a choice of

coefficients $\lambda_1, \lambda_2, \lambda_3$ that demonstrate it.)

Clearly, rearranging a list of vectors does not change the set of its linear combinations: In fact, the rearranged vectors will have the same linear combinations as the original vectors; only the coefficients will change their order. For example, the linear combinations of v_1 , v_2 , v_3 are the same as the linear combinations of v_3 , v_1 , v_2 , since $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = \lambda_3 v_3 + \lambda_1 v_1 + \lambda_2 v_2$.

Rearranging a list of vectors also does not change its linear dependence or independence: In fact, any linear relation between the rearranged vectors is a rearranged linear relation between the original vectors, and vice versa. Thus, v_1, v_2, v_3 are dependent if and only if v_3 , v_1 , v_2 are dependent.

What happens to lists of vectors when we duplicate a vector? The following exercise answers this question (at least when it's the last vector that is duplicated):

Exercise 3. Let v_1, v_2, \ldots, v_k be some vectors in \mathbb{R}^n . Assume that $v_{k-1} = v_k$. Justify the following (i.e., sketch the proofs):

- (a) The vectors v_1, v_2, \ldots, v_k are linearly dependent.
- **(b)** The linear combinations of v_1, v_2, \ldots, v_k are the same vectors as the linear combinations of $v_1, v_2, \ldots, v_{k-1}$.

Exercise 4. Let $n \in \mathbb{N}$. For each $k \in \{1, 2, ..., n\}$, we let e_k denote the column vector of size n whose k-th entry is 1 and whose all other entries are 0.

(For example: If
$$n = 3$$
, then $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.)

Explain why each vector in \mathbb{R}^n is a linear combination of e_1, e_2, \ldots, e_n .

Definition 0.1 and Definition 0.2 make sense not only for vectors in \mathbb{R}^n . For example, we can replace "vectors in \mathbb{R}^n " by "polynomials" in both definitions, and obtain definitions for linear combinations and linear independence of polynomials (in one variable x, with real coefficients).¹ Thus:

• The polynomial $x^2 + 2x - 1$ is a linear combination of the polynomials x^2 and $(x-1)^2$, since

$$x^{2} + 2x - 1 = 2 \cdot x^{2} + (-1) \cdot (x - 1)^{2}$$
.

• The polynomials x^2 , $(x-1)^2$, $(x-2)^2$ and $(x-3)^2$ are linearly dependent, since there exists a nontrivial linear relation between them: If we take $\lambda_1 = 1$, $\lambda_2 = -3$, $\lambda_3 = 3$ and $\lambda_4 = -1$, then

$$\lambda_1 x^2 + \lambda_2 (x - 1)^2 + \lambda_3 (x - 2)^2 + \lambda_4 (x - 3)^2$$

= 1 \cdot x^2 + (-3) \cdot (x - 1)^2 + 3 \cdot (x - 2)^2 + (-1) \cdot (x - 3)^2 = 0.

• The polynomials x^2 , $(x-1)^2$ and $(x-2)^2$ are linearly independent, because the only relation

$$\lambda_1 x^2 + \lambda_2 (x - 1)^2 + \lambda_3 (x - 2)^2 = 0 \tag{1}$$

between them is the trivial one. How to be sure of this? One way is to assume that (1) holds, and try to derive $\lambda_1 = \lambda_2 = \lambda_3 = 0$ from it. This can be done, for example, by comparing coefficients: Straightforward expansion yields

$$\begin{split} &\lambda_1 x^2 + \lambda_2 (x-1)^2 + \lambda_3 (x-2)^2 \\ &= \lambda_1 x^2 + \lambda_2 \left(x^2 - 2x + 1 \right) + \lambda_3 \left(x^2 - 4x + 4 \right) \\ &= \left(\lambda_1 + \lambda_2 + \lambda_3 \right) x^2 + \left(-2\lambda_2 - 4\lambda_3 \right) x + \left(\lambda_2 + 4\lambda_3 \right), \end{split}$$

¹Of course, we then have to interpret 0 as the zero polynomial rather than the zero vector $0_{n\times 1}$.

and thus (1) rewrites as

$$(\lambda_1 + \lambda_2 + \lambda_3) x^2 + (-2\lambda_2 - 4\lambda_3) x + (\lambda_2 + 4\lambda_3) = 0.$$

Since equal polynomials have equal coefficients, this is equivalent to the following system of linear equations:

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 0 \\ -2\lambda_2 - 4\lambda_3 = 0 \\ \lambda_2 + 4\lambda_3 = 0 \end{cases},$$

whose only solution is $(\lambda_1, \lambda_2, \lambda_3) = (0,0,0)$ (you know how to check this) – and thus the relation must be trivial. So the polynomials x^2 , $(x-1)^2$ and $(x-2)^2$ are linearly independent.

Exercise 5. (a) Are the four polynomials x^3 , $(x-1)^3$, $(x-2)^3$, $(x-3)^3$ linearly independent?

(b) Is 1 a linear combination of these four polynomials?

Similarly, we can define linear combinations and linear independence of matrices: Just replace "vectors in \mathbb{R}^{n} " by " $n \times m$ -matrices" in Definition 0.1 and Definition 0.2². For example, the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ is a linear combination of the matrices

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, since

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) = 1 \cdot \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right) + (-1) \cdot \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) + 1 \cdot \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right).$$

Exercise 6. Consider the four matrices

$$N = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
, $E = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $S = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $W = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.

(The letter E stands for "east", not for the identity matrix, which some also call E.)

- (a) Is the identity matrix I_2 a linear combination of N, E, S, W?
- **(b)** Are *N*, *E*, *S*, *W* linearly dependent?

References

[Strickland] Neil Strickland, MAS201 Linear Mathematics for Applications, lecture notes, 28 September 2013.

http://neil-strickland.staff.shef.ac.uk/courses/MAS201/

²Of course, we then have to interpret 0 as the zero matrix $0_{n\times m}$ rather than the zero vector $0_{n\times 1}$.