Math 201-003 Fall 2019 (Darij Grinberg): homework set 2
 due date: Wednesday 2019-10-16 at the beginning of class, or before that by email or Blackboard
 Please solve 5 of the $\mathbf{6}$ exercises!

Exercise 1. Let $n \in \mathbb{N}$. For any n numbers $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}$, we let $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ denote the $n \times n$-matrix whose diagonal entries are $d_{1}, d_{2}, \ldots, d_{n}$ (in this order from top to bottom), while its off-diagonal entries are all 0 . In other words,

$$
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right)
$$

This is called the diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$.
(a) Given any $d_{1}, d_{2}, d_{3} \in \mathbb{R}$ and any $3 \times$ 3-matrix $A=\left(\begin{array}{ccc}a & b & c \\ a^{\prime} & b^{\prime} & c^{\prime} \\ a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}\end{array}\right)$, compute diag $\left(d_{1}, d_{2}, d_{3}\right) \cdot A$.
(b) State a rule for computing diag $\left(d_{1}, d_{2}, \ldots, d_{n}\right) \cdot A$, where $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}$ and where A is any $n \times m$-matrix (with m being any nonnegative integer).
(c) State a rule for computing $A \cdot \operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}$ and where A is any $m \times n$-matrix (with m being any nonnegative integer).
[You don't have to prove these rules.]
We recall the definition of linear combinations ([Strickland, Definition 7.1]):
Definition 0.1. Let $v_{1}, v_{2}, \ldots, v_{k}$ be some vectors in \mathbb{R}^{n}. Then, a linear combination of $v_{1}, v_{2}, \ldots, v_{k}$ means a vector that can be written in the form

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k} v_{k} \quad \text { for some } \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}
$$

The numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ in this definition are called coefficients of this linear combination; but they are not necessarily unique (in fact, they are unique if $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent; we shall see this later in class). For example, if $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{2}{2}$, then the vector $\binom{3}{3}$ is a linear combination of v_{1} and v_{2}, and can be written as $\lambda_{1} v_{1}+\lambda_{2} v_{2}$ in many ways:

$$
\binom{3}{3}=1 v_{1}+1 v_{2}=3 v_{1}+0 v_{2}=0 v_{1}+\frac{3}{2} v_{2}=2 v_{1}+\frac{1}{2} v_{2}=\cdots .
$$

We recall the definition of linear independence ([Strickland, §8]):

Definition 0.2. Let $v_{1}, v_{2}, \ldots, v_{k}$ be some vectors in \mathbb{R}^{n}.
(a) A relation (more precisely: linear relation) between $v_{1}, v_{2}, \ldots, v_{k}$ means a choice of reals $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ satisfying

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k} v_{k}=0
$$

(Here, 0 denotes the zero vector $0_{n \times 1} \in \mathbb{R}^{n}$.)
(b) The trivial relation between $v_{1}, v_{2}, \ldots, v_{k}$ is the relation obtained by choosing $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0$. Clearly, $v_{1}, v_{2}, \ldots, v_{k}$ always have this trivial relation.
(c) We say that the vectors $v_{1}, v_{2}, \ldots, v_{k}$ (or, more precisely, the list $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of these vectors) are independent (more precisely: linearly independent) if the only relation between $v_{1}, v_{2}, \ldots, v_{k}$ is the trivial relation. Otherwise, we say that these vectors are dependent.

For example, if we set

$$
v_{1}=\binom{1}{1}, \quad v_{2}=\binom{1}{2} \quad \text { and } \quad v_{3}=\binom{1}{3}
$$

then the vectors v_{1}, v_{2}, v_{3} are linearly dependent, since they have the nontrivial relation $1 v_{1}+(-2) v_{2}+1 v_{3}=0$.

Exercise 2. Let

$$
v_{1}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \quad \text { and } \quad v_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \quad \text { and } \quad v_{3}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

(a) Are v_{1}, v_{2}, v_{3} dependent? (If yes, show a nontrivial relation between them.)
(b) Is $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ a linear combination of v_{1}, v_{2}, v_{3} ? (If yes, provide a choice of coefficients $\lambda_{1}, \lambda_{2}, \lambda_{3}$ that demonstrate it.)
(c) Is $\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)$ a linear combination of v_{1}, v_{2}, v_{3} ? (If yes, provide a choice of coefficients $\lambda_{1}, \lambda_{2}, \lambda_{3}$ that demonstrate it.)

Clearly, rearranging a list of vectors does not change the set of its linear combinations: In fact, the rearranged vectors will have the same linear combinations as the original vectors; only the coefficients will change their order. For example, the linear combinations of v_{1}, v_{2}, v_{3} are the same as the linear combinations of v_{3}, v_{1}, v_{2}, since $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{3} v_{3}=\lambda_{3} v_{3}+\lambda_{1} v_{1}+\lambda_{2} v_{2}$.

Rearranging a list of vectors also does not change its linear dependence or independence: In fact, any linear relation between the rearranged vectors is a rearranged linear relation between the original vectors, and vice versa. Thus, v_{1}, v_{2}, v_{3} are dependent if and only if v_{3}, v_{1}, v_{2} are dependent.

What happens to lists of vectors when we duplicate a vector? The following exercise answers this question (at least when it's the last vector that is duplicated):

Exercise 3. Let $v_{1}, v_{2}, \ldots, v_{k}$ be some vectors in \mathbb{R}^{n}. Assume that $v_{k-1}=v_{k}$. Justify the following (i.e., sketch the proofs):
(a) The vectors $v_{1}, v_{2}, \ldots, v_{k}$ are linearly dependent.
(b) The linear combinations of $v_{1}, v_{2}, \ldots, v_{k}$ are the same vectors as the linear combinations of $v_{1}, v_{2}, \ldots, v_{k-1}$.

Exercise 4. Let $n \in \mathbb{N}$. For each $k \in\{1,2, \ldots, n\}$, we let e_{k} denote the column vector of size n whose k-th entry is 1 and whose all other entries are 0 .
(For example: If $n=3$, then $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. .
Explain why each vector in \mathbb{R}^{n} is a linear combination of $e_{1}, e_{2}, \ldots, e_{n}$.
Definition 0.1 and Definition 0.2 make sense not only for vectors in \mathbb{R}^{n}. For example, we can replace "vectors in $\mathbb{R}^{n "}$ by "polynomials" in both definitions, and obtain definitions for linear combinations and linear independence of polynomials (in one variable x, with real coefficients) 1 Thus:

- The polynomial $x^{2}+2 x-1$ is a linear combination of the polynomials x^{2} and $(x-1)^{2}$, since

$$
x^{2}+2 x-1=2 \cdot x^{2}+(-1) \cdot(x-1)^{2} .
$$

- The polynomials $x^{2},(x-1)^{2},(x-2)^{2}$ and $(x-3)^{2}$ are linearly dependent, since there exists a nontrivial linear relation between them: If we take $\lambda_{1}=1$, $\lambda_{2}=-3, \lambda_{3}=3$ and $\lambda_{4}=-1$, then

$$
\begin{aligned}
& \lambda_{1} x^{2}+\lambda_{2}(x-1)^{2}+\lambda_{3}(x-2)^{2}+\lambda_{4}(x-3)^{2} \\
& =1 \cdot x^{2}+(-3) \cdot(x-1)^{2}+3 \cdot(x-2)^{2}+(-1) \cdot(x-3)^{2}=0 .
\end{aligned}
$$

- The polynomials $x^{2},(x-1)^{2}$ and $(x-2)^{2}$ are linearly independent, because the only relation

$$
\begin{equation*}
\lambda_{1} x^{2}+\lambda_{2}(x-1)^{2}+\lambda_{3}(x-2)^{2}=0 \tag{1}
\end{equation*}
$$

between them is the trivial one. How to be sure of this? One way is to assume that (1) holds, and try to derive $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$ from it. This can be done, for example, by comparing coefficients: Straightforward expansion yields

$$
\begin{aligned}
& \lambda_{1} x^{2}+\lambda_{2}(x-1)^{2}+\lambda_{3}(x-2)^{2} \\
& =\lambda_{1} x^{2}+\lambda_{2}\left(x^{2}-2 x+1\right)+\lambda_{3}\left(x^{2}-4 x+4\right) \\
& =\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) x^{2}+\left(-2 \lambda_{2}-4 \lambda_{3}\right) x+\left(\lambda_{2}+4 \lambda_{3}\right)
\end{aligned}
$$

[^0]and thus (1) rewrites as
$$
\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) x^{2}+\left(-2 \lambda_{2}-4 \lambda_{3}\right) x+\left(\lambda_{2}+4 \lambda_{3}\right)=0
$$

Since equal polynomials have equal coefficients, this is equivalent to the following system of linear equations:

$$
\left\{\begin{array}{c}
\lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
-2 \lambda_{2}-4 \lambda_{3}=0 \\
\lambda_{2}+4 \lambda_{3}=0
\end{array}\right.
$$

whose only solution is $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(0,0,0)$ (you know how to check this) - and thus the relation must be trivial. So the polynomials $x^{2},(x-1)^{2}$ and $(x-2)^{2}$ are linearly independent.

Exercise 5. (a) Are the four polynomials $x^{3},(x-1)^{3},(x-2)^{3},(x-3)^{3}$ linearly independent?
(b) Is 1 a linear combination of these four polynomials?

Similarly, we can define linear combinations and linear independence of matrices: Just replace "vectors in $\mathbb{R}^{n "}$ by " $n \times m$-matrices" in Definition 0.1 and Definition 0.2 . For example, the matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ is a linear combination of the matrices $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$, since

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=1 \cdot\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+(-1) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+1 \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) .
$$

Exercise 6. Consider the four matrices
$N=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), \quad E=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right), \quad S=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right), \quad W=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$.
(The letter E stands for "east", not for the identity matrix, which some also call E.)
(a) Is the identity matrix I_{2} a linear combination of N, E, S, W ?
(b) Are N, E, S, W linearly dependent?

References

[Strickland] Neil Strickland, MAS201 Linear Mathematics for Applications, lecture notes, 28 September 2013.
http://neil-strickland.staff.shef.ac.uk/courses/MAS201/

[^1]
[^0]: ${ }^{1}$ Of course, we then have to interpret 0 as the zero polynomial rather than the zero vector $0_{n \times 1}$.

[^1]: ${ }^{2}$ Of course, we then have to interpret 0 as the zero matrix $0_{n \times m}$ rather than the zero vector $0_{n \times 1}$.

