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This is only about the material of the last few weeks. Don’t forget the rest of the
course; go over the midterm training problems 1 and midterm training problems
2, as well as the actual midterms.

1. Subspaces

Exercise 1. Which of the following sets are subspaces of R2 ?

A =
{
(x1, x2)

T ∈ R2 | x1 + x2 = 1
}

;

B =
{
(x1, x2)

T ∈ R2 | x1 + x2 = 0
}

;

C =
{
(x1, x2)

T ∈ R2 | x1 − x2 = 1
}

;

D =
{
(x1, x2)

T ∈ R2 | x1 − x2 = 0
}

;

E =
{
(x1, x2)

T ∈ R2 | x1x2 = 1
}

;

F =
{
(x1, x2)

T ∈ R2 | x1x2 = 0
}

;

G =
{
(x1, x2)

T ∈ R2 | x2
1 + x2

2 = 1
}

;

H =
{
(x1, x2)

T ∈ R2 | x2
1 + x2

2 = 0
}

;

I =
{
(a, a + b)T | a, b ∈ R

}
;

J =
{
(a− b, b− a)T | a, b ∈ R

}
.

2. Independence, spanning and bases

Exercise 2. Define four vectors a, b, c, d in R3 as follows:

a =

 4
3
2

 , b =

 1
2
3

 , c =

 2
1
0

 , d =

 −1
0
1

 .

Show that span (a, b) = span (c, d) as follows:
(a) Write each of a and b as a linear combination of c and d.
(b) Write λa + µb (for any fixed reals λ and µ) as a linear combination of c

and d. Conclude that λa + µb ∈ span (c, d) for each λ, µ ∈ R, and therefore
span (a, b) ⊆ span (c, d).

(c) Write each of c and d as a linear combination of a and b.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt1t.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt2t.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt2t.pdf
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(d) Write λc + µd (for any fixed reals λ and µ) as a linear combination of a
and b. Conclude that λc + µd ∈ span (a, b) for each λ, µ ∈ R, and therefore
span (c, d) ⊆ span (a, b).

The results of (b) and (d) combined yield span (a, b) = span (c, d).

Exercise 3. (a) Find a list of 3 vectors that spans the subspace

K =
{
(a, b, c, d)T ∈ R4 | a + b = c + d

}
of R4.

(b) Find a list of 4 vectors that spans the subspace

L =
{
(a1 + a2, a2 + a3, a3 + a4, a4 + a1)

T | a1, a2, a3, a4 ∈ R
}

of R4.
(c) Find a list of 3 vectors that spans L.

Exercise 4. Consider the vector space R3.

(a) The list a =

 1
2
−1

 ,

 1
1
0

 ,

 0
1
−1

 ,

 1
1
1

 spans R3. Shrink this

list to a basis of R3 by removing some redundant elements.

(b) The list b =

 −1
0
1

 ,

 2
3
4

 is linearly independent. Extend this list

to a basis of R3 by appending to it some elements from the list a.

3. Rank and rank normal form

Exercise 5. Let A =

 1 6 7 12
2 5 8 11
3 4 9 10

.

Find the rank of A and a sequence of row and column operations that trans-
form A into its rank normal form.

(See §1.3 in the class notes from 2019-12-04 for the meaning of column operations
and of rank. But you don’t need to proceed in the exact same way as in the exam-
ple given there; you may find it easier to start applying some convenient column
operations before bringing the matrix into RREF.)

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-12-04.pdf
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4. Solution outlines

Solution to Exercise 1. (a) The set A is not a subspace of R2. Indeed, it fails to contain
−→
0 = (0, 0)T.

(b) The set B is a subspace of R2.
[Proof. We need to check that B contains the zero vector, is closed under addition, and is

closed under scaling.

• Let us show that B contains the zero vector: We have
−→
0 = (0, 0)T ∈ B, since 0+ 0 = 0.

• Let us show that B is closed under addition: Let v ∈ B and w ∈ B. We must prove
that v + w ∈ B.

We have v ∈ B =
{
(x1, x2)

T ∈ R2 | x1 + x2 = 0
}

; thus, we can write v as v =

(v1, v2)
T ∈ R2 for some reals v1, v2 that satisfy v1 + v2 = 0. Consider these v1, v2.

We have w ∈ B =
{
(x1, x2)

T ∈ R2 | x1 + x2 = 0
}

; thus, we can write w as w =

(w1, w2)
T ∈ R2 for some reals w1, w2 that satisfy w1 + w2 = 0. Consider these w1, w2.

Now,
v︸︷︷︸

=(v1,v2)
T

+ w︸︷︷︸
=(w1,w2)

T

= (v1, v2)
T + (w1, w2)

T = (v1 + w1, v2 + w2)
T .

Thus, in order to prove that v+w ∈ B, we need to show that (v1 + w1) + (v2 + w2) =
0 (by the definition of B). But this is easy to show:

(v1 + w1) + (v2 + w2) = (v1 + v2)︸ ︷︷ ︸
=0

+ (w1 + w2)︸ ︷︷ ︸
=0

= 0.

Thus, we have proved that v+w ∈ B. This completes the proof that B is closed under
addition.

• Let us show that B is closed under scaling: Let λ ∈ R and v ∈ B. We must prove that
λv ∈ B.

We have v ∈ B =
{
(x1, x2)

T ∈ R2 | x1 + x2 = 0
}

; thus, we can write v as v =

(v1, v2)
T ∈ R2 for some reals v1, v2 that satisfy v1 + v2 = 0. Consider these v1, v2.

Now,
λ v︸︷︷︸

=(v1,v2)
T

= λ (v1, v2)
T = (λv1, λv2)

T .

Thus, in order to prove that λv ∈ B, we need to show that λv1 + λv2 = 0 (by the
definition of B). But this is easy to show:

λv1 + λv2 = λ (v1 + v2)︸ ︷︷ ︸
=0

= 0.

Thus, we have proved that λv ∈ B. This completes the proof that B is closed under
scaling.
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Combining these three facts, we conclude that B is a subspace of R2.]

(c) The set C is not a subspace of R2. Indeed, it fails to contain
−→
0 = (0, 0)T.

(d) The set D is a subspace of R2.
[Proof. The proof of this is analogous to the proof of the fact that B is a subspace

of R2. (The only difference is that some “+” signs have to be replaced by “−” signs
now.)]

(e) The set E is not a subspace of R2. Indeed, it fails to contain
−→
0 = (0, 0)T.

(f) The set F is not a subspace of R2. Indeed, it is not closed under addition, since
the two elements (0, 1)T ∈ F and (1, 0)T ∈ F have sum (0, 1)T + (1, 0)T = (1, 1)T /∈
F.

(g) The set G is not a subspace of R2. Indeed, it is not closed under addition,
since the two elements (0, 1)T ∈ G and (1, 0)T ∈ G have sum (0, 1)T + (1, 0)T =

(1, 1)T /∈ G.

(h) The set H is a subspace of R2. Indeed, it is the one-element set
{−→

0
}

={
(0, 0)T

}
, since the only two reals x1 and x2 satisfying x2

1 + x2
2 = 0 are 0 and 0.

(i) The set I is a subspace of R2. Indeed, it is the full R2, since each (x1, x2)
T ∈ R2

can be written as (a, a + b)T for some a, b ∈ R (namely, for a = x1 and b = x2− x1).

(j) The set J is a subspace of R2. Indeed, it is the same set as B.
[Proof. Each element of J has the form (a− b, b− a)T for some a, b ∈ R (by the

definition of J), and thus is a vector in R2 whose two entries sum to 0 (because its
two entries a− b and b− a sum to (a− b) + (b− a) = 0).

The definition of B can be restated as follows: The set B consists of all vectors
in R2 whose two entries sum to 0. Thus, J ⊆ B (since each element of J is a
vector in R2 whose two entries sum to 0). Conversely, it is easy to see that B ⊆
J. (Indeed, any element of B has the form (x1, x2)

T ∈ R2 for some reals x1, x2
satisfying x1 + x2 = 0 (by the definition of B); thus, it has the form (x1,−x1) (since
x1 + x2 = 0 entails x2 = −x1), and this shows that it has the form (a− b, b− a)T

for some a, b ∈ R (namely, for a = x1 and b = 0). But the latter says precisely that
it belongs to J. So we have shown that every element of B belongs to J. In other
words, B ⊆ J.)

Combining J ⊆ B with B ⊆ J, we obtain J = B. Thus, J is a subspace of R2 (since
we already know that B is a subspace of R2.]

Solution to Exercise 2. (a) Let us first write a as a linear combination of c and d. In
other words, we are seeking two real numbers γ and δ such that a = γc + δd. In
other words, we are solving the equation a = γc+ δd in two real unknowns γ and δ.
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Since a =

 4
3
2

, c =

 2
1
0

 and d =

 −1
0
1

, this equation rewrites as

 4
3
2

 =

γ

 2
1
0

+ δ

 −1
0
1

. This is equivalent to the system

 2γ + (−1) δ = 4
1γ + 0δ = 3
0γ + 1δ = 2

of lin-

ear equations. Solving this system in any way, we find γ = 3 and δ = 2. Thus,
a = γc + δd becomes a = 3c + 2d.

So we have written a as a linear combination of c and d. Similarly, we can do the
same for b, obtaining b = 2c + 3d.

(b) For any two reals λ and µ, we have

λ a︸︷︷︸
=3c+2d

+µ b︸︷︷︸
=2c+3d

= λ (3c + 2d) + µ (2c + 3d)

= 3λc + 2λd + 2µc + 3µd
= (3λ + 2µ) c + (2λ + 3µ) d.

This is a representation of λa + µb as a linear combination of c and d. Thus, λa +
µb ∈ span (c, d) for each λ, µ ∈ R. In other words,

{λa + µb | λ, µ ∈ R} ⊆ span (c, d) .

But the definition of span (a, b) yields span (a, b) = {λa + µb | λ, µ ∈ R}. Hence,

span (a, b) = {λa + µb | λ, µ ∈ R} ⊆ span (c, d) .

This solves part (b).

(c) Similarly to part (a), we find c =
3
5

a +
−2
5

b and d =
−2
5

a +
3
5

b.

(d) Similarly to part (b), we can represent λc + µd as a linear combination of a
and b as follows:

λc + µd =

(
3
5

λ +
−2
5

µ

)
a +

(
−2
5

λ +
3
5

µ

)
b.

In order to solve Exercise 3, we shall use the following simple fact:

Proposition 4.1. Let K be a field. Let V be a K-vector space. Let v1, v2, . . . , vk
be some vectors in V. Let W = span (v1, v2, . . . , vk) (this is a subspace of V). Let
w ∈W. Then, span (v1, v2, . . . , vk, w) = W.

(Roughly speaking, Proposition 4.1 says that the span of a list of vectors does not
change if we append a new vector to the list, as long as this new vector already lies
in the span of the old vectors.)
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Proof of Proposition 4.1. We have w ∈ W = span (v1, v2, . . . , vk). In other words, w
is a linear combination of v1, v2, . . . , vk (since span (v1, v2, . . . , vk) is the set of all
such combinations). In other words, there exist scalars α1, α2, . . . , αk ∈ K such that
w = α1v1 + α2v2 + · · ·+ αkvk. Consider these α1, α2, . . . , αk.

Now, we shall prove that span (v1, v2, . . . , vk, w) ⊆W and W ⊆ span (v1, v2, . . . , vk, w)
separately:

• Proof of span (v1, v2, . . . , vk, w) ⊆W:

Let p ∈ span (v1, v2, . . . , vk, w). Thus, p is a linear combination of v1, v2, . . . , vk, w.
In other words, there exist scalars β1, β2, . . . , βk, γ ∈ K such that p = β1v1 +
β2v2 + · · ·+ βkvk + γw. Consider these β1, β2, . . . , βk, γ. We have

p = β1v1 + β2v2 + · · ·+ βkvk + γ w︸︷︷︸
=α1v1+α2v2+···+αkvk

= β1v1 + β2v2 + · · ·+ βkvk + γ (α1v1 + α2v2 + · · ·+ αkvk)

= β1v1 + β2v2 + · · ·+ βkvk + γα1v1 + γα2v2 + · · ·+ γαkvk

= (β1v1 + γα1v1) + (β2v2 + γα2v2) + · · ·+ (βkvk + γαkvk)

= (β1 + γα1) v1 + (β2 + γα2) v2 + · · ·+ (βk + γαk) vk.

Hence, p is a linear combination of v1, v2, . . . , vk. In other words,
p ∈ span (v1, v2, . . . , vk). In other words, p ∈W (since W = span (v1, v2, . . . , vk)).

We thus have showed that every p ∈ span (v1, v2, . . . , vk, w) satisfies p ∈ W.
In other words, span (v1, v2, . . . , vk, w) ⊆W.

• Proof of W ⊆ span (v1, v2, . . . , vk, w):

Let p ∈ W. Thus, p ∈ W = span (v1, v2, . . . , vk). In other words, p is a linear
combination of v1, v2, . . . , vk. In other words, there exist scalars δ1, δ2, . . . , δk ∈
K such that p = δ1v1 + δ2v2 + · · · + δkvk. Consider these δ1, δ2, . . . , δk. We
have

p = δ1v1 + δ2v2 + · · ·+ δkvk

= δ1v1 + δ2v2 + · · ·+ δkvk +
−→
0︸︷︷︸

=0w

= δ1v1 + δ2v2 + · · ·+ δkvk + 0w.

Hence, p is a linear combination of v1, v2, . . . , vk, w. In other words, p ∈
span (v1, v2, . . . , vk, w).

We thus have showed that every p ∈ W satisfies p ∈ span (v1, v2, . . . , vk, w).
In other words, W ⊆ span (v1, v2, . . . , vk, w).

We have now proved the two relations span (v1, v2, . . . , vk, w) ⊆ W and W ⊆
span (v1, v2, . . . , vk, w). Combining them, we obtain span (v1, v2, . . . , vk, w) = W.
This proves Proposition 4.1.

(You have seen some very similar arguments in class.)
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Solution to Exercise 3. [Note: Throughout the solution of this problem, you have a
lot of freedom to make choices. Thus, your answers may be completely different
from mine and still correct.]

(a) The set K is the set of all solutions of the system of (one) linear equation
{a + b = c + d in the four unknowns a, b, c, d. Solving this system, we find that its
solutions have the form 

a
b
c
d

 =


s + t− u

u
t
s


with three free variables s, t, u. Thus,

K =




s + t− u
u
t
s

 | s, t, u ∈ R


=

s


1
0
0
1

+ t


1
0
1
0

+ u


−1
1
0
0

 | s, t, u ∈ R

since


s + t− u

u
t
s

 = s


1
0
0
1

+ t


1
0
1
0

+ u


−1
1
0
0




= span




1
0
0
1

 ,


1
0
1
0

 ,


−1
1
0
0


 .

Thus, we have written K as a span of three vectors.
(b) For every a1, a2, a3, a4 ∈ R, we have

(a1 + a2, a2 + a3, a3 + a4, a4 + a1)
T

=


a1 + a2
a2 + a3
a3 + a4
a4 + a1

 = a1


1
0
0
1

+ a2


1
1
0
0

+ a3


0
1
1
0

+ a4


0
0
1
1

 .

Thus, the definition of L rewrites as follows:

L =

a1


1
0
0
1

+ a2


1
1
0
0

+ a3


0
1
1
0

+ a4


0
0
1
1

 | a1, a2, a3, a4 ∈ R


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= span




1
0
0
1

 ,


1
1
0
0

 ,


0
1
1
0

 ,


0
0
1
1


 . (1)

Hence, we have written L as a span of four vectors.

(c) Set α =


1
0
0
1

, β =


1
1
0
0

, γ =


0
1
1
0

, and δ =


0
0
1
1

. Then, (1) rewrites

as
L = span (α, β, γ, δ) . (2)

However, it is easy to observe that α + γ = β + δ. Hence, δ = α + γ − β. In
particular, δ is a linear combination of α, β, γ. Hence, δ ∈ span (α, β, γ).

Now, set V = R4; let v1, v2, . . . , vk be the vectors α, β, γ (so k = 3); let W =
span (α, β, γ); and let w = δ. Then, the condition of Proposition 4.1 is satisfied
(because we have δ ∈ span (α, β, γ)). Thus, Proposition 4.1 (applied to K = R)
yields span (α, β, γ, δ) = span (α, β, γ). Hence, (2) becomes L = span (α, β, γ, δ) =
span (α, β, γ). Thus, we have represented L as a span of three vectors.

Solution to Exercise 4. (I am going to be very detailed here. You don’t need to write
half as much when solving this kind of problem!)

(a) We proceed using the standard algorithm1: We scan the list a from left to
right. Each time we read an entry of a, we check if this entry is a linear combination
of the entries before it. If it is, then we remove this entry from a and start from
scratch with the new (shorter) a. If it is not, then we proceed to the next entry. If
we have arrived at the end of the list, then our list has no redundant entries, and
thus is a basis of R3.

Let us execute this algorithm step by step:

• We scan the list a from left to right. Thus, we begin at its first entry, which is
(1, 2,−1)T.

• Is this first entry (1, 2,−1)T a linear combination of the entries before it? There
are no entries before it, and thus the only linear combination of the entries
before it is

−→
0 (because the only linear combination of no vectors is

−→
0 ). But

our entry (1, 2,−1)T is not
−→
0 ; thus, (1, 2,−1)T is not a linear combination of

the entries before it. Hence, we proceed to the second entry.

• Is this second entry (1, 1, 0)T a linear combination of the entries before it?
There is only one entry before it, namely (1, 2,−1)T. Hence, we are asking
whether (1, 1, 0)T is a linear combination of the vector (1, 2,−1)T. In other
words, we are asking whether (1, 1, 0)T = λ1 (1, 2,−1)T for some λ1 ∈ R.

1In this algorithm, we treat a as a mutable variable.
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Equivalently, we want to know whether


1 = 1λ1
1 = 2λ1

0 = −1λ1

for some λ1 ∈ R (be-

cause the equation (1, 1, 0)T = λ1 (1, 2,−1)T is equivalent to the system of

equations


1 = 1λ1
1 = 2λ1

0 = −1λ1

). In other words, we want to know whether the sys-

tem


1 = 1λ1
1 = 2λ1

0 = −1λ1

of linear equations (in the unknown λ1) has a solution. But

this question is easy to answer (e.g., by Gaussian elimination), and the answer
is “no”. Thus, our entry (1, 1, 0)T is not a linear combination of the entries
before it. Hence, we proceed to the third entry.

• Is this third entry (0, 1,−1)T a linear combination of the entries before it? The
entries before it are (1, 2,−1)T and (1, 1, 0)T. Hence, we are asking whether
(0, 1,−1)T is a linear combination of the vectors (1, 2,−1)T and (1, 1, 0)T. In
other words, we are asking whether (0, 1,−1)T = λ1 (1, 2,−1)T + λ2 (1, 1, 0)T

for some λ1 ∈ R. Equivalently, we want to know whether


0 = 1λ1 + 1λ2
1 = 2λ1 + 1λ2
−1 = −1λ1 + 0λ2

for some λ1, λ2 ∈ R (because the equation (0, 1,−1)T = λ1 (1, 2,−1)T +

λ2 (1, 1, 0)T is equivalent to the system of equations


0 = 1λ1 + 1λ2
1 = 2λ1 + 1λ2
−1 = −1λ1 + 0λ2

). In

other words, we want to know whether the system


0 = 1λ1 + 1λ2
1 = 2λ1 + 1λ2
−1 = −1λ1 + 0λ2

of

linear equations (in the unknowns λ1, λ2) has a solution. But this question is
easy to answer (e.g., by Gaussian elimination), and the answer is “yes”. Thus,
our entry (0, 1,−1)T is a linear combination of the entries before it2. Thus, we
remove the entry from a, and start from scratch with the new (shorter) a.

• We scan the new list a =
(
(1, 2,−1)T , (1, 1, 0)T , (1, 1, 1)T

)
(the result of re-

moving (0, 1,−1)T from the old list a) from left to right. Thus, we begin at its
first entry, which is (1, 2,−1)T.

• Is this first entry (1, 2,−1)T a linear combination of the entries before it?
We have already answered this question during our previous scan of the list
(since the segment of our list a up to its first entry has not changed when

2Namely, (0, 1,−1)T = 1 (1, 2,−1)T + (−1) (1, 1, 0)T . But we don’t need to know these specifics.
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we removed (0, 1,−1)T), and thus we already know that the answer is “no”.
Hence, we proceed to the second entry.

• Is this second entry (1, 1, 0)T a linear combination of the entries before it?
Again, this is a question we have already answered during our previous scan
of the list (since the segment of our list a up to its second entry has not
changed when we removed (0, 1,−1)T), and thus we already know that the
answer is “no”. Hence, we proceed to the third entry.

• Is this third entry (1, 1, 1)T a linear combination of entries before it? The
entries before it are (1, 2,−1)T and (1, 1, 0)T. Hence, we are asking whether
(1, 1, 1)T is a linear combination of the vectors (1, 2,−1)T and (1, 1, 0)T. In
other words, we are asking whether (1, 1, 1)T = λ1 (1, 2,−1)T + λ2 (1, 1, 0)T

for some λ1 ∈ R. Equivalently, we want to know whether


1 = 1λ1 + 1λ2
1 = 2λ1 + 1λ2

1 = −1λ1 + 0λ2

for some λ1, λ2 ∈ R (because the equation (1, 1, 1)T = λ1 (1, 2,−1)T +λ2 (1, 1, 0)T

is equivalent to the system of equations


1 = 1λ1 + 1λ2
1 = 2λ1 + 1λ2

1 = −1λ1 + 0λ2

). In other words,

we want to know whether the system


1 = 1λ1 + 1λ2
1 = 2λ1 + 1λ2

1 = −1λ1 + 0λ2

of linear equations

(in the unknowns λ1, λ2) has a solution. But this question is easy to answer
(e.g., by Gaussian elimination), and the answer is “no”. Thus, our entry
(1, 1, 1)T is not a linear combination of the entries before it. Thus, we have
arrived at the end of the list.

We have thus ended up with the list
(
(1, 2,−1)T , (1, 1, 0)T , (1, 1, 1)T

)
. This list

is therefore a basis of R3 obtained by shrinking our (old) list a.
(b) There are various ways to do this. One particularly simple way is the follow-

ing3: We scan the list a from left to right. Each time we read an entry of a, we check
if this entry is a linear combination of the (current) entries of b. If it isn’t, then we
append this entry to b. In either case, we proceed to the next entry. By the time we
have scanned all entries of a, the list b has become a basis of R3. (This is easy to
prove4.)

3In this algorithm, we treat b as a mutable variable.
4Proof. Consider the following:

• Every time we append an entry of a to the list b, the list b remains linearly independent
(because we append an entry to b only if this entry is not a linear combination of the
existing entries of b; but this guarantees that the linear independence of the list b is
preserved).

• By the time we have scanned all entries of a, the list b has the property that each entry of
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In order to simplify our life, we use not the original list

a =
(
(1, 2,−1)T , (1, 1, 0)T , (0, 1,−1)T , (1, 1, 1)T

)
,

but the shorter list

a =
(
(1, 2,−1)T , (1, 1, 0)T , (1, 1, 1)T

)
obtained at the end of the shrinking process in part (a) of the problem. Indeed, this
shorter list works just as well (it is a basis of R3 and thus spans R3), and clearly its
elements are elements of the original list a as well.

Let us now execute our algorithm step by step:

• We scan the list a from left to right. Thus, we begin at its first entry, which is
(1, 2,−1)T.

• Is this first entry (1, 2,−1)T a linear combination of the entries of b? The
entries of b are (−1, 0, 1)T and (2, 3, 4)T. Hence, we are asking whether
(1, 2,−1)T is a linear combination of the vectors (−1, 0, 1)T and (2, 3, 4)T. In
other words, we are asking whether (1, 2,−1)T = λ1 (−1, 0, 1)T + λ2 (2, 3, 4)T

for some λ1, λ2 ∈ R. Equivalently, we want to know whether

 1 = (−1) λ1 + 2λ2
2 = 0λ1 + 3λ2
−1 = 1λ1 + 4λ2

for some λ1, λ2 ∈ R (because the equation (1, 2,−1)T = λ1 (−1, 0, 1)T +

λ2 (2, 3, 4)T is equivalent to the system of equations

 1 = (−1) λ1 + 2λ2
2 = 0λ1 + 3λ2
−1 = 1λ1 + 4λ2

).

In other words, we want to know whether the system

 1 = (−1) λ1 + 2λ2
2 = 0λ1 + 3λ2
−1 = 1λ1 + 4λ2

of linear equations (in the unknowns λ1, λ2) has a solution. But this ques-
tion is easy to answer (e.g., by Gaussian elimination), and the answer is “no”.
Thus, our entry (1, 2,−1)T is not a linear combination of the entries of b.
Thus, we append this entry to b, so that b becomes

(
(−1, 0, 1)T , (2, 3, 4)T , (1, 2,−1)T

)
.

We now proceed to the second entry of a.

a is a linear combination of the entries of b (because when we scanned this entry, we have
ensured that it became such a linear combination by appending it to b, if it wasn’t already
one). In other words, every entry of a belongs to span (b). Thus, span (a) ⊆ span (b).
But since a spans R3, we have span (a) = R3, so that R3 = span (a) ⊆ span (b) and thus
span (b) = R3.

Hence, by the time we have scanned all entries of a, the list b is linearly independent and
satisfies span (b) = R3. In other words, this list b has become a basis of R3.
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• Is this second entry (1, 1, 0)T a linear combination of the entries of b? The
entries of b are (−1, 0, 1)T, (2, 3, 4)T and (1, 2,−1)T (keep in mind that b has
changed in the previous step!). Hence, we are asking whether (1, 1, 0)T is a
linear combination of the vectors (−1, 0, 1)T, (2, 3, 4)T and (1, 2,−1)T. By now,
we have seen often enough how to answer such questions (of course, we now
have to solve a system of equations in three unknowns λ1, λ2, λ3). The answer
is “yes”. Thus, our entry (1, 1, 0)T is a linear combination of the entries of b.
Hence, we proceed to the third entry of a (without adding anything to b).
Recall that we have used the shorter list a =

(
(1, 2,−1)T , (1, 1, 0)T , (1, 1, 1)T

)
as our a, so this third entry is (1, 1, 1)T.

• Is this third entry (1, 1, 1)T a linear combination of the entries of b? The
answer is “yes” (found in the same way as many times before). Hence, we
arrive at the end of a (without adding anything to b).

We have thus ended up with the list b =
(
(−1, 0, 1)T , (2, 3, 4)T , (1, 2,−1)T

)
. This

list is therefore a basis of R3 obtained by appending some elements from a to the
(old) list b.

[Remark: We could have made our life much easier. In fact, we could have
stopped our algorithm immediately after adding (1, 2,−1)T to the list b, because
the list b had become a basis of R3 at that moment (being a linearly independent
list of 3 vectors in R3).

There are other ways to solve this exercise, and some of them lead to different
results. For example,

(
(−1, 0, 1)T , (2, 3, 4)T , (0, 1,−1)T

)
is an equally valid answer

to part (b).]

Solution to Exercise 5. There are many ways to solve this. The most systematic one
is to follow the algorithm sketched in Example 1.3.5 in the class notes from 2019-
12-04; this algorithm proceeds in three phases:

Phase 1: first, transform A into RREF using row operations;

Phase 2: then, clear out the nonzero entries to the right of the pivots using column
operations of the ECO3 kind;

Phase 3: finally, move all pivots as far left as possible using column operations of the
ECO1 kind).

I will not show this procedure in detail, but let me remark that the RREF of A

is


1 0

13
7

6
7

0 1
6
7

13
7

0 0 0 0

 (where the pivots are boxed, as usual), and thus Phase 2

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-12-04.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-12-04.pdf
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results in

 1 0 0 0
0 1 0 0
0 0 0 0

. The pivots here are already in the first two columns,

so Phase 3 is not necessary, and we conclude that the rank normal form of A is 1 0 0 0
0 1 0 0
0 0 0 0

. The rank of A is the number of pivots; thus, it equals 2.

[However, let me show one alternative way to find the rank normal form of A, without
going through the RREF. Recall that we can do any row operations and any column oper-
ations, as long as the final result is in rank normal form. So we can make our job easier by
picking the easiest operations to do: 1 6 7 12

2 5 8 11
3 4 9 10

 add −1·column 1−→
to column 3

 1 6 6 12
2 5 6 11
3 4 6 10

 add −1·column 2−→
to column 4

 1 6 6 6
2 5 6 6
3 4 6 6


add −1·column 3−→

to column 4

 1 6 6 0
2 5 6 0
3 4 6 0

 scale column 3−→
by 1/6

 1 6 1 0
2 5 1 0
3 4 1 0

 add 1·column 1−→
to column 2

 1 7 1 0
2 7 1 0
3 7 1 0


scale column 2−→

by 1/7

 1 1 1 0
2 1 1 0
3 1 1 0

 add −1·column 2−→
to column 3

 1 1 0 0
2 1 0 0
3 1 0 0

 add −2·row 1−→
to row 2

 1 1 0 0
0 −1 0 0
3 1 0 0


add −3·row 1−→

to row 3

 1 1 0 0
0 −1 0 0
0 −2 0 0

 add −2·row 2−→
to row 3

 1 1 0 0
0 −1 0 0
0 0 0 0

 add 1·row 2−→
to row 1

 1 0 0 0
0 −1 0 0
0 0 0 0


scale row 1−→

by −1

 1 0 0 0
0 1 0 0
0 0 0 0

 .

The matrix we have obtained is clearly in rank normal form, so it must be the rank normal
form of A. Moreover, it has 2 pivots, so the rank of A must be 2.]


	Subspaces
	Independence, spanning and bases
	Rank and rank normal form
	Solution outlines

