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Math 201-003 Fall 2019 (Darij Grinberg): final exam

1. Reminders

1.1. Matrix basics

• For any two matrices A and B, if the product AB is well-defined, then

(AB)i,j = Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j = rowi A · colj B

for all indices i and j.

• The transpose AT of an n×m-matrix A is the m× n-matrix whose entries are(
AT)

i,j = Aj,i.

1.2. Operations and RREFs

Definition 1.1. The following operations on a matrix A are called elementary
row operations (for short EROs, or just row operations):

• ERO1: Exchange two rows.

• ERO2: Scale a row by a nonzero constant.

• ERO3: Add a multiple of one row to another row. (That is, add λ rowi A to
rowj A for some λ ∈ R and i 6= j.)

Definition 1.2. A matrix is in RREF if and only if it satisfies the following four
conditions:

• RREF0: Any zero row (= row full of zeros) is below any nonzero row (=
row with at least some nonzero entries).

• RREF1: In any nonzero row, the first nonzero entry is equal to 1. This entry
is called the pivot of the row.

• RREF2: The pivot of any nonzero row must be further to the right than the
pivot of the previous nonzero row.

• RREF3: If a column contains a pivot, then all other entries in the column
are zero.

The RREF of a matrix A is the unique matrix B that is in RREF and can be
obtained from A by a sequence of EROs.
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Definition 1.3. Let A be an n× n-matrix. Then, the determinant det A of A is
defined to be the sum

∑
σ is a permutation of [n]

sign (σ) · A1,σ(1)A2,σ(2) · · · An,σ(n).

Here, [n] means {1, 2, . . . , n}.

Theorem 1.4 (Laplace expansion). Let A be an n× n-matrix. For each p, q ∈ [n],
we let Mp,q be the (n− 1)× (n− 1)-matrix obtained from A by removing row p
and column q. Then:

(a) For each p ∈ [n], we have

det A =
n

∑
q=1

(−1)p+q Ap,q det
(

Mp,q
)

.

(This is called Laplace expansion along the p-th row.)
(b) For each q ∈ [n], we have

det A =
n

∑
p=1

(−1)p+q Ap,q det
(

Mp,q
)

.

(This is called Laplace expansion along the q-th column.)

Definition 1.5. Let A be an n× n-matrix. Let λ be a scalar (i.e., a real number).
(a) A λ-eigenvector of A means a nonzero vector v ∈ Rn such that Av = λv.
(b) We say that λ is an eigenvalue of A if and only if there exists a λ-

eigenvector of A.
(c) The characteristic polynomial of A is the polynomial

χA (t) = det (A− tIn) .
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2. Matrix basics

Exercise 1. Let A be a 3× 2-matrix. Which of the following matrices are well-
defined, and (if they are) what are their dimensions? (For example, AT is a
well-defined 2× 3-matrix, i.e., has dimensions 2× 3. But A2 is not well-defined.)

No justifications are required in this exercise. Just write the dimensions (or
“N” for “not well-defined”) into the respective box!

(a) A + AT:

(b) AAT:

(c) AT A:

(d) AAT A:

(e) AAT AAT:

Solution to Exercise 1. Here are the answers:
(a) Not well-defined (since we cannot add a 3× 2-matrix with a 2× 3-matrix).
(b) Well-defined and has dimensions 3× 3.
(c) Well-defined and has dimensions 2× 2.
(d) Well-defined and has dimensions 3× 2.
(e) Well-defined and has dimensions 3× 3.
[All four parts (b), (c), (d) and (e) follow from the same principle: The product

XY of a p× q-matrix X with an r× s-matrix Y is well-defined if and only if q = r;
furthermore, in this case, it is a p× s-matrix. Parts (c) and (d) follow directly from
this principle; parts (d) and (e) require applying it twice or thrice.]
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3. RREF

Exercise 2. (a) Let A3 be the 3× 3-matrix

 1 1 1
1 2 1
1 1 1

. Find its RREF.

(b) Let A5 be the 5× 5-matrix


1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1

. Find its RREF.

[Note: The pattern in A3 and in A5 is exactly what it looks like: 1’s along the border of the
matrix, 2’s one step further inward, etc.]

Solution to Exercise 2. (a) Let us bring A3 into RREF using [Strickland, Method 6.4]
(with the standard allowance for not needlessly freezing rows when the matrix is
already in RREF):

A3 =

 1 1 1
1 2 1
1 1 1

 add (−1)·row 1 to row 2−→

 1 1 1
0 1 0
1 1 1


add (−1)·row 1 to row 3−→

 1 1 1
0 1 0
0 0 0

 add (−1)·row 2 to row 1−→

 1 0 1
0 1 0
0 0 0

 .

The resulting matrix is the RREF of A3.

(b) Let us bring A5 into RREF using [Strickland, Method 6.4] (with the standard
allowance for not needlessly freezing rows when the matrix is already in RREF):

A5 =


1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1

 add (−1)·row 1 to row 2−→


1 1 1 1 1
0 1 1 1 0
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1



add (−1)·row 1 to row 3−→


1 1 1 1 1
0 1 1 1 0
0 1 2 1 0
1 2 2 2 1
1 1 1 1 1

 add (−1)·row 1 to row 4−→


1 1 1 1 1
0 1 1 1 0
0 1 2 1 0
0 1 1 1 0
1 1 1 1 1
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add (−1)·row 1 to row 5−→


1 1 1 1 1
0 1 1 1 0
0 1 2 1 0
0 1 1 1 0
0 0 0 0 0

 freeze row 1−→


1 1 1 1 1 ← frozen
0 1 1 1 0
0 1 2 1 0
0 1 1 1 0
0 0 0 0 0



add (−1)·row 1 to row 2−→


1 1 1 1 1 ← frozen
0 1 1 1 0
0 0 1 0 0
0 1 1 1 0
0 0 0 0 0



add (−1)·row 1 to row 3−→


1 1 1 1 1 ← frozen
0 1 1 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



add (−1)·row 2 to row 1−→


1 1 1 1 1 ← frozen
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



unfreeze row 1−→


1 1 1 1 1
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0


add (−1)·row 2 to row 1−→


1 0 1 0 1
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



add (−1)·row 3 to row 1−→


1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 .

The resulting matrix is the RREF of A5.

[Remark: Similarly, for any n ∈ N, you can define the n × n-matrix An whose
(i, j)-th entry is “the distance from cell (i, j) to the boundary of the matrix” (i.e.,
the number min {i, j, n + 1− i, n + 1− j}). Its RREF looks exactly like the RREFs
of A3 and A5 we found above: The entries in cells (i, i) and (i, n + 1− i) for all
i ∈ {1, 2, . . . , dn/2e} equal 1 (where dn/2e denotes the smallest integer that is
n/2), and all remaining entries equal 0.]
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4. Linear independence

Exercise 3. Consider the four matrices

A =

(
2 1
1 1

)
, B =

(
1 2
1 1

)
, C =

(
1 1
2 1

)
, D =

(
1 1
1 2

)
.

(a) Are these matrices A, B, C, D linearly independent?
(b) Do these matrices A, B, C, D span the vector space R2×2 ?

Solution to Exercise 3. (a) Yes.
Proof. Let aA + bB + cC + dD = 02×2 be a relation between A, B, C, D. We shall

prove that this relation is trivial, i.e., that we have a = b = c = d = 0.
Indeed, the definitions of A, B, C, D yield

aA + bB + cC + dD = a
(

2 1
1 1

)
+ b

(
1 2
1 1

)
+ c

(
1 1
2 1

)
+ d

(
1 1
1 2

)
=

(
2a + b + c + d a + 2b + c + d
a + b + 2c + d a + b + c + 2d

)
.

Comparing this with aA + bB + cC + dD = 02×2, we find(
2a + b + c + d a + 2b + c + d
a + b + 2c + d a + b + c + 2d

)
= 02×2 =

(
0 0
0 0

)
.

In other words, the four equalities
2a + b + c + d = 0
a + 2b + c + d = 0
a + b + 2c + d = 0
a + b + c + 2d = 0

all hold. We can treat them as a system of linear equations in a, b, c, d and solve it
using Gaussian elimination, but we can also proceed in a simpler way: Subtracting
the equality a + 2b + c + d = 0 from the equality 2a + b + c + d = 0, we obtain
(2a + b + c + d)− (a + 2b + c + d) = 0. This rewrites as a− b = 0. In other words,
b = a. Similarly, c = a and d = a. Now, the equality 2a + b + c + d = 0 yields
0 = 2a + b︸︷︷︸

=a

+ c︸︷︷︸
=a

+ d︸︷︷︸
=a

= 2a + a + a + a = 5a, so that 5a = 0 and therefore

a = 0. Similarly, b = 0 and c = 0 and d = 0. Hence, a = b = c = d = 0. Thus, the
relation aA + bB + cC + dD = 02×2 is trivial.

We thus have shown that each any relation aA + bB + cC + dD = 02×2 between
A, B, C, D must be trivial. In other words, A, B, C, D are linearly independent.

(b) Yes.
We shall give two proofs of this fact:
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First proof. The list (A, B, C, D) is R-linearly independent (by part (a) of this
exercise), i.e., is an independent list of R2×2 (using the terminology from our class
notes from 2019-12-04).

The R-vector space R2×2 has dimension 2 · 2 = 4 (since the list
(

1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
,
(

0 0
0 1

)
︸ ︷︷ ︸

the four matrices, each of which has a 1 in
some position, and zeroes everywhere else


is a basis of this space). In other words, dim

(
R2×2) = 4. Hence, Theorem 1.1.7 (h)

from our class notes from 2019-12-04 (applied to K = R and V = R2×2) shows that
any independent list of R2×2 that has length 4 must be a basis of R2×2. Applying
this to the independent list (A, B, C, D), we conclude that (A, B, C, D) must be a
basis of R2×2 (since (A, B, C, D) is an independent list of R2×2). Thus, in particular,
the list (A, B, C, D) spans R2×2. In other words, the matrices A, B, C, D span the
vector space R2×2.

Second proof. Any matrix in R2×2 can be written as a linear combination of

A, B, C, D: Namely, if the matrix is
(

a b
c d

)
, then it can be written as

4a− b− c− d
5

A +
4b− c− d− a

5
B +

4c− d− a− b
5

C +
4d− a− b− c

5
D.

(You can find this by solving the equation
(

a b
c d

)
= xA + yB + zC + wD for

x, y, z, w.)

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-12-04.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-12-04.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-12-04.pdf
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5. Inverses

Exercise 4. (a) Is the matrix

 1 1 1
1 1 0
1 0 0

 invertible?

(b) Is the matrix

 1 1 1
1 2 1
1 1 1

 invertible?

Solution to Exercise 4. (a) Yes.
Proof. One way to see this is by constructing its inverse: 1 1 1

1 1 0
1 0 0

−1

=

 0 0 1
0 1 −1
1 −1 0

 .

Another way is to observe that its determinant is −1 6= 0, and thus it is invertible
(by the implication (l) =⇒ (k) in Theorem 2.1.3 in our class notes from 2019-11-04).

(b) No.
Proof. The columns of this matrix are linearly dependent (since its first and third

columns are identical). Hence, the matrix is not invertible (by the implication (b’)
=⇒ (k’) in Theorem 2.1.4 in our class notes from 2019-11-04).

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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6. Determinants

Exercise 5. (a) Compute det


a 0 0 1
0 b 0 1
0 0 c 1
1 1 1 1

, where a, b, c, d are reals.

[Hint: The result will have the form x − y − z − w, where x, y, z, w are four
simple expressions.]

(b) Compute det


a b c d
b b c d
c c c d
d d d d

, where a, b, c, d are reals. Write the result as

a product of four linear expressions in a, b, c, d.
[Hint: In part (b), don’t waste your time expanding the determinant by its

definition; the result will not be easy to factor. Instead, try simplifying the de-
terminant by appropriate transformations.]

[Note: The matrix in (b) has an a in its top-left cell; b’s in the three cells bordering it; c’s in
the five cells bordering them; d’s everywhere else.]

Solution to Exercise 5. (a) Let a, b, c, d be reals. Laplace expansion along the first row
yields

det


a 0 0 1
0 b 0 1
0 0 c 1
1 1 1 1

 = (−1)1+1︸ ︷︷ ︸
=1

a det

 b 0 1
0 c 1
1 1 1

+ (−1)1+2 0 det

 0 0 1
0 c 1
1 1 1


︸ ︷︷ ︸

=0

+ (−1)1+3 0 det

 0 b 1
0 0 1
1 1 1


︸ ︷︷ ︸

=0

+ (−1)1+4︸ ︷︷ ︸
=−1

1 det

 0 b 0
0 0 c
1 1 1



= a det

 b 0 1
0 c 1
1 1 1

− det

 0 b 0
0 0 c
1 1 1

 .

The two determinants on the right hand side of this equality are easily computed
(either again by Laplace expansion along the first row, or by the fairly manageable1

explicit definition of a determinant):

det

 b 0 1
0 c 1
1 1 1

 = bc− b− c; det

 0 b 0
0 0 c
1 1 1

 = bc.

1in the case of a 3× 3-matrix
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Thus, we can conclude our above computation as follows:

det


a 0 0 1
0 b 0 1
0 0 c 1
1 1 1 1

 = a det

 b 0 1
0 c 1
1 1 1


︸ ︷︷ ︸

=bc−b−c

−det

 0 b 0
0 0 c
1 1 1


︸ ︷︷ ︸

=bc

= a (bc− b− c)− bc = abc− ab− ac− bc.

[Remark: An alternative solution can be obtained just by applying the definition
of a determinant and analyzing which of the 24 permutations of [4] will give rise
to nonzero terms. This is not as painful as it sounds; only 4 permutations give rise
to nonzero terms. This method can be generalized to the case of an n× n-matrix,
resulting in the formula

det


a1 0 · · · 0 1
0 a2 · · · 0 1
...

... . . . ...
...

0 0 · · · an−1 1
1 1 · · · 1 1


= a1a2 · · · an−1

− (the sum of all products of n− 2 of the n− 1 numbers a1a2 · · · an−1) .

If a1, a2, . . . , an−1 are nonzero, then this can be simplified to

det


a1 0 · · · 0 1
0 a2 · · · 0 1
...

... . . . ...
...

0 0 · · · an−1 1
1 1 · · · 1 1


= a1a2 · · · an−1 −

(
1
a1

+
1
a2

+ · · ·+ 1
an−1

)
a1a2 · · · an−1.

For an even more general statement, see [18s-hw4s, Exercise 6 (b)].]

(b) Let a, b, c, d be reals. Let us recall some properties of determinants:

Property 1: Let A be an n × n-matrix, and let p and q be two distinct
elements of [n]. If we add λ · rowp A to the q-th row of A, then det A
does not change. (This is Corollary 1.2.5 in the class notes from 2019-10-
30.)

Property 2: Let A be an n × n-matrix, and let p and q be two distinct
elements of [n]. If we subtract rowp A from the q-th row of A, then
det A does not change. (This follows from Property 1 (applied to λ =
−1), because adding (−1) · rowp A to the q-th row of A is the same as
subtracting rowp A from the q-th row of A.)

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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Property 3: If an n × n-matrix A is triangular (i.e., upper-triangular or
lower-triangular), then its determinant is the product of its diagonal
elements:

det A = A1,1A2,2 · · · An,n.

(This is Theorem 1.1.2 in the class notes from 2019-10-30.)

Now,

det


a b c d
b b c d
c c c d
d d d d



= det


a− b 0 0 0

b b c d
c c c d
d d d d


 here, we have subtracted the 2-nd row of our matrix

from the 1-st row; this did not change the determinant
(by Property 2)



= det


a− b 0 0 0
b− c b− c 0 0

c c c d
d d d d


 here, we have subtracted the 3-rd row of our matrix

from the 3-rd row; this did not change the determinant
(by Property 2)



= det


a− b 0 0 0
b− c b− c 0 0
c− d c− d c− d 0

d d d d


 here, we have subtracted the 4-th row of our matrix

from the 3-rd row; this did not change the determinant
(by Property 2)


= (a− b) (b− c) (c− d) d

(by Property 3, since our matrix is lower-triangular and its diagonal entries are
a− b, b− c, c− d, d).

[Remark: See [Grinbe15, Remark 6.16] for a generalization of this result to n× n-
matrices (and for a different proof).]

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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7. Eigenvalues and eigenvectors

Exercise 6. Diagonalize the matrix A :=
(

1 1
0 5

)
.

Solution to Exercise 6. The characteristic polynomial of A is

χA (t) = det (A− tI2) = det
(

1− t 1
0 5− t

)
= (1− t) (5− t)

(since the determinant of an upper-triangular matrix equals the product of its di-
agonal entries). Hence, the roots of χA (t) are 1 and 5.

Recall that the eigenvalues of A are the roots of χA (t) (by Proposition 2.1.7 in
the class notes from 2019-11-04). But the roots of χA (t) are 1 and 5. Hence, the
eigenvalues of A are 1 and 5.

Next, we will find the eigenvectors. This is an easy matter of solving systems of
linear equations:

• The 1-eigenvectors of A are the nonzero vectors v ∈ R2 satisfying Av = 1v. In

other words, they are the nonzero vectors
(

x
y

)
∈ R2 such that A

(
x
y

)
=

1
(

x
y

)
. This is a system of 2 linear equations in the unknowns x, y; solving it

by Gaussian elimination, we obtain {y = 0 (where x is a free variable). Thus,

they are the nonzero scalar multiples of the vector
(

1
0

)
.

• Likewise, the 5-eigenvectors of A are the nonzero scalar multiples of the vec-

tor
(

1
4

)
. (Or, equivalently, of the vector

(
1/4

1

)
, but I like my entries

integer if possible.)

Finally, let us diagonalize A using the eigenvectors we found. We label our two
eigenvalues as λ1 = 1 and λ2 = 5, and we label the corresponding eigenvectors as

u1 =

(
1
0

)
and u2 =

(
1
4

)
. Then, the pair (u1, u2) is a basis of R2 that consists

of eigenvectors of A, and λ1, λ2 are the corresponding eigenvalues. Hence, we
can find a diagonalization of A using Proposition 1.2.3 (a) in the class notes from
2019-11-11: We set

U = [u1 | u2] =

(
1 1
0 4

)
and

D = diag (λ1, λ2) = diag (1, 5) =
(

1 0
0 5

)
.

The pair U, D is a diagonalization of A (that is, U is invertible, and D is diagonal,
and we have A = UDU−1).

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-11.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-11.pdf
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8. General

An m× n-matrix A is said to be left-invertible if it has a left inverse (i.e., if there
exists an n×m-matrix B such that BA = In).

Exercise 7. True or false? No justifications are required in this exercise. Just
write Y or N into the respective box!

(a) If a 3 × 3-matrix has at most 2 nonzero entries, then its

determinant is 0.

(b) If all entries of an 3× 3-matrix are nonzero, then its deter-

minant is nonzero.

(c) The product of two invertible matrices is invertible (if this

product is well-defined).

(d) The product of two left-invertible matrices is left-invertible

(if this product is well-defined).

(e) If v and w are two eigenvectors of a 2× 2-matrix A, then

v + w is an eigenvector of A as well.

(f) If A and B are two 2 × 2-matrices, then det (A + B) =

det A + det B.

(g) If A and B are two 2× 2-matrices, then det (AB) = det A ·

det B.

(h) If two matrices A and B have the same determinant, then

they have the same characteristic polynomial.

(i) The eigenvalues of a matrix A are also the eigenvalues of

AT.

(j) The eigenvectors of a matrix A are also the eigenvectors of

AT.
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Solution to Exercise 7. (a) YES.
Proof. Let A be a 3× 3-matrix that has at most 2 nonzero entries. We must prove

that det A = 0.
The matrix A has 3 rows. Thus, if each row of A had at least one nonzero

entry, then A would have at least 3 nonzero entries, which would contradict our
assumption that A has at most 2 nonzero entries. Hence, not every row of A has at
least one nonzero entry. In other words, at least one row of A must have only zero
entries. In other words, A has a zero row. Thus, Corollary 1.2.1 in the class notes
from 2019-10-30 shows that det A = 0.

(b) NO.

Proof. All entries of the 3× 3-matrix

 1 1 1
1 1 1
1 1 1

 are nonzero, yet this matrix

has determinant 0.

(c) YES.
Proof. Let A1 and A2 be two invertible matrices such that the product A1A2 is

well-defined. We must prove that A1A2 is invertible.
We have assumed that A1 is invertible. In other words, A1 has an inverse. Let

B1 be this inverse. Recalling the definition of “inverse”, we see that this entails
A1B1 = I and B1A1 = I (where the “I”s are identity matrices of appropriate sizes).

We have assumed that A2 is invertible. In other words, A2 has an inverse. Let
B2 be this inverse. Recalling the definition of “inverse”, we see that this entails
A2B2 = I and B2A2 = I (where the “I”s are identity matrices of appropriate sizes).

Now,

(A1A2) (B2B1) = A1 A2B2︸ ︷︷ ︸
=I

B1 = A1 IB1︸︷︷︸
=B1

= A1B1 = I and

(B2B1) (A1A2) = B2 B1A1︸ ︷︷ ︸
=I

A2 = B2 IA2︸︷︷︸
=A2

= B2A2 = I.

These two equalities show that B2B1 is an inverse of A1A2 (by the definition of
“inverse”). Thus, the matrix A1A2 has an inverse, i.e., is invertible.

(d) YES.
Proof. Let A1 and A2 be two left-invertible matrices such that the product A1A2

is well-defined. We must prove that A1A2 is left-invertible.
We have assumed that A1 is left-invertible. In other words, A1 has a left inverse.

Let B1 be this left inverse. Recalling the definition of “left inverse”, we see that this
entails B1A1 = I (where the “I” is an identity matrix of appropriate size).

We have assumed that A2 is left-invertible. In other words, A2 has a left inverse.
Let B2 be this left inverse. Recalling the definition of “left inverse”, we see that this
entails B2A2 = I (where the “I” is an identity matrix of appropriate size).

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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Now,
(B2B1) (A1A2) = B2 B1A1︸ ︷︷ ︸

=I

A2 = B2 IA2︸︷︷︸
=A2

= B2A2 = I.

This shows that B2B1 is a left inverse of A1A2 (by the definition of “left inverse”).
Thus, the matrix A1A2 has a left inverse, i.e., is left-invertible.

[Remark: Clearly, an analogous argument can be used to prove the analogous fact
about right-invertible matrices.]

(e) NO.

Proof. For a simple example, let us pick A =

(
1 0
0 2

)
. Then, both v :=

(
1
0

)
and w :=

(
0
1

)
are eigenvectors of A (for eigenvalues 1 and 2, respectively), but

v + w is not.
[Remark: The claim can be salvaged: If v and w are two eigenvectors of A for the

same eigenvalue, then v + w is either the zero vector or an eigenvector of A for the
same eigenvalue. In other words, if λ ∈ R and if A ∈ Rn×n, then the sum of any
two λ-eigenvectors of A is either the zero vector or a λ-eigenvector of A again.]

(f) NO.
Proof. One of the simplest counterexamples is A = I2 and B = I2. These satisfy

det (A + B) = 4 but det A︸ ︷︷ ︸
=1

+det B︸ ︷︷ ︸
=1

= 2.

(g) YES.
Proof. This was Exercise 1 on homework set #3. It is also a particular case of the

fact that det (AB) = det A · det B whenever A and B are two square matrices of the
same size. (This is Theorem 1.5.1 in the class notes from 2019-10-30, where I give
two references to proofs of this fact.)

(h) NO.

Proof. For example, the matrices
(

2 0
0 2

)
and

(
4 0
0 1

)
have the same determi-

nant (namely, 4), but different characteristic polynomials (namely, (t− 2)2 versus
(t− 4) (t− 1)).

(i) YES.
Proof. Let A be an n× n-matrix. We must prove that the eigenvalues of A are the

eigenvalues of AT.
It suffices to show that the characteristic polynomial of A is the characteristic

polynomial of AT (since the eigenvalues of a matrix are the roots of its characteristic
polynomial2).

2by Proposition 2.1.7 in the class notes from 2019-11-04

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw3s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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The matrix tIn is a diagonal matrix (with t’s on the diagonal), and thus equals its
own transpose. In other words, (tIn)

T = tIn.
It is easy to see that (C− D)T = CT − DT for any two n× n-matrices C and D.

Thus, (A− tIn)
T = AT − (tIn)

T︸ ︷︷ ︸
=tIn

= AT − tIn. Taking determinants on both sides of

this equality, we find det
(
(A− tIn)

T
)
= det

(
AT − tIn

)
.

But Theorem 1.3.1 in the class notes from 2019-10-23 shows that det
(
CT) = det C

for any n× n-matrix C. Applying this to C = A− tIn, we obtain det
(
(A− tIn)

T
)
=

det (A− tIn). Hence,

det (A− tIn) = det
(
(A− tIn)

T
)
= det

(
AT − tIn

)
.

The left hand side of this equality is χA (t) (since this is how the characteristic
polynomial χA is defined), whereas the right hand side is χAT (t) (since this is
how the characteristic polynomial χAT is defined). Hence, this equality rewrites
as χA (t) = χAT (t). In other words, the characteristic polynomial of A is the
characteristic polynomial of AT. This completes our proof.

(j) NO.

Proof. For example,
(

1
0

)
is an eigenvector of the matrix

(
1 1
0 1

)
, but not of

its transpose.
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