Math 201-003 Fall 2019 (Darij Grinberg): final exam

1. Reminders

1.1. Matrix basics

- For any two matrices A and B, if the product $A B$ is well-defined, then

$$
(A B)_{i, j}=A_{i, 1} B_{1, j}+A_{i, 2} B_{2, j}+\cdots+A_{i, m} B_{m, j}=\operatorname{row}_{i} A \cdot \operatorname{col}_{j} B
$$

for all indices i and j.

- The transpose A^{T} of an $n \times m$-matrix A is the $m \times n$-matrix whose entries are $\left(A^{T}\right)_{i, j}=A_{j, i}$.

1.2. Operations and RREFs

Definition 1.1. The following operations on a matrix A are called elementary row operations (for short EROs, or just row operations):

- ERO1: Exchange two rows.
- ERO2: Scale a row by a nonzero constant.
- ERO3: Add a multiple of one row to another row. (That is, add $\lambda \operatorname{row}_{i} A$ to $\operatorname{row}_{j} A$ for some $\lambda \in \mathbb{R}$ and $i \neq j$.)

Definition 1.2. A matrix is in RREF if and only if it satisfies the following four conditions:

- RREF0: Any zero row (= row full of zeros) is below any nonzero row (= row with at least some nonzero entries).
- RREF1: In any nonzero row, the first nonzero entry is equal to 1 . This entry is called the pivot of the row.
- RREF2: The pivot of any nonzero row must be further to the right than the pivot of the previous nonzero row.
- RREF3: If a column contains a pivot, then all other entries in the column are zero.

The RREF of a matrix A is the unique matrix B that is in RREF and can be obtained from A by a sequence of EROs.

Definition 1.3. Let A be an $n \times n$-matrix. Then, the $\operatorname{determinant} \operatorname{det} A$ of A is defined to be the sum

$$
\sum_{\sigma \text { is a permutation of }[n]} \operatorname{sign}(\sigma) \cdot A_{1, \sigma(1)} A_{2, \sigma(2)} \cdots A_{n, \sigma(n)} .
$$

Here, $[n]$ means $\{1,2, \ldots, n\}$.
Theorem 1.4 (Laplace expansion). Let A be an $n \times n$-matrix. For each $p, q \in[n]$, we let $M_{p, q}$ be the $(n-1) \times(n-1)$-matrix obtained from A by removing row p and column q. Then:
(a) For each $p \in[n]$, we have

$$
\operatorname{det} A=\sum_{q=1}^{n}(-1)^{p+q} A_{p, q} \operatorname{det}\left(M_{p, q}\right) .
$$

(This is called Laplace expansion along the p-th row.)
(b) For each $q \in[n]$, we have

$$
\operatorname{det} A=\sum_{p=1}^{n}(-1)^{p+q} A_{p, q} \operatorname{det}\left(M_{p, q}\right) .
$$

(This is called Laplace expansion along the q-th column.)
Definition 1.5. Let A be an $n \times n$-matrix. Let λ be a scalar (i.e., a real number).
(a) A λ-eigenvector of A means a nonzero vector $v \in \mathbb{R}^{n}$ such that $A v=\lambda v$.
(b) We say that λ is an eigenvalue of A if and only if there exists a λ eigenvector of A.
(c) The characteristic polynomial of A is the polynomial

$$
\chi_{A}(t)=\operatorname{det}\left(A-t I_{n}\right) .
$$

2. Matrix basics

Exercise 1. Let A be a 3×2-matrix. Which of the following matrices are welldefined, and (if they are) what are their dimensions? (For example, A^{T} is a well-defined 2×3-matrix, i.e., has dimensions 2×3. But A^{2} is not well-defined.)

No justifications are required in this exercise. Just write the dimensions (or " N " for "not well-defined") into the respective box!
(a) $A+A^{T}$:
(b) $A A^{T}$:

(c) $A^{T} A$:

(d) $A A^{T} A$: \square
(e) $A A^{T} A A^{T}$:

Solution to Exercise 1 Here are the answers:
(a) Not well-defined (since we cannot add a 3×2-matrix with a 2×3-matrix).
(b) Well-defined and has dimensions 3×3.
(c) Well-defined and has dimensions 2×2.
(d) Well-defined and has dimensions 3×2.
(e) Well-defined and has dimensions 3×3.
[All four parts (b), (c), (d) and (e) follow from the same principle: The product $X Y$ of a $p \times q$-matrix X with an $r \times s$-matrix Y is well-defined if and only if $q=r$; furthermore, in this case, it is a $p \times s$-matrix. Parts (c) and (d) follow directly from this principle; parts (d) and (e) require applying it twice or thrice.]

3. RREF

Exercise 2. (a) Let A_{3} be the 3×3-matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)$. Find its RREF.
(b) Let A_{5} be the $5 \times$ 5-matrix $\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}\right)$. Find its RREF.
[Note: The pattern in A_{3} and in A_{5} is exactly what it looks like: 1's along the border of the matrix, 2's one step further inward, etc.]

Solution to Exercise 2] (a) Let us bring A_{3} into RREF using [Strickland, Method 6.4] (with the standard allowance for not needlessly freezing rows when the matrix is already in RREF):

$$
\begin{aligned}
& A_{3}=\left(\begin{array}{ccc}
\boxed{1} & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right) \text { add }(-1) \text {-row } 1 \text { to row } 2\left(\begin{array}{ccc}
\boxed{1} & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \\
& \quad \text { add }(-1) \cdot \text { row } 1 \text { to row } 3\left(\begin{array}{ccc}
\boxed{1} & 1 & 1 \\
0 & \boxed{1} & 0 \\
0 & 0 & 0
\end{array}\right) \text { add }(-1) \xrightarrow{\text { row } 2 \text { to row } 1 ~}\left(\begin{array}{ccc}
\boxed{1} & 0 & 1 \\
0 & \boxed{1} & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

The resulting matrix is the RREF of A_{3}.
(b) Let us bring A_{5} into RREF using [Strickland, Method 6.4] (with the standard allowance for not needlessly freezing rows when the matrix is already in RREF):
$A_{5}=\left(\begin{array}{ccccc}\boxed{1} & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}\right) \xrightarrow{\text { add }(-1) \cdot \text { row } 1 \text { to row } 2}\left(\begin{array}{ccccc}\boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}\right)$

The resulting matrix is the RREF of A_{5}.
[Remark: Similarly, for any $n \in \mathbb{N}$, you can define the $n \times n$-matrix A_{n} whose (i, j)-th entry is "the distance from cell (i, j) to the boundary of the matrix" (i.e., the number $\min \{i, j, n+1-i, n+1-j\}$). Its RREF looks exactly like the RREFs of A_{3} and A_{5} we found above: The entries in cells (i, i) and ($i, n+1-i$) for all $i \in\{1,2, \ldots,\lceil n / 2\rceil\}$ equal 1 (where $\lceil n / 2\rceil$ denotes the smallest integer that is $n / 2$), and all remaining entries equal 0.]

4. Linear independence

Exercise 3. Consider the four matrices
$A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$,
$B=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$,
$C=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$,
$D=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$.
(a) Are these matrices A, B, C, D linearly independent?
(b) Do these matrices A, B, C, D span the vector space $\mathbb{R}^{2 \times 2}$?

Solution to Exercise 3 (a) Yes.
Proof. Let $a A+b B+c C+d D=0_{2 \times 2}$ be a relation between A, B, C, D. We shall prove that this relation is trivial, i.e., that we have $a=b=c=d=0$.

Indeed, the definitions of A, B, C, D yield

$$
\begin{aligned}
a A+b B+c C+d D & =a\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)+b\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)+c\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)+d\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 a+b+c+d & a+2 b+c+d \\
a+b+2 c+d & a+b+c+2 d
\end{array}\right) .
\end{aligned}
$$

Comparing this with $a A+b B+c C+d D=0_{2 \times 2}$, we find

$$
\left(\begin{array}{cc}
2 a+b+c+d & a+2 b+c+d \\
a+b+2 c+d & a+b+c+2 d
\end{array}\right)=0_{2 \times 2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

In other words, the four equalities

$$
\left\{\begin{array}{l}
2 a+b+c+d=0 \\
a+2 b+c+d=0 \\
a+b+2 c+d=0 \\
a+b+c+2 d=0
\end{array}\right.
$$

all hold. We can treat them as a system of linear equations in a, b, c, d and solve it using Gaussian elimination, but we can also proceed in a simpler way: Subtracting the equality $a+2 b+c+d=0$ from the equality $2 a+b+c+d=0$, we obtain $(2 a+b+c+d)-(a+2 b+c+d)=0$. This rewrites as $a-b=0$. In other words, $b=a$. Similarly, $c=a$ and $d=a$. Now, the equality $2 a+b+c+d=0$ yields $0=2 a+\underbrace{b}_{=a}+\underbrace{c}_{=a}+\underbrace{d}_{=a}=2 a+a+a+a=5 a$, so that $5 a=0$ and therefore $a=0$. Similarly, $b=0$ and $c=0$ and $d=0$. Hence, $a=b=c=d=0$. Thus, the relation $a A+b B+c C+d D=0_{2 \times 2}$ is trivial.

We thus have shown that each any relation $a A+b B+c C+d D=0_{2 \times 2}$ between A, B, C, D must be trivial. In other words, A, B, C, D are linearly independent.
(b) Yes.

We shall give two proofs of this fact:

First proof. The list (A, B, C, D) is \mathbb{R}-linearly independent (by part (a) of this exercise), i.e., is an independent list of $\mathbb{R}^{2 \times 2}$ (using the terminology from our class notes from 2019-12-04).

The \mathbb{R}-vector space $\mathbb{R}^{2 \times 2}$ has dimension $2 \cdot 2=4$ (since the list

$$
(\underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)}_{\substack{\text { the four matrices, each of which has a } 1 \text { in } \\
\text { some position, and zeroes everywhere else }}})
$$

is a basis of this space). In other words, $\operatorname{dim}\left(\mathbb{R}^{2 \times 2}\right)=4$. Hence, Theorem 1.1.7 (h) from our class notes from 2019-12-04 (applied to $\mathbb{K}=\mathbb{R}$ and $V=\mathbb{R}^{2 \times 2}$) shows that any independent list of $\mathbb{R}^{2 \times 2}$ that has length 4 must be a basis of $\mathbb{R}^{2 \times 2}$. Applying this to the independent list (A, B, C, D), we conclude that (A, B, C, D) must be a basis of $\mathbb{R}^{2 \times 2}$ (since (A, B, C, D) is an independent list of $\mathbb{R}^{2 \times 2}$). Thus, in particular, the list (A, B, C, D) spans $\mathbb{R}^{2 \times 2}$. In other words, the matrices A, B, C, D span the vector space $\mathbb{R}^{2 \times 2}$.

Second proof. Any matrix in $\mathbb{R}^{2 \times 2}$ can be written as a linear combination of A, B, C, D : Namely, if the matrix is $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then it can be written as

$$
\frac{4 a-b-c-d}{5} A+\frac{4 b-c-d-a}{5} B+\frac{4 c-d-a-b}{5} C+\frac{4 d-a-b-c}{5} D .
$$

(You can find this by solving the equation $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=x A+y B+z C+w D$ for x, y, z, w.)

5. Inverses

Exercise 4. (a) Is the matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ invertible?
(b) Is the matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)$ invertible?

Solution to Exercise 4 (a) Yes.

Proof. One way to see this is by constructing its inverse:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & -1 \\
1 & -1 & 0
\end{array}\right)
$$

Another way is to observe that its determinant is $-1 \neq 0$, and thus it is invertible (by the implication $(\mathbf{l}) \Longrightarrow \mathbf{(k)}$ in Theorem 2.1.3 in our class notes from 2019-11-04).
(b) No.

Proof. The columns of this matrix are linearly dependent (since its first and third columns are identical). Hence, the matrix is not invertible (by the implication (\mathbf{b}^{\prime}) $\Longrightarrow\left(\mathbf{k}^{\prime}\right)$ in Theorem 2.1.4 in our class notes from 2019-11-04).

6. Determinants

Exercise 5. (a) Compute det $\left(\begin{array}{llll}a & 0 & 0 & 1 \\ 0 & b & 0 & 1 \\ 0 & 0 & c & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$, where a, b, c, d are reals.
[Hint: The result will have the form $x-y-z-w$, where x, y, z, w are four simple expressions.]
(b) Compute $\operatorname{det}\left(\begin{array}{llll}a & b & c & d \\ b & b & c & d \\ c & c & c & d \\ d & d & d & d\end{array}\right)$, where a, b, c, d are reals. Write the result as a product of four linear expressions in a, b, c, d.
[Hint: In part (b), don't waste your time expanding the determinant by its definition; the result will not be easy to factor. Instead, try simplifying the determinant by appropriate transformations.]
[Note: The matrix in (b) has an a in its top-left cell; b^{\prime} s in the three cells bordering it; c^{\prime} s in the five cells bordering them; d 's everywhere else.]

Solution to Exercise 5 (a) Let a, b, c, d be reals. Laplace expansion along the first row yields

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{llll}
a & 0 & 0 & 1 \\
0 & b & 0 & 1 \\
0 & 0 & c & 1 \\
1 & 1 & 1 & 1
\end{array}\right)= & \underbrace{(-1)^{1+1}}_{=1} a \operatorname{det}\left(\begin{array}{lll}
b & 0 & 1 \\
0 & c & 1 \\
1 & 1 & 1
\end{array}\right)+\underbrace{(-1)^{1+2} 0 \operatorname{det}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & c & 1 \\
1 & 1 & 1
\end{array}\right)}_{=0} \\
& +\underbrace{(-1)^{1+3} 0 \operatorname{det}\left(\begin{array}{lll}
0 & b & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)}_{=0}+\underbrace{(-1)^{1+4} 1 \operatorname{det}\left(\begin{array}{lll}
0 & b & 0 \\
0 & 0 & c \\
1 & 1 & 1
\end{array}\right)}_{=-1} \\
& =a \operatorname{det}\left(\begin{array}{lll}
b & 0 & 1 \\
0 & c & 1 \\
1 & 1 & 1
\end{array}\right)-\operatorname{det}\left(\begin{array}{lll}
0 & b & 0 \\
0 & 0 & c \\
1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

The two determinants on the right hand side of this equality are easily computed (either again by Laplace expansion along the first row, or by the fairly manageable ${ }^{1}$ explicit definition of a determinant):

$$
\operatorname{det}\left(\begin{array}{ccc}
b & 0 & 1 \\
0 & c & 1 \\
1 & 1 & 1
\end{array}\right)=b c-b-c ; \quad \operatorname{det}\left(\begin{array}{ccc}
0 & b & 0 \\
0 & 0 & c \\
1 & 1 & 1
\end{array}\right)=b c
$$

[^0]Thus, we can conclude our above computation as follows:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{llll}
a & 0 & 0 & 1 \\
0 & b & 0 & 1 \\
0 & 0 & c & 1 \\
1 & 1 & 1 & 1
\end{array}\right) & =\underbrace{a \operatorname{det}\left(\begin{array}{ccc}
b & 0 & 1 \\
0 & c & 1 \\
1 & 1 & 1
\end{array}\right)}_{=b c-b-c}-\underbrace{\operatorname{det}\left(\begin{array}{ccc}
0 & b & 0 \\
0 & 0 & c \\
1 & 1 & 1
\end{array}\right)}_{=b c} \\
& =a(b c-b-c)-b c=a b c-a b-a c-b c .
\end{aligned}
$$

[Remark: An alternative solution can be obtained just by applying the definition of a determinant and analyzing which of the 24 permutations of [4] will give rise to nonzero terms. This is not as painful as it sounds; only 4 permutations give rise to nonzero terms. This method can be generalized to the case of an $n \times n$-matrix, resulting in the formula

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccc}
a_{1} & 0 & \cdots & 0 & 1 \\
0 & a_{2} & \cdots & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n-1} & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right) \\
& =a_{1} a_{2} \cdots a_{n-1}
\end{aligned}
$$

- (the sum of all products of $n-2$ of the $n-1$ numbers $a_{1} a_{2} \cdots a_{n-1}$).

If $a_{1}, a_{2}, \ldots, a_{n-1}$ are nonzero, then this can be simplified to

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccc}
a_{1} & 0 & \cdots & 0 & 1 \\
0 & a_{2} & \cdots & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n-1} & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right) \\
& =a_{1} a_{2} \cdots a_{n-1}-\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n-1}}\right) a_{1} a_{2} \cdots a_{n-1} .
\end{aligned}
$$

For an even more general statement, see [18s-hw4s, Exercise 6 (b)].]
(b) Let a, b, c, d be reals. Let us recall some properties of determinants:

Property 1: Let A be an $n \times n$-matrix, and let p and q be two distinct elements of $[n]$. If we add $\lambda \cdot \operatorname{row}_{p} A$ to the q-th row of A, then $\operatorname{det} A$ does not change. (This is Corollary 1.2.5 in the class notes from 2019-1030.)

Property 2: Let A be an $n \times n$-matrix, and let p and q be two distinct elements of $[n]$. If we subtract $\operatorname{row}_{p} A$ from the q-th row of A, then $\operatorname{det} A$ does not change. (This follows from Property 1 (applied to $\lambda=$ -1), because adding $(-1) \cdot \operatorname{row}_{p} A$ to the q-th row of A is the same as subtracting $\operatorname{row}_{p} A$ from the q-th row of A.)

Property 3: If an $n \times n$-matrix A is triangular (i.e., upper-triangular or lower-triangular), then its determinant is the product of its diagonal elements:

$$
\operatorname{det} A=A_{1,1} A_{2,2} \cdots A_{n, n}
$$

(This is Theorem 1.1.2 in the class notes from 2019-10-30.)
Now,

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{llll}
a & b & c & d \\
b & b & c & d \\
c & c & c & d \\
d & d & d & d
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
a-b & 0 & 0 & 0 \\
b & b & c & d \\
c & c & c & d \\
d & d & d & d
\end{array}\right)
\end{aligned}
$$

$\left(\begin{array}{c}\text { here, we have subtracted the 2-nd row of our matrix } \\ \text { from the 1-st row; this did not change the determinant } \\ \text { (by Property 2) }\end{array}\right)$
$=\operatorname{det}\left(\begin{array}{cccc}a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c & c & c & d \\ d & d & d & d\end{array}\right)$
here, we have subtracted the 3-rd row of our matrix from the 3-rd row; this did not change the determinant
(by Property 2)
$=\operatorname{det}\left(\begin{array}{cccc}a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c-d & c-d & c-d & 0 \\ d & d & d & d\end{array}\right)$
$\left(\begin{array}{c}\text { here, we have subtracted the 4-th row of our matrix } \\ \text { from the 3-rd row; this did not change the determinant } \\ \text { (by Property 2) }\end{array}\right)$
$=(a-b)(b-c)(c-d) d$
(by Property 3, since our matrix is lower-triangular and its diagonal entries are $a-b, b-c, c-d, d)$.
[Remark: See [Grinbe15, Remark 6.16] for a generalization of this result to $n \times n$ matrices (and for a different proof).]

7. Eigenvalues and eigenvectors

Exercise 6. Diagonalize the matrix $A:=\left(\begin{array}{ll}1 & 1 \\ 0 & 5\end{array}\right)$.
Solution to Exercise 6 The characteristic polynomial of A is

$$
\chi_{A}(t)=\operatorname{det}\left(A-t I_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
1-t & 1 \\
0 & 5-t
\end{array}\right)=(1-t)(5-t)
$$

(since the determinant of an upper-triangular matrix equals the product of its diagonal entries). Hence, the roots of $\chi_{A}(t)$ are 1 and 5 .

Recall that the eigenvalues of A are the roots of $\chi_{A}(t)$ (by Proposition 2.1.7 in the class notes from 2019-11-04). But the roots of $\chi_{A}(t)$ are 1 and 5. Hence, the eigenvalues of A are 1 and 5 .

Next, we will find the eigenvectors. This is an easy matter of solving systems of linear equations:

- The 1-eigenvectors of A are the nonzero vectors $v \in \mathbb{R}^{2}$ satisfying $A v=1 v$. In other words, they are the nonzero vectors $\binom{x}{y} \in \mathbb{R}^{2}$ such that $A\binom{x}{y}=$ $1\binom{x}{y}$. This is a system of 2 linear equations in the unknowns x, y; solving it by Gaussian elimination, we obtain $\{y=0$ (where x is a free variable). Thus, they are the nonzero scalar multiples of the vector $\binom{1}{0}$.
- Likewise, the 5-eigenvectors of A are the nonzero scalar multiples of the vector $\binom{1}{4}$. (Or, equivalently, of the vector $\binom{1 / 4}{1}$, but I like my entries integer if possible.)

Finally, let us diagonalize A using the eigenvectors we found. We label our two eigenvalues as $\lambda_{1}=1$ and $\lambda_{2}=5$, and we label the corresponding eigenvectors as $u_{1}=\binom{1}{0}$ and $u_{2}=\binom{1}{4}$. Then, the pair $\left(u_{1}, u_{2}\right)$ is a basis of \mathbb{R}^{2} that consists of eigenvectors of A, and λ_{1}, λ_{2} are the corresponding eigenvalues. Hence, we can find a diagonalization of A using Proposition 1.2.3 (a) in the class notes from 2019-11-11; We set

$$
\begin{aligned}
& U=\left[u_{1} \mid u_{2}\right]=\left(\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right) \quad \text { and } \\
& D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{diag}(1,5)=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right) .
\end{aligned}
$$

The pair U, D is a diagonalization of A (that is, U is invertible, and D is diagonal, and we have $\left.A=U D U^{-1}\right)$.

8. General

An $m \times n$-matrix A is said to be left-invertible if it has a left inverse (i.e., if there exists an $n \times m$-matrix B such that $B A=I_{n}$).

Exercise 7. True or false? No justifications are required in this exercise. Just write Y or N into the respective box!
(a) \square If a 3×3-matrix has at most 2 nonzero entries, then its determinant is 0 .
(b) If all entries of an 3×3-matrix are nonzero, then its determinant is nonzero.
(c) \square The product of two invertible matrices is invertible (if this product is well-defined).
(d)
 (if this product is well-defined).
(e) If v and w are two eigenvectors of a 2×2-matrix A, then $v+w$ is an eigenvector of A as well.
(f) \square If A and B are two 2×2-matrices, then $\operatorname{det}(A+B)=$ $\operatorname{det} A+\operatorname{det} B$.

(h) If two matrices A and B have the same determinant, then they have the same characteristic polynomial.

Solution to Exercise 7 (a) YES.

Proof. Let A be a 3×3-matrix that has at most 2 nonzero entries. We must prove that $\operatorname{det} A=0$.

The matrix A has 3 rows. Thus, if each row of A had at least one nonzero entry, then A would have at least 3 nonzero entries, which would contradict our assumption that A has at most 2 nonzero entries. Hence, not every row of A has at least one nonzero entry. In other words, at least one row of A must have only zero entries. In other words, A has a zero row. Thus, Corollary 1.2.1 in the class notes from 2019-10-30 shows that $\operatorname{det} A=0$.
(b) NO.

Proof. All entries of the 3×3-matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ are nonzero, yet this matrix has determinant 0 .

(c) YES.

Proof. Let A_{1} and A_{2} be two invertible matrices such that the product $A_{1} A_{2}$ is well-defined. We must prove that $A_{1} A_{2}$ is invertible.

We have assumed that A_{1} is invertible. In other words, A_{1} has an inverse. Let B_{1} be this inverse. Recalling the definition of "inverse", we see that this entails $A_{1} B_{1}=I$ and $B_{1} A_{1}=I$ (where the " I "s are identity matrices of appropriate sizes).

We have assumed that A_{2} is invertible. In other words, A_{2} has an inverse. Let B_{2} be this inverse. Recalling the definition of "inverse", we see that this entails $A_{2} B_{2}=I$ and $B_{2} A_{2}=I$ (where the " I "s are identity matrices of appropriate sizes).

Now,

$$
\begin{aligned}
& \left(A_{1} A_{2}\right)\left(B_{2} B_{1}\right)=A_{1} \underbrace{A_{2} B_{2}}_{=I} B_{1}=A_{1} \underbrace{I B_{1}}_{=B_{1}}=A_{1} B_{1}=I \quad \text { and } \\
& \left(B_{2} B_{1}\right)\left(A_{1} A_{2}\right)=B_{2} \underbrace{B_{1} A_{1}}_{=I} A_{2}=B_{2} \underbrace{I A_{2}}_{=A_{2}}=B_{2} A_{2}=I .
\end{aligned}
$$

These two equalities show that $B_{2} B_{1}$ is an inverse of $A_{1} A_{2}$ (by the definition of "inverse"). Thus, the matrix $A_{1} A_{2}$ has an inverse, i.e., is invertible.
(d) YES.

Proof. Let A_{1} and A_{2} be two left-invertible matrices such that the product $A_{1} A_{2}$ is well-defined. We must prove that $A_{1} A_{2}$ is left-invertible.

We have assumed that A_{1} is left-invertible. In other words, A_{1} has a left inverse. Let B_{1} be this left inverse. Recalling the definition of "left inverse", we see that this entails $B_{1} A_{1}=I$ (where the " I " is an identity matrix of appropriate size).

We have assumed that A_{2} is left-invertible. In other words, A_{2} has a left inverse. Let B_{2} be this left inverse. Recalling the definition of "left inverse", we see that this entails $B_{2} A_{2}=I$ (where the " I " is an identity matrix of appropriate size).

Now,

$$
\left(B_{2} B_{1}\right)\left(A_{1} A_{2}\right)=B_{2} \underbrace{B_{1} A_{1}}_{=I} A_{2}=B_{2} \underbrace{I A_{2}}_{=A_{2}}=B_{2} A_{2}=I .
$$

This shows that $B_{2} B_{1}$ is a left inverse of $A_{1} A_{2}$ (by the definition of "left inverse"). Thus, the matrix $A_{1} A_{2}$ has a left inverse, i.e., is left-invertible.
[Remark: Clearly, an analogous argument can be used to prove the analogous fact about right-invertible matrices.]
(e) NO.

Proof. For a simple example, let us pick $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Then, both $v:=\binom{1}{0}$ and $w:=\binom{0}{1}$ are eigenvectors of A (for eigenvalues 1 and 2 , respectively), but $v+w$ is not.
[Remark: The claim can be salvaged: If v and w are two eigenvectors of A for the same eigenvalue, then $v+w$ is either the zero vector or an eigenvector of A for the same eigenvalue. In other words, if $\lambda \in \mathbb{R}$ and if $A \in \mathbb{R}^{n \times n}$, then the sum of any two λ-eigenvectors of A is either the zero vector or a λ-eigenvector of A again.]

(f) NO.

Proof. One of the simplest counterexamples is $A=I_{2}$ and $B=I_{2}$. These satisfy $\operatorname{det}(A+B)=4$ but $\underbrace{\operatorname{det} A}_{=1}+\underbrace{\operatorname{det} B}_{=1}=2$.

(g) YES.

Proof. This was Exercise 1 on homework set \#3. It is also a particular case of the fact that $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$ whenever A and B are two square matrices of the same size. (This is Theorem 1.5.1 in the class notes from 2019-10-30, where I give two references to proofs of this fact.)
(h) NO.

Proof. For example, the matrices $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)$ have the same determinant (namely, 4), but different characteristic polynomials (namely, $(t-2)^{2}$ versus $(t-4)(t-1))$.

(i) YES.

Proof. Let A be an $n \times n$-matrix. We must prove that the eigenvalues of A are the eigenvalues of A^{T}.

It suffices to show that the characteristic polynomial of A is the characteristic polynomial of A^{T} (since the eigenvalues of a matrix are the roots of its characteristic polynomia ${ }^{2}{ }^{2}$.

[^1]The matrix $t I_{n}$ is a diagonal matrix (with t 's on the diagonal), and thus equals its own transpose. In other words, $\left(t I_{n}\right)^{T}=t I_{n}$.

It is easy to see that $(C-D)^{T}=C^{T}-D^{T}$ for any two $n \times n$-matrices C and D. Thus, $\left(A-t I_{n}\right)^{T}=A^{T}-\underbrace{\left(t I_{n}\right)^{T}}_{=t I_{n}}=A^{T}-t I_{n}$. Taking determinants on both sides of this equality, we find $\operatorname{det}\left(\left(A-t I_{n}\right)^{T}\right)=\operatorname{det}\left(A^{T}-t I_{n}\right)$.

But Theorem 1.3.1 in the class notes from 2019-10-23 shows that $\operatorname{det}\left(C^{T}\right)=\operatorname{det} C$ for any $n \times n$-matrix C. Applying this to $C=A-t I_{n}$, we obtain $\operatorname{det}\left(\left(A-t I_{n}\right)^{T}\right)=$ $\operatorname{det}\left(A-t I_{n}\right)$. Hence,

$$
\operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left(\left(A-t I_{n}\right)^{T}\right)=\operatorname{det}\left(A^{T}-t I_{n}\right)
$$

The left hand side of this equality is $\chi_{A}(t)$ (since this is how the characteristic polynomial χ_{A} is defined), whereas the right hand side is $\chi_{A^{T}}(t)$ (since this is how the characteristic polynomial $\chi_{A^{T}}$ is defined). Hence, this equality rewrites as $\chi_{A}(t)=\chi_{A^{T}}(t)$. In other words, the characteristic polynomial of A is the characteristic polynomial of A^{T}. This completes our proof.
(j) NO.

Proof. For example, $\binom{1}{0}$ is an eigenvector of the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, but not of its transpose.

References

[18s-hw4s] Darij Grinberg, UMN Fall 2018 Math 4707 homework set \#4 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw4s.pdf
[Grinbe15] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019.
http://www.cip.ifi.lmu.de/~ grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https: //github.com/darijgr/detnotes/releases/tag/2019-01-10.
[Strickland] Neil Strickland, MAS201 Linear Mathematics for Applications, lecture notes, 28 September 2013.
http://neil-strickland.staff.shef.ac.uk/courses/MAS201/

[^0]: ${ }^{1}$ in the case of a 3×3-matrix

[^1]: ${ }^{2}$ by Proposition 2.1.7 in the class notes from 2019-11-04

