Math 201-003 Fall 2019 (Darij Grinberg): final exam

1. Reminders

1.1. Matrix basics

• For any two matrices *A* and *B*, if the product *AB* is well-defined, then

$$(AB)_{i,j} = A_{i,1}B_{1,j} + A_{i,2}B_{2,j} + \dots + A_{i,m}B_{m,j} = \operatorname{row}_i A \cdot \operatorname{col}_j B$$

for all indices *i* and *j*.

• The transpose A^T of an $n \times m$ -matrix A is the $m \times n$ -matrix whose entries are $(A^T)_{i,i} = A_{j,i}$.

1.2. Operations and RREFs

Definition 1.1. The following operations on a matrix *A* are called **elementary row operations** (for short **EROs**, or just **row operations**):

- **ERO1:** Exchange two rows.
- **ERO2**: Scale a row by a nonzero constant.
- **ERO3:** Add a multiple of one row to another row. (That is, add $\lambda \operatorname{row}_i A$ to $\operatorname{row}_i A$ for some $\lambda \in \mathbb{R}$ and $i \neq j$.)

Definition 1.2. A matrix is **in RREF** if and only if it satisfies the following four conditions:

- **RREF0:** Any zero row (= row full of zeros) is below any nonzero row (= row with at least some nonzero entries).
- **RREF1:** In any nonzero row, the first nonzero entry is equal to 1. This entry is called the *pivot* of the row.
- **RREF2:** The pivot of any nonzero row must be further to the right than the pivot of the previous nonzero row.
- **RREF3:** If a **column** contains a pivot, then all other entries in the column are zero.

The **RREF of a matrix** *A* is the unique matrix *B* that is in RREF and can be obtained from *A* by a sequence of EROs.

Definition 1.3. Let *A* be an $n \times n$ -matrix. Then, the **determinant** det *A* of *A* is defined to be the sum

$$\sum_{\sigma \text{ is a permutation of } [n]} \operatorname{sign}(\sigma) \cdot A_{1,\sigma(1)} A_{2,\sigma(2)} \cdots A_{n,\sigma(n)}.$$

Here, [n] means $\{1, 2, ..., n\}$.

Theorem 1.4 (Laplace expansion). Let *A* be an $n \times n$ -matrix. For each $p, q \in [n]$, we let $M_{p,q}$ be the $(n - 1) \times (n - 1)$ -matrix obtained from *A* by removing row *p* and column *q*. Then:

(a) For each $p \in [n]$, we have

$$\det A = \sum_{q=1}^{n} (-1)^{p+q} A_{p,q} \det (M_{p,q}).$$

(This is called **Laplace expansion along the** *p***-th row**.)

(b) For each $q \in [n]$, we have

$$\det A = \sum_{p=1}^{n} (-1)^{p+q} A_{p,q} \det (M_{p,q}).$$

(This is called **Laplace expansion along the** *q***-th column**.)

Definition 1.5. Let *A* be an $n \times n$ -matrix. Let λ be a scalar (i.e., a real number).

(a) A λ -eigenvector of A means a nonzero vector $v \in \mathbb{R}^n$ such that $Av = \lambda v$.

(b) We say that λ is an **eigenvalue** of *A* if and only if there exists a λ -eigenvector of *A*.

(c) The characteristic polynomial of *A* is the polynomial

$$\chi_A(t) = \det\left(A - tI_n\right).$$

2. Matrix basics

Exercise 1. Let *A* be a 3×2 -matrix. Which of the following matrices are well-defined, and (if they are) what are their dimensions? (For example, A^T is a well-defined 2×3 -matrix, i.e., has dimensions 2×3 . But A^2 is not well-defined.) No justifications are required in this exercise. Just write the dimensions (or "N" for "not well-defined") into the respective box!

Solution to Exercise 1. Here are the answers:

(a) Not well-defined (since we cannot add a 3×2 -matrix with a 2×3 -matrix).

(b) Well-defined and has dimensions 3×3 .

(c) Well-defined and has dimensions 2×2 .

(d) Well-defined and has dimensions 3×2 .

(e) Well-defined and has dimensions 3×3 .

[All four parts (b), (c), (d) and (e) follow from the same principle: The product *XY* of a $p \times q$ -matrix *X* with an $r \times s$ -matrix *Y* is well-defined if and only if q = r; furthermore, in this case, it is a $p \times s$ -matrix. Parts (c) and (d) follow directly from this principle; parts (d) and (e) require applying it twice or thrice.]

3. RREF

Exercise 2. (a) Let A_3 be the 3×3 -matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. Find its RREF. (b) Let A_5 be the 5×5 -matrix $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$. Find its RREF.

[Note: The pattern in A_3 and in A_5 is exactly what it looks like: 1's along the border of the matrix, 2's one step further inward, etc.]

Solution to Exercise 2. (a) Let us bring A_3 into RREF using [Strickland, Method 6.4] (with the standard allowance for not needlessly freezing rows when the matrix is already in RREF):

$$A_{3} = \begin{pmatrix} \boxed{1} & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 2}} \begin{pmatrix} \boxed{1} & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
$$\operatorname{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 3} \begin{pmatrix} \boxed{1} & 1 & 1 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{add } (-1) \cdot \operatorname{row 2} \text{ to } \operatorname{row 1}} \begin{pmatrix} \boxed{1} & 0 & 1 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot$$

The resulting matrix is the RREF of A_3 .

(b) Let us bring A_5 into RREF using [Strickland, Method 6.4] (with the standard allowance for not needlessly freezing rows when the matrix is already in RREF):

$$A_{5} = \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 2}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 1 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4}} \begin{pmatrix} \boxed{1} & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}^{\text{add } (-1) \cdot \operatorname{row 1} \text{ to } \operatorname{row 4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}^{\text{add$$

The resulting matrix is the RREF of A_5 .

[*Remark:* Similarly, for any $n \in \mathbb{N}$, you can define the $n \times n$ -matrix A_n whose (i, j)-th entry is "the distance from cell (i, j) to the boundary of the matrix" (i.e., the number min $\{i, j, n + 1 - i, n + 1 - j\}$). Its RREF looks exactly like the RREFs of A_3 and A_5 we found above: The entries in cells (i, i) and (i, n + 1 - i) for all $i \in \{1, 2, \ldots, \lceil n/2 \rceil\}$ equal 1 (where $\lceil n/2 \rceil$ denotes the smallest integer that is n/2), and all remaining entries equal 0.]

4. Linear independence

Exercise 3. Consider the four matrices

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

(a) Are these matrices *A*, *B*, *C*, *D* linearly independent?

(b) Do these matrices A, B, C, D span the vector space $\mathbb{R}^{2 \times 2}$?

Solution to Exercise 3. (a) Yes.

Proof. Let $aA + bB + cC + dD = 0_{2\times 2}$ be a relation between A, B, C, D. We shall prove that this relation is trivial, i.e., that we have a = b = c = d = 0. Indeed, the definitions of A, B, C, D yield

Indeed, the definitions of *A*, *B*, *C*, *D* yield

$$aA + bB + cC + dD = a \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} + d \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2a + b + c + d & a + 2b + c + d \\ a + b + 2c + d & a + b + c + 2d \end{pmatrix}.$$

Comparing this with $aA + bB + cC + dD = 0_{2 \times 2}$, we find

$$\left(\begin{array}{cc} 2a+b+c+d & a+2b+c+d \\ a+b+2c+d & a+b+c+2d \end{array}\right) = 0_{2\times 2} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right).$$

In other words, the four equalities

$$\begin{cases} 2a + b + c + d = 0\\ a + 2b + c + d = 0\\ a + b + 2c + d = 0\\ a + b + c + 2d = 0 \end{cases}$$

all hold. We can treat them as a system of linear equations in *a*, *b*, *c*, *d* and solve it using Gaussian elimination, but we can also proceed in a simpler way: Subtracting the equality a + 2b + c + d = 0 from the equality 2a + b + c + d = 0, we obtain (2a + b + c + d) - (a + 2b + c + d) = 0. This rewrites as a - b = 0. In other words, b = a. Similarly, c = a and d = a. Now, the equality 2a + b + c + d = 0 yields $0 = 2a + \underbrace{b}_{=a} + \underbrace{c}_{=a} + \underbrace{d}_{=a} = 2a + a + a + a = 5a$, so that 5a = 0 and therefore a = 0. Similarly, b = 0 and c = 0 and d = 0. Hence, a = b = c = d = 0. Thus, the

relation $aA + bB + cC + dD = 0_{2\times 2}$ is trivial.

We thus have shown that each any relation $aA + bB + cC + dD = 0_{2\times 2}$ between *A*, *B*, *C*, *D* must be trivial. In other words, *A*, *B*, *C*, *D* are linearly independent.

(b) Yes.

We shall give two proofs of this fact:

First proof. The list (A, B, C, D) is \mathbb{R} -linearly independent (by part (a) of this exercise), i.e., is an independent list of $\mathbb{R}^{2\times 2}$ (using the terminology from our class notes from 2019-12-04).

The \mathbb{R} -vector space $\mathbb{R}^{2\times 2}$ has dimension $2\cdot 2 = 4$ (since the list

$$\left(\underbrace{\begin{pmatrix}1&0\\0&0\end{pmatrix}}_{,}\begin{pmatrix}0&1\\0&0\end{pmatrix}_{,}\begin{pmatrix}0&0\\1&0\end{pmatrix}_{,}\begin{pmatrix}0&0\\0&1\end{pmatrix}_{,}$$
 the four matrices, each of which has a 1 in some position, and zeroes everywhere else

is a basis of this space). In other words, dim $(\mathbb{R}^{2\times 2}) = 4$. Hence, Theorem 1.1.7 (h) from our class notes from 2019-12-04 (applied to $\mathbb{K} = \mathbb{R}$ and $V = \mathbb{R}^{2\times 2}$) shows that any independent list of $\mathbb{R}^{2\times 2}$ that has length 4 must be a basis of $\mathbb{R}^{2\times 2}$. Applying this to the independent list (A, B, C, D), we conclude that (A, B, C, D) must be a basis of $\mathbb{R}^{2\times 2}$ (since (A, B, C, D) is an independent list of $\mathbb{R}^{2\times 2}$). Thus, in particular, the list (A, B, C, D) spans $\mathbb{R}^{2\times 2}$. In other words, the matrices A, B, C, D span the vector space $\mathbb{R}^{2\times 2}$.

Second proof. Any matrix in $\mathbb{R}^{2\times 2}$ can be written as a linear combination of *A*, *B*, *C*, *D*: Namely, if the matrix is $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then it can be written as

$$\frac{4a-b-c-d}{5}A + \frac{4b-c-d-a}{5}B + \frac{4c-d-a-b}{5}C + \frac{4d-a-b-c}{5}D.$$

(You can find this by solving the equation $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = xA + yB + zC + wD$ for x, y, z, w.)

5. Inverses

Exercise 4. (a) Is the matrix
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 invertible?
(b) Is the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ invertible?

Solution to Exercise 4. (a) Yes.

Proof. One way to see this is by constructing its inverse:

(1	1	1)	-1	(0	0	1	1
	1	1	0	=	0	1	-1].
ĺ	1	0	0 /		$\setminus 1$	-1	0 /	/

Another way is to observe that its determinant is $-1 \neq 0$, and thus it is invertible (by the implication (I) \implies (k) in Theorem 2.1.3 in our class notes from 2019-11-04).

(b) No.

Proof. The columns of this matrix are linearly dependent (since its first and third columns are identical). Hence, the matrix is not invertible (by the implication (b') \implies (k') in Theorem 2.1.4 in our class notes from 2019-11-04).

6. Determinants

Exercise 5. (a) Compute det
$$\begin{pmatrix} a & 0 & 0 & 1 \\ 0 & b & 0 & 1 \\ 0 & 0 & c & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
, where *a*, *b*, *c*, *d* are reals.

[**Hint:** The result will have the form x - y - z - w, where x, y, z, w are four simple expressions.]

(b) Compute det
$$\begin{pmatrix} a & b & c & d \\ b & b & c & d \\ c & c & c & d \\ d & d & d \end{pmatrix}$$
, where *a*, *b*, *c*, *d* are reals. Write the result as

a product of four linear expressions in *a*, *b*, *c*, *d*.

[**Hint:** In part **(b)**, don't waste your time expanding the determinant by its definition; the result will not be easy to factor. Instead, try simplifying the determinant by appropriate transformations.]

[**Note:** The matrix in (**b**) has an *a* in its top-left cell; *b*'s in the three cells bordering it; *c*'s in the five cells bordering them; *d*'s everywhere else.]

Solution to Exercise 5. (a) Let *a*, *b*, *c*, *d* be reals. Laplace expansion along the first row yields

$$\det \begin{pmatrix} a & 0 & 0 & 1 \\ 0 & b & 0 & 1 \\ 1 & 0 & c & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \underbrace{(-1)^{1+1}}_{=1} a \det \begin{pmatrix} b & 0 & 1 \\ 0 & c & 1 \\ 1 & 1 & 1 \end{pmatrix}}_{=0} + \underbrace{(-1)^{1+2} 0 \det \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}}_{=0} + \underbrace{(-1)^{1+4} 1 \det \begin{pmatrix} 0 & b & 0 \\ 0 & 0 & c \\ 1 & 1 & 1 \end{pmatrix}}_{=0} = a \det \begin{pmatrix} b & 0 & 1 \\ 0 & c & 1 \\ 1 & 1 & 1 \end{pmatrix} - \det \begin{pmatrix} 0 & b & 0 \\ 0 & 0 & c \\ 1 & 1 & 1 \end{pmatrix}.$$

The two determinants on the right hand side of this equality are easily computed (either again by Laplace expansion along the first row, or by the fairly manageable¹ explicit definition of a determinant):

$$\det \begin{pmatrix} b & 0 & 1 \\ 0 & c & 1 \\ 1 & 1 & 1 \end{pmatrix} = bc - b - c; \qquad \det \begin{pmatrix} 0 & b & 0 \\ 0 & 0 & c \\ 1 & 1 & 1 \end{pmatrix} = bc.$$

¹ in the case of a 3×3 -matrix

Thus, we can conclude our above computation as follows:

$$\det \begin{pmatrix} a & 0 & 0 & 1 \\ 0 & b & 0 & 1 \\ 0 & 0 & c & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = a \det \begin{pmatrix} b & 0 & 1 \\ 0 & c & 1 \\ 1 & 1 & 1 \end{pmatrix} - \underbrace{\det \begin{pmatrix} 0 & b & 0 \\ 0 & 0 & c \\ 1 & 1 & 1 \end{pmatrix}}_{=bc-b-c} = a(bc-ab-ac-bc)$$

[*Remark*: An alternative solution can be obtained just by applying the definition of a determinant and analyzing which of the 24 permutations of [4] will give rise to nonzero terms. This is not as painful as it sounds; only 4 permutations give rise to nonzero terms. This method can be generalized to the case of an $n \times n$ -matrix, resulting in the formula

$$\det \begin{pmatrix} a_1 & 0 & \cdots & 0 & 1\\ 0 & a_2 & \cdots & 0 & 1\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & a_{n-1} & 1\\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$
$$= a_1 a_2 \cdots a_{n-1}$$

- (the sum of all products of n - 2 of the n - 1 numbers $a_1a_2 \cdots a_{n-1}$).

If $a_1, a_2, \ldots, a_{n-1}$ are nonzero, then this can be simplified to

$$\det \begin{pmatrix} a_1 & 0 & \cdots & 0 & 1 \\ 0 & a_2 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1} & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$
$$= a_1 a_2 \cdots a_{n-1} - \left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_{n-1}}\right) a_1 a_2 \cdots a_{n-1}.$$

For an even more general statement, see [18s-hw4s, Exercise 6 (b)].]

(b) Let *a*, *b*, *c*, *d* be reals. Let us recall some properties of determinants:

Property 1: Let *A* be an $n \times n$ -matrix, and let *p* and *q* be two distinct elements of [n]. If we add $\lambda \cdot \operatorname{row}_p A$ to the *q*-th row of *A*, then det *A* does not change. (This is Corollary 1.2.5 in the class notes from 2019-10-30.)

Property 2: Let *A* be an $n \times n$ -matrix, and let *p* and *q* be two distinct elements of [n]. If we subtract $\operatorname{row}_p A$ from the *q*-th row of *A*, then det *A* does not change. (This follows from Property 1 (applied to $\lambda = -1$), because adding $(-1) \cdot \operatorname{row}_p A$ to the *q*-th row of *A* is the same as subtracting $\operatorname{row}_p A$ from the *q*-th row of *A*.)

Property 3: If an $n \times n$ -matrix A is triangular (i.e., upper-triangular or lower-triangular), then its determinant is the product of its diagonal elements:

$$\det A = A_{1,1}A_{2,2}\cdots A_{n,n}.$$

(This is Theorem 1.1.2 in the class notes from 2019-10-30.)

Now,

$$\det \begin{pmatrix} a & b & c & d \\ b & b & c & d \\ c & c & c & d \\ d & d & d & d \end{pmatrix}$$

$$= \det \begin{pmatrix} a-b & 0 & 0 & 0 \\ b & b & c & d \\ c & c & c & d \\ d & d & d & d \end{pmatrix}$$

$$\begin{pmatrix} a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c & c & c & d \\ d & d & d & d \end{pmatrix}$$

$$= \det \begin{pmatrix} a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c & c & c & d \\ d & d & d & d \end{pmatrix}$$

$$\begin{pmatrix} a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c & c & c & c & d \\ d & d & d & d \end{pmatrix}$$

$$\begin{pmatrix} a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c & c & c & d \\ d & d & d & d \end{pmatrix}$$

$$= \det \begin{pmatrix} a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c-d & c-d & c-d & 0 \\ d & d & d & d \end{pmatrix}$$

$$\begin{pmatrix} a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c-d & c-d & c-d & 0 \\ d & d & d & d \end{pmatrix}$$

$$\begin{pmatrix} a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c-d & c-d & c-d & 0 \\ d & d & d & d \end{pmatrix}$$

$$\begin{pmatrix} a-b & 0 & 0 & 0 \\ b-c & b-c & 0 & 0 \\ c-d & c-d & c-d & 0 \\ d & d & d & d \end{pmatrix}$$

$$= (a-b) (b-c) (c-d) d$$

(by Property 3, since our matrix is lower-triangular and its diagonal entries are a - b, b - c, c - d, d).

[*Remark:* See [Grinbe15, Remark 6.16] for a generalization of this result to $n \times n$ -matrices (and for a different proof).]

7. Eigenvalues and eigenvectors

Exercise 6. Diagonalize the matrix $A := \begin{pmatrix} 1 & 1 \\ 0 & 5 \end{pmatrix}$.

Solution to Exercise 6. The characteristic polynomial of A is

$$\chi_A(t) = \det(A - tI_2) = \det\begin{pmatrix} 1 - t & 1\\ 0 & 5 - t \end{pmatrix} = (1 - t)(5 - t)$$

(since the determinant of an upper-triangular matrix equals the product of its diagonal entries). Hence, the roots of $\chi_A(t)$ are 1 and 5.

Recall that the eigenvalues of *A* are the roots of $\chi_A(t)$ (by Proposition 2.1.7 in the class notes from 2019-11-04). But the roots of $\chi_A(t)$ are 1 and 5. Hence, the eigenvalues of *A* are 1 and 5.

Next, we will find the eigenvectors. This is an easy matter of solving systems of linear equations:

• The 1-eigenvectors of *A* are the nonzero vectors $v \in \mathbb{R}^2$ satisfying Av = 1v. In other words, they are the nonzero vectors $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ such that $A \begin{pmatrix} x \\ y \end{pmatrix} = 1 \begin{pmatrix} x \\ y \end{pmatrix}$. This is a set of 2 bin result in the set of 2 bin result.

 $\begin{pmatrix} x \\ y \end{pmatrix}$. This is a system of 2 linear equations in the unknowns *x*, *y*; solving it by Gaussian elimination, we obtain {y = 0 (where *x* is a free variable). Thus, they are the nonzero scalar multiples of the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

• Likewise, the 5-eigenvectors of *A* are the nonzero scalar multiples of the vector $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$. (Or, equivalently, of the vector $\begin{pmatrix} 1/4 \\ 1 \end{pmatrix}$, but I like my entries integer if possible.)

Finally, let us diagonalize A using the eigenvectors we found. We label our two eigenvalues as $\lambda_1 = 1$ and $\lambda_2 = 5$, and we label the corresponding eigenvectors as $u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $u_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$. Then, the pair (u_1, u_2) is a basis of \mathbb{R}^2 that consists of eigenvectors of A, and λ_1, λ_2 are the corresponding eigenvalues. Hence, we can find a diagonalization of A using Proposition 1.2.3 (a) in the class notes from 2019-11-11: We set

$$U = [u_1 \mid u_2] = \begin{pmatrix} 1 & 1 \\ 0 & 4 \end{pmatrix} \text{ and}$$
$$D = \operatorname{diag}(\lambda_1, \lambda_2) = \operatorname{diag}(1, 5) = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$$

The pair *U*, *D* is a diagonalization of *A* (that is, *U* is invertible, and *D* is diagonal, and we have $A = UDU^{-1}$).

8. General

An $m \times n$ -matrix A is said to be **left-invertible** if it has a left inverse (i.e., if there exists an $n \times m$ -matrix B such that $BA = I_n$).

Exercise 7. True or false? No justifications are required in this exercise. Just write Y or N into the respective box! (a) If a 3×3 -matrix has at most 2 nonzero entries, then its determinant is 0. (b) If all entries of an 3×3 -matrix are nonzero, then its determinant is nonzero. The product of two invertible matrices is invertible (if this (c) product is well-defined). (d) The product of two left-invertible matrices is left-invertible (if this product is well-defined). (e) If *v* and *w* are two eigenvectors of a 2×2 -matrix *A*, then v + w is an eigenvector of A as well. (f) If A and B are two 2×2 -matrices, then det(A + B) = $\det A + \det B$. If *A* and *B* are two 2×2 -matrices, then det $(AB) = \det A \cdot$ (g) det B. (h) If two matrices *A* and *B* have the same determinant, then they have the same characteristic polynomial. (i) The eigenvalues of a matrix A are also the eigenvalues of A^T . The eigenvectors of a matrix A are also the eigenvectors of (j) A^T

Solution to Exercise 7. (a) YES.

Proof. Let A be a 3×3 -matrix that has at most 2 nonzero entries. We must prove that det A = 0.

The matrix A has 3 rows. Thus, if each row of A had at least one nonzero entry, then A would have at least 3 nonzero entries, which would contradict our assumption that A has at most 2 nonzero entries. Hence, not every row of A has at least one nonzero entry. In other words, at least one row of A must have only zero entries. In other words, A has a zero row. Thus, Corollary 1.2.1 in the class notes from 2019-10-30 shows that $\det A = 0$.

(b) NO.

Proof. All entries of the 3×3 -matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ are nonzero, yet this matrix

has determinant 0.

(c) YES.

Proof. Let A_1 and A_2 be two invertible matrices such that the product A_1A_2 is well-defined. We must prove that A_1A_2 is invertible.

We have assumed that A_1 is invertible. In other words, A_1 has an inverse. Let B_1 be this inverse. Recalling the definition of "inverse", we see that this entails $A_1B_1 = I$ and $B_1A_1 = I$ (where the "I"s are identity matrices of appropriate sizes).

We have assumed that A_2 is invertible. In other words, A_2 has an inverse. Let B_2 be this inverse. Recalling the definition of "inverse", we see that this entails $A_2B_2 = I$ and $B_2A_2 = I$ (where the "I"s are identity matrices of appropriate sizes). Now,

$$(A_1A_2)(B_2B_1) = A_1 \underbrace{A_2B_2}_{=I} B_1 = A_1 \underbrace{IB_1}_{=B_1} = A_1B_1 = I$$
 and
 $(B_2B_1)(A_1A_2) = B_2 \underbrace{B_1A_1}_{=I} A_2 = B_2 \underbrace{IA_2}_{=A_2} = B_2A_2 = I.$

These two equalities show that B_2B_1 is an inverse of A_1A_2 (by the definition of "inverse"). Thus, the matrix A_1A_2 has an inverse, i.e., is invertible.

(d) YES.

Proof. Let A_1 and A_2 be two left-invertible matrices such that the product A_1A_2 is well-defined. We must prove that A_1A_2 is left-invertible.

We have assumed that A_1 is left-invertible. In other words, A_1 has a left inverse. Let B_1 be this left inverse. Recalling the definition of "left inverse", we see that this entails $B_1A_1 = I$ (where the "I" is an identity matrix of appropriate size).

We have assumed that A_2 is left-invertible. In other words, A_2 has a left inverse. Let *B*₂ be this left inverse. Recalling the definition of "left inverse", we see that this entails $B_2A_2 = I$ (where the "I" is an identity matrix of appropriate size).

Now,

$$(B_2B_1)(A_1A_2) = B_2 \underbrace{B_1A_1}_{=I} A_2 = B_2 \underbrace{IA_2}_{=A_2} = B_2A_2 = I.$$

This shows that B_2B_1 is a left inverse of A_1A_2 (by the definition of "left inverse"). Thus, the matrix A_1A_2 has a left inverse, i.e., is left-invertible.

[*Remark:* Clearly, an analogous argument can be used to prove the analogous fact about right-invertible matrices.]

(e) NO.

Proof. For a simple example, let us pick $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. Then, both $v := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $w := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are eigenvectors of A (for eigenvalues 1 and 2, respectively), but

v + w is not.

[*Remark:* The claim can be salvaged: If v and w are two eigenvectors of A for **the same** eigenvalue, then v + w is either the zero vector or an eigenvector of A for the same eigenvalue. In other words, if $\lambda \in \mathbb{R}$ and if $A \in \mathbb{R}^{n \times n}$, then the sum of any two λ -eigenvectors of A is either the zero vector or a λ -eigenvector of A again.]

(f) NO.

Proof. One of the simplest counterexamples is $A = I_2$ and $B = I_2$. These satisfy $\det(A + B) = 4$ but $\underbrace{\det A}_{=1} + \underbrace{\det B}_{=1} = 2$.

(g) YES.

Proof. This was Exercise 1 on homework set #3. It is also a particular case of the fact that det $(AB) = \det A \cdot \det B$ whenever A and B are two square matrices of the same size. (This is Theorem 1.5.1 in the class notes from 2019-10-30, where I give two references to proofs of this fact.)

(h) NO.

Proof. For example, the matrices $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$ have the same determinant (namely, 4), but different characteristic polynomials (namely, $(t-2)^2$ versus (t-4)(t-1)).

(i) YES.

Proof. Let *A* be an $n \times n$ -matrix. We must prove that the eigenvalues of *A* are the eigenvalues of A^T .

It suffices to show that the characteristic polynomial of A is the characteristic polynomial of A^T (since the eigenvalues of a matrix are the roots of its characteristic polynomial²).

²by Proposition 2.1.7 in the class notes from 2019-11-04

The matrix tI_n is a diagonal matrix (with t's on the diagonal), and thus equals its

own transpose. In other words, $(tI_n)^T = tI_n$. It is easy to see that $(C - D)^T = C^T - D^T$ for any two $n \times n$ -matrices C and D. Thus, $(A - tI_n)^T = A^T - \underbrace{(tI_n)^T}_{=tI_n} = A^T - tI_n$. Taking determinants on both sides of

this equality, we find det $((A - tI_n)^T) = \det (A^T - tI_n)$.

But Theorem 1.3.1 in the class notes from 2019-10-23 shows that det $(C^T) = \det C$ for any $n \times n$ -matrix *C*. Applying this to $C = A - tI_n$, we obtain det $((A - tI_n)^T) =$ det $(A - tI_n)$. Hence,

$$\det (A - tI_n) = \det \left((A - tI_n)^T \right) = \det \left(A^T - tI_n \right).$$

The left hand side of this equality is $\chi_A(t)$ (since this is how the characteristic polynomial χ_A is defined), whereas the right hand side is $\chi_{A^T}(t)$ (since this is how the characteristic polynomial χ_{A^T} is defined). Hence, this equality rewrites as $\chi_A(t) = \chi_{A^T}(t)$. In other words, the characteristic polynomial of A is the characteristic polynomial of A^T . This completes our proof.

(j) NO.

Proof. For example, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is an eigenvector of the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, but not of its transpose.

References

- [18s-hw4s] Darij Grinberg, UMN Fall 2018 Math 4707 homework set #4 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw4s.pdf
- [Grinbe15] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019. http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https: //github.com/darijgr/detnotes/releases/tag/2019-01-10.
- Neil Strickland, MAS201 Linear Mathematics for Applications, lecture [Strickland] notes, 28 September 2013. http://neil-strickland.staff.shef.ac.uk/courses/MAS201/