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1. Lecture 1

Exercise 1. Calculate AB, where

A =


2 0 0 0
3 2 0 0
3 6 2 0
3 6 3 2

 B =


4 2 2 2
0 1 −1 −1
0 0 4 2
0 0 0 1


Solution:

AB =


8 4 4 4
12 8 4 4
12 12 8 4
12 12 12 8

 .
�

Exercise 2. Consider the following matrices:

A =

[
1 2 3 4
4 3 2 1

]
B =

[
1 10

100 1000

]
C =

 1 0
11 0
111 0

 .
For each of the following products, either evaluate the product or explain why it is undefined:

A2 AB AC BA B2 BC CA CB C2

Solution: The products that are defined are as follows:

BA =

[
41 32 23 14

4100 3200 2300 1400

]
B2 =

[
1001 10010

100100 1001000

]

CA =

 1 2 3 4
11 22 33 44
111 222 333 444


CB =

 1 10
11 110
111 1110

 .
The other products are undefined. For example, A is a 2× 4 matrix (with 4 columns) and B is a 2× 2
matrix (with 2 rows). As the numer of columns in A is different from the number of rows in B, we
cannot define the product AB. �

Exercise 3. Find examples as follows.

(a) Matrices A and B such that AB is defined but BA is not.
(b) Matrices C and D such that CD and DC are both defined but have different sizes.
(c) Matrices E and F such that EF and FE are both defined and have the same size but are not

equal.
(d) Matrices G and H such that GH and HG are both defined and have the same size and are equal.

Solution: In each case there are many possible examples. We will give a selection.

(a) Here A must be an m× n matrix and B must be an n× p matrix where m and p are different.

We could take A =

[
1 2
3 4

]
(a 2 × 2 matrix) and B =

[
1 2 3
4 5 6

]
(a 2 × 3 matrix). The entries

in these matrices are not really relevant, only the shape matters. We could therefore simplify

things by taking A =

[
0 0
0 0

]
and B =

[
0 0 0
0 0 0

]
. For an even more minimalist example, we

could take A =
[
0
]

(a 1× 1 matrix) and B =
[
0 0

]
(a 1× 2 matrix).

(b) Here C must be an m × n matrix and D must be an n ×m matrix for some integers m and n
with m 6= n. For a realistic example, we can take

C =

[
1 1 1
2 2 2

]
D =

3 4
3 4
3 4
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giving

CD =

[
9 12
18 24

]
DC =

11 11 11
11 11 11
11 11 11

 .
For a minimalist example we can take

C =
[
0 0

]
D =

[
0
0

]
CD =

[
0
]

DC =

[
0 0
0 0

]
.

(c) Here E and F must be square matrices of shape n × n for some n > 1. If we choose a pair of
2× 2 matrices at random then it will usually work. For example, we could have

E =

[
1 5
3 2

]
F =

[
3 1
4 6

]
EF =

[
23 31
17 15

]
FE =

[
6 17
22 32

]
.

For a minimal example, we have

E =

[
1 0
0 0

]
F =

[
0 1
0 0

]
EF =

[
0 1
0 0

]
FE =

[
0 0
0 0

]
.

(d) Here G and H must be square matrices of the same size, say n×n. We can take G to be the zero
matrix and H to be any n×n matrix, and then we have GH = 0 = HG, so this gives an example.
Alternatively, we can take G to be the identity matrix In and H to be any n × n matrix, and
then we have GH = H = HG, so this gives another example. Yet another possibility is to let H
be any n × n matrix and then take G = H, so that GH = HG = H2. For a minimal example,
we can take n = 1 and G = H =

[
0
]
.

�

Exercise 4. Find a nonzero matrix A such that A2 is defined and is zero.

Solution: We could take A =

[
0 1
0 0

]
or A =

[
1 1
−1 −1

]
. �

Exercise 5. The trace of a square matrix is the sum of the diagonal entries. Show that if A =

[
a b
c d

]
and B =

[
p q
r s

]
then the trace of AB −BA is zero.

Solution:

AB =

[
a b
c d

] [
p q
r s

]
=

[
ap+ br aq + bs
cp+ dr cq + ds

]
BA =

[
p q
r s

] [
a b
c d

]
=

[
ap+ cq bp+ dq
ar + cs br + ds

]
AB −BA =

[
ap+ br aq + bs
cp+ dr cq + ds

]
−
[
ap+ cq bp+ dq
ar + cs br + ds

]
=

[
br − cq aq + bs− bp− dq

cp+ dr − ar − cs cq − br

]
trace(AB −BA) = (br − cq) + (cq − br) = 0.

�

2. Lecture 2

Exercise 6. Which of the following matrices are in reduced row-echelon form?

A =

0 0 0 0
0 1 2 0
0 0 0 1

 B =

0 0 0 1
0 1 0 0
0 0 0 0

 C =

1 3 0 2
0 0 1 2
0 0 0 0


D =

3 1 0 2
0 0 2 1
0 0 0 0

 E =

1 0 0 1
0 1 0 0
0 0 0 1


Solution:

• A is not in RREF because the row of zeros occurs at the top, instead of the bottom.
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• B is not in RREF because the pivot in the second row is to the left of the pivot in the first row,
not to the right.

• C is in RREF.
• D is not in RREF because the first nonzero entry in the first row is equal to 3, not 1. Similarly,

the first nonzero entry in the second row is not equal to 1.
• E is not in RREF because the last column contains a nonzero entry above the pivot in the third

row.

�

Exercise 7. Give an example of a 4 × 7 matrix in RREF with pivots in columns 2, 5 and 7 (and no
other columns) and with precisely six nonzero entries.

Solution: Every 4× 7 matrix with pivots in the specified columns has the form

A =


0 1 a b 0 c 0
0 0 0 0 1 d 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


for some scalars a, b, c and d. If all of these scalars are nonzero then (together with the three pivots)
we would have seven nonzero entries in the matrix. We want to have only six nonzero entries, so we can
choose a = b = c = 42 and d = 0 (for example) giving

A =


0 1 42 42 0 42 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

 .
�

Exercise 8. Use the augmented matrix method to solve the following system of linear equations, or
prove that there is no solution.

10a = 10b+ c

10c+ b = 10a− 9

a+ 100c = 100b+ 11.

Solution: We can tidy up the equations as follows:

10a −10b −c = 0
10a −b −10c = 9
a −100b +100c = 11.

Using this we can write down the augmented matrix and row-reduce it as follows: 10 −10 −1 0
10 −1 −10 9
1 −100 100 11

 −→
 1 −1 −0.1 0

10 −1 −10 9
1 −100 100 11

 −→
 1 −1 −0.1 0

0 9 −9 9
0 −99 100.1 11


−→

 1 −1 −0.1 0
0 1 −1 1
0 −99 100.1 11

 −→
 1 0 −1.1 1

0 1 −1 1
0 0 1.1 110

 −→
 1 0 −1.1 1

0 1 −1 1
0 0 1 100

 −→
 1 0 0 111

0 1 0 101
0 0 1 100


We conclude that there is a unique solution, namely a = 111 and b = 101 and c = 100. �

Exercise 9. Use the augmented matrix method to solve the following system of linear equations, or
prove that there is no solution.

2w − x− y − 2z = 1

3w − 2x− 2y − 3z = −1

5w − 3x− 3y − 5z = 0.

Solution: We can write down the augmented matrix and row-reduce it as follows: 2 −1 −1 −2 1
3 −2 −2 −3 −1
5 −3 −3 −5 0

 −→
 2 −1 −1 −2 1
−1 0 0 1 −3
−1 0 0 1 −3

 −→
4



 0 −1 −1 0 −5
1 0 0 −1 3
0 0 0 0 0

 −→
 1 0 0 −1 3

0 1 1 0 5
0 0 0 0 0


The final matrix corresponds to the system

w − z = 3

x+ y = 5

0 = 0.

There are pivots in columns 1 and 2, corresponding to the dependent variables w and x. After rearranging
the equations to give the dependent variables in terms of the independent variables, we get w = z + 3
and x = 5− y with y and z arbitrary. Thus, we have an infinite family of solutions. �

Exercise 10. Use the augmented matrix method to solve the following system of linear equations, or
prove that there is no solution.

p+ q + r = 30

p+ q − r = 16

p− q + r = 24

p− q − r = 11

Solution: We can write down the augmented matrix and row-reduce it as follows:
1 1 1 30
1 1 −1 16
1 −1 1 24
1 −1 −1 12

 −→


1 1 1 30
0 0 −2 −14
0 −2 0 −6
0 −2 −2 −18

 −→


1 1 1 30
0 0 1 7
0 1 0 3
0 1 1 9



−→


1 0 0 20
0 1 0 3
0 0 1 7
0 0 0 2

 −→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The final matrix has a pivot in the last column, which means that the original system of equations has
no solution. �

3. Lecture 3

Exercise 11. Put

p1 =

[
1
2

]
p2 =

[
3
6

]
p3 =

[
2
4

]
.

Describe geometrically which vectors in R2 can be expressed as a linear combination of p1, p2 and p3.
Give an example of a vector that cannot be described as such a linear combination.

Solution: Any linear combination of the vectors pi has the form

λ1p1 + λ2p2 + λ3p3 =

[
λ1 + 3λ2 + 2λ3
2λ1 + 6λ2 + 4λ3

]
= (λ1 + 3λ2 + 2λ3)

[
1
2

]
.

Thus, these linear combinations are just the multiples of the vector

[
1
2

]
, so they form the line with

equation y = 2x. This means that any vector

[
x
y

]
with y 6= 2x cannot be expressed as a linear combination

of the vectors pi. For example, the vector e1 =

[
1
0

]
cannot be expressed as a linear combination of the

vectors pi. �

Exercise 12. Put

u1 =

1
1
7

 u2 =

2
2
3

 u3 =

3
3
1

 u4 =

4
4
5

 u5 =

5
5
2


Give an example of a vector v ∈ R3 that cannot be expressed as a linear combination of u1, . . . , u5.
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Solution: Each of the vectors ui has the first two components the same, so every linear combination of
u1, . . . , u5 will also have the first two components the same. Thus, if we choose any vector v whose first
two components are not the same, then it will not be a linear combination of u1, . . . , u5. The simplest

example is to take v = e1 =
[
1 0 0

]T
. �

Exercise 13. Consider the vectors

a1 =


1
1
1
1

 a2 =


1
1
2
2

 a3 =


2
2
1
1

 a4 =


1
2
2
1

 b =


3
−2
0
5

 .
You may assume the row-reduction

1 1 2 1 3
1 1 2 2 −2
1 2 1 2 0
1 2 1 1 5

→


1 0 3 0 6
0 1 −1 0 2
0 0 0 1 −5
0 0 0 0 0

 .
Use this to give a formula expressing b as a linear combination of a1, . . . , a4.

Solution: The left hand matrix is [a1|a2|a3|a4|b], so the row-reduction tells us that the equation λ1a1 +
· · ·+ λ4a4 = b is equivalent to the system of equations corresponding to the right hand matrix, namely

λ1 + 3λ3 = 6

λ2 − λ3 = 2

λ4 = −5.

Here λ3 is independent so it can take arbitrary values. We can choose λ3 = 0, giving λ1 = 6 and λ2 = 2
and λ4 = −5. This means that we have

b =
∑
i

λiai = 6a1 + 2a2 − 5a4.

�

Exercise 14. Consider the vectors

u1 =
[
1 2 −1 0

]T
u2 =

[
3 −1 4 −2

]T
u3 =

[
−1 5 −6 2

]T
v =

[
5 −4 9 −4

]T
w =

[
4 −2 3 1

]T
and the matrix

A =

 u1 u2 u3 v w

 .
(a) Row-reduce A.
(b) Is v a linear combination of u1, u2 and u3?
(c) Is w a linear combination of u1, u2 and u3?

(Note that you do not need any additional row-reductions for parts (b) and (c). Remark 6.7 in the notes
is relevant here.)

Solution:
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(a) We have

A =

 u1 u2 u3 v w

 =


1 3 −1 5 4
2 −1 5 −4 −2
−1 4 −6 9 3
0 −2 2 −4 1



→


1 3 −1 5 4
0 −7 7 −14 −10
0 7 −7 14 7
0 −2 2 −4 1

→


1 3 −1 5 4
0 1 −1 2 1
0 −7 7 −14 −10
0 −2 2 −4 1



→


1 3 −1 5 4
0 1 −1 2 1
0 0 0 0 −3
0 0 0 0 3

→


1 0 2 −1 1
0 1 −1 2 1
0 0 0 0 1
0 0 0 0 0



→


1 0 2 −1 0
0 1 −1 2 0
0 0 0 0 1
0 0 0 0 0


(b) As in Remark 6.7 we can delete the last column and we still have a valid row-reduction u1 u2 u3 v

 =


1 3 −1 5
2 −1 5 −4
−1 4 −6 9
0 −2 2 −4

 →


1 0 2 −1
0 1 −1 2
0 0 0 0
0 0 0 0


The matrix on the right is in RREF with no pivot in the last column, which means (by
Method 7.6) that v is indeed a linear combination of u1, u2 and u3. More specifically, we see that
the equation λ1u1 + λ2u2 + λ3u3 = v is equivalent to the system of equations corresponding to
the above matrix, namely

λ1 + 2λ3 = −1

λ2 − λ3 = 2

0 = 0

0 = 0.

The solution is λ1 = −1 − 2λ3 and λ2 = 2 + λ3 with λ3 arbitrary. We can take λ3 = 0 giving
λ1 = −1 and λ2 = 2, which means that v = −u1 + 2u2.

(b) As in Remark 6.7 we can delete the fourth column and we still have a valid row-reduction u1 u2 u3 w

 =


1 3 −1 4
2 −1 5 −2
−1 4 −6 3
0 −2 2 1

→


1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0


Here we have a pivot in the last column, indicating that w cannot be expressed as a linear
combination of u1, u2 and u3.

�

Exercise 15. Let u1 and u2 be vectors in Rn, and put v1 = u1 + u2 and v2 = u1 − u2.

(a) Show that if a vector w can be expressed as a linear combination of v1 and v2, then it can also
be expressed as a linear combination of u1 and u2.

(b) Give a formula for u1 in terms of v1 and v2, and also a formula for u2 in terms of v1 and v2.
(c) As a converse to (a), show that if a vector w can be expressed as a linear combination of u1 and

u2, then it can also be expressed as a linear combination of v1 and v2.

Solution:

(a) Suppose that w can be expressed as a linear combination of v1 and v2. This means that w =
λ1v1 + λ2v2 for some scalars λ1 and λ2. After substituting in the definition of v1 and v2, we get

w = λ1(u1 + u2) + λ2(u1 − u2) = (λ1 + λ2)u1 + (λ1 − λ2)u2.
7



Thus, if we define scalars µi by µ1 = λ1 + λ2 and µ2 = λ1 − λ2, we have w = µ1u1 + µ2u2. This
expresses w as a linear combination of u1 and u2, as required.

(b) By adding the equations v1 = u1 + u2 and v2 = u1 − u2 we get 2u1 = v1 + v2 and so u1 =
v1/2 + v2/2. Similarly, we have u2 = v1/2− v2/2.

(c) Suppose that w can be expressed as a linear combination of u1 and u2. This means that w =
λ1u1 + λ2u2 for some scalars λ1 and λ2. After substituting in the equations from (b) we get

w = λ1(v1/2 + v2/2) + λ2(v1/2− v2/2) = (λ1/2 + λ2/2)v1 + (λ1/2− λ2/2)v2.

Thus, if we define scalars µi by µ1 = λ1/2+λ2/2 and µ2 = λ1/2−λ2/2, we have w = µ1v1+µ2v2.
This expresses w as a linear combination of v1 and v2, as required.

�

Exercise 16. Decide whether the following lists are linearly dependent.

(a) a1 =

[
1
4

]
, a2 =

[
5
3

]
, a3 =

[
4
2

]
, a4 =

[
6
6

]
.

(b) b1 =


5
0
0
3

 , b2 =


6
4
0
0

 , b3 =


7
0
5
0


(c) c1 =

5
4
3

 , c2 =

4
5
4

 , c3 =

5
3
2


Solution:

(a) Here we have a list of 4 vectors in R2, and any such list is automatically linearly dependent. (In
general, any linearly independent list in Rn has length at most n, so any list of length greater
than n must be dependent.) As an example of a nontrivial linear relation, we have

4a1 + 14a2 − 8a3 − 7a4 = 0.

However, we do not need this in order to answer the question as asked.
(b) The list b1, b2, b3 is easily seen to be linearly independent. Indeed, any linear relation λ1b1 +

λ2b2 + λ3b3 = 0 can be expanded as
5λ1 + 6λ2 + 7λ3

4λ2
5λ3
3λ1

 =


0
0
0
0

 .
By looking at the fourth entry we see that 3λ1 = 0 so λ1 = 0. Similarly, the second and third
entries give λ2 = λ3 = 0, so all the λi are zero, so our linear relation is the trivial one. As there
is only the trivial linear relation, the list is independent.

We can reach the same conclusion by row-reducing the matrix [b1|b2|b3]:
5 6 7
0 4 0
0 0 5
3 0 0

→


5 6 7
0 1 0
0 0 1
1 0 0

→


1 0 0
0 1 0
0 0 1
5 6 7

→


1 0 0
0 1 0
0 0 1
0 0 0


At the end we have a pivot in every column, so the original list is independent.

(c) Here there is no obvious shortcut so we just row-reduce the matrix [c1|c2|c3]:5 4 5
4 5 3
3 4 2

→
5 4 5

1 1 1
3 4 2

→
0 −1 0

1 1 1
0 1 −1

→
0 1 0

1 0 1
0 0 −1

→
1 0 1

0 1 0
0 0 −1

→
1 0 0

0 1 0
0 0 1


Again, we have a pivot in every column, so the list c1, c2, c3 is independent.

�
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Exercise 17. Consider the vectors u =

1
2
3

 and v =

3
2
1

. Give an example of a nonzero vector w such

that the list u,w is independent and the list v, w is independent but the list u, v, w is dependent.

Solution: The simplest example is to put w = u + v =

4
4
4

. To see that this works, recall that a list

of two nonzero vectors is independent iff the two vectors are not multiples of each other. As w is not a
multiple of u, we see that the list u,w is independent. Similarly, as w is not a multiple of v we see that
the list v, w is independent. However, we have a nontrivial linear relation u + v − w = 0, which proves
that the list u, v, w is dependent. �

4. Lecture 4

Exercise 18. Find examples as follows. All your vectors should be nonzero, and all your lists should
have length at least 2 and not contain the same vector twice.

(a) A list of vectors in R3 that is linearly dependent and does not span R3.
(b) A list of vectors in R3 that is linearly dependent and spans R3.
(c) A list of vectors in R3 that is linearly independent and does not span R3.
(d) A list of vectors in R3 that is linearly independent and does not span R3.

Solution: There are many possible correct solutions. Here is one.

(a) Put a1 = e1 =

1
0
0

 and a2 = −a1. Then the list a1, a2 is linearly dependent (because we have

a nontrivial linear relation a1 + a2 = 0) and does not span (because e2 cannot be written as a
linear combination of a1 and a2).

(b) Put b1 = e1 and b2 = e2 and b3 = e3 and b4 = −e3. The list b1, . . . , b4 is linearly dependent,
because we have the nontrivial linear relation 0b1 + 0b2 + b3 + b4 = 0. It spans R3, because any

vector v =
[
x y z

]T ∈ R3 can be written as v = xb1 + yb2 + zb3 + 0b4, which expresses v as a
linear combination of b1, . . . , b4.

(c) Put c1 = e1 and c2 = e2. The list c1, c2 is clearly linearly independent: a linear relation

λ1c1 + λ2c2 = 0 expands to give

λ1λ2
0

 =

0
0
0

, so λ1 = λ2 = 0, so the linear relation is trivial.

However, e3 cannot be expressed as a linear combination of c1 and c2, so the list c1, c2 does not
span.

(d) The list e1, e2, e3 is linearly independent and spans.

�

Exercise 19. Decide whether the following statements are true or false. Justify your answers, and give
explicit counterexamples for any statements that are false.

(a) Every list of 4 vectors in R3 spans R3.
(b) Every list of 4 vectors in R3 is linearly independent.
(c) If A is a list that spans R4 and B is a linearly independent list in R4 then A is at least as long

as B.
(d) There is a linearly independent list of length 5 in R6.

Solution:

(a) This is false. For example, the list e1, e1, e1, e1 is a list of four vectors in R4 that does not span.
(b) This is also false, and in fact is the opposite of the truth: every list of 4 vectors in R3 is linearly

dependent, not linearly independent.
(c) This is true. As A spans R4 it must contain at least 4 vectors, and as B is linearly independent

in R4 it must contain at most 4 vectors. Thus length(B) ≤ 4 ≤ length(A).
(d) This is true. The list e1, e2, e3, e4, e5 is the most obvious example.

�
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Exercise 20. Consider the list

u1 =

 2
−1
0

 , u2 =

 0
3
−2

 , u3 =

 1
−2
1

 , u4 =

 3
0
−1

 .
Does this span R3?

Solution: We use Method 9.7, which tells us to perform the following row-reduction:
uT1
uT2
uT3
uT4

 =


2 −1 0
0 3 −2
1 −2 1
3 0 −1

→


0 3 −2
0 3 −2
1 −2 1
0 6 −4

→


1 −2 1
0 3 −2
0 3 −2
0 6 −4

→


1 −2 1
0 1 −2/3
0 0 0
0 0 0

→


1 0 −1/3
0 1 −2/3
0 0 0
0 0 0

 .
In the final matrix we do not have a pivot in every column, so the specified list does not span R3. �

Exercise 21. Put a =
[
1 3 5 7

]
∈ R4.

(a) Suppose we have vectors u1, . . . , u4 ∈ R4 with a.u1 = a.u2 = a.u3 = a.u4 = 0. Prove that the
list u1, . . . , u4 does not span R4.

(b) Give an example of a list v1, . . . , v4 that satisfies a.v1 = a.v2 = a.v3 = a.v4 = 1 and also spans
R4.

(c) Give an example of a list w1, . . . , w4 that satisfies a.w1 = a.w2 = a.w3 = a.w4 = 1 and does not
span R4.

Solution:

(a) If x is a linear combination of the vectors ui, we have x = λ1u1 + · · · + λ4u4 for some scalars
λ1, . . . , λ4, so

a.x = a.(λ1u1 + · · ·+ λ4u4) = λ1(a.u1) + · · ·+ λ4(a.u4),

but a.u1 = a.u2 = a.u3 = a.u4 = 0 so a.x = 0. On the other hand, we have a.e1 = 1 6= 0, so e1
cannot be a linear combination of the vectors ui. This means that the ui do not span R4.

(b) The obvious example is

v1 =


1
0
0
0

 v2 =


0

1/3
0
0

 v3 =


0
0

1/5
0

 v4 =


0
0
0

1/7

 .
To see that this spans, note that an arbitrary vector x =

[
a b c d

]T
in R4 can be expressed

as

x = av1 + 3bv2 + 5cv3 + 7dv4,

which is a linear combination of the list v1, . . . , v4.
(c) The most obvious solution is to take w1 = w2 = w3 = w4 = e1. If we prefer to avoid repetitions,

we can instead use

w1 =


1
0
0
0

 w2 =


4
−1
0
0

 w3 =


7
−2
0
0

 w4 =


10
−3
0
0

 .
It is clear that any linear combination of w1, . . . , w4 has zeros in the third and fourth places. In
particular, the standard vector e4 is not a linear combination of the list w1, . . . , w4, so the list
does not span R4.

�
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Exercise 22. The vectors

u1 =


1
0
0
0

 u2 =


1
1
0
0

 u3 =


1
1
1
0

 u4 =


1
1
1
1

 u5 =


0
1
1
1

 u6 =


0
0
1
1

 u7 =


0
0
0
1


span R4, because an arbitrary vector x =

[
a b c d

]T
can be expressed as a linear combination of ui

by the formula

x = (a− b)u1 + bu2 + cu6 + (d− c)u7,
or alternatively by the formula

x = −bu1 + bu2 − du3 + (a+ d)u4 − au5 + cu6 − cu7.

(a) Check the above formulae.
(b) Give a similar explicit formula to prove that the following vectors span R4:

v1 =


1
1
1
0

 v2 =


1
1
0
1

 v3 =


1
1
1
1

 v4 =


1
0
1
1

 v5 =


0
1
1
1


(c) Use the row-reduction method to show again that the vectors vi span R4.

Solution:

(a) For the first formula we have

(a− b)u1 + bu2 + cu6 + (d− c)u7

=


a− b

0
0
0

+


b
b
0
0

+


0
0
c
c

+


0
0
0

d− c

 =


a
b
c
d

 .
For the second, we have

− bu1 + bu2 − du3 + (a+ d)u4 − au5 + cu6 − cu7

=


−b
0
0
0

+


b
b
0
0

+


−d
−d
−d
0

+


a+ d
a+ d
a+ d
a+ d

+


0
−a
−a
−a

+


0
0
c
c

+


0
0
0
−c

 =


a
b
c
d

 .
(b) One possible formula is as follows: if x =

[
a b c d

]T
, then

x = −dv1 − cv2 + (a+ b+ c+ d)v3 − bv4 − av5.

This can be found as follows: we note that

e1 = v3 − v5 e2 = v3 − v4 e3 = v3 − v2 e4 = v3 − v1,

and it follows that

x = ae1 + be2 + ce3 + de4

= a(v3 − v5) + b(v3 − v4) + c(v3 − v2) + d(v3 − v1)

= −dv1 − cv2 + (a+ b+ c+ d)v3 − bv4 − av5.

(c) The general method for these kinds of questions is to construct a matrix A whose rows are the
vectors vTi , and then row-reduce it:

A =


1 1 1 0
1 1 0 1
1 1 1 1
1 0 1 1
0 1 1 1

→


1 1 1 0
0 0 −1 1
0 0 0 1
0 −1 0 1
0 1 1 1

→


1 1 1 0
0 0 1 −1
0 0 0 1
0 0 1 2
0 1 1 1

→
11




1 1 1 0
0 0 1 −1
0 0 0 1
0 0 0 3
0 1 1 1

→


1 1 1 0
0 1 1 1
0 0 1 −1
0 0 0 1
0 0 0 3

→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


The final matrix has a pivot in every column, so the vectors vi span R4.

�

5. Lecture 5

Exercise 23. (a) Is the list a1 =

[
3
5

]
, a2 =

[
2
7

]
, a3 =

[
4
4

]
a basis for R2?

(b) Is the list b1 =

9
8
7

 , b2 =

8
7
6

 , b3 =

3
2
1

 a basis for R3?

(c) Is the list c1 =


1
8
5
4

 , c2 =


7
3
9
5

 , c3 =


5
1
9
9

 a basis for R4?

Solution: Any basis for Rn must contain exactly n vectors. In particular, a basis for R2 must contain
precisely 2 vectors, so a1, a2, a3 cannot be a basis for R2. (In fact, there is a linear relation −20a1 +
8a2 + 11a3 = 0, showing that the list is linearly dependent and so cannot form a basis. However, it is
not strictly necessary to work this out.) Similarly, as the list c1, c2, c3 does not have length 4, it cannot
form a basis for R4. This just leaves part (b). Here we can observe that

b1 − b2 =
[
1 1 1

]T
b2 − b3 =

[
5 5 5

]T
= 5(b1 − b2),

and this rearranges to give a nontrivial linear relation 6b1 − 5b2 + b3 = 0. This proves that the list
b1, b2, b3 is linearly dependent, so again we do not have a basis. This can also be seen by row-reducing
the matrix [b1|b2|b3]:9 8 3

8 7 2
7 6 1

→
1 8/9 1/3

8 7 2
7 6 1

→
1 8/9 1/3

0 −1/9 −2/3
0 −2/9 −4/3

→
1 8/9 1/3

0 1 6
0 −2/9 −4/3

→
1 0 −5

0 1 6
0 0 0


As the final result is not the identity matrix, we see that the list b1, b2, b3 is not a basis. �

Exercise 24. Consider the list

a1 =


1
1
1
2

 , a2 =


1
1
3
4

 , a3 =


1
4
5
6

 , a4 =


7
8
9
10

 .
Is this a basis for R4?

Solution: We can check this by row-reducing the matrix [a1|a2|a3|a4]:
1 1 1 7
1 1 4 8
1 4 5 6
7 8 9 10

→


1 1 1 7
0 0 3 1
0 3 4 −1
0 1 2 −39

→


1 0 −1 46
0 0 3 1
0 0 −2 116
0 1 2 −39

→


1 0 −1 46
0 0 3 1
0 0 1 −58
0 1 2 −39

→


1 0 0 −12
0 0 0 175
0 0 1 −58
0 1 0 77

→


1 0 0 −12
0 0 0 1
0 0 1 −58
0 1 0 77

→


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


As we end up with the identity matrix, the original list is a basis. �
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Exercise 25. Put u1 =

1
2
3

 and u2 =

2
3
4

. Find a vector u3 such that the list u1, u2, u3 is a basis for

R3.

Solution: Any vector will do provided that it does not lie in the plane spanned by u1 and u2, so if you

choose u3 randomly then it will probably work. The simplest choice is to take u3 = e1 =

1
0
0

. To check

that u1, u2, u3 is a basis we can row-reduce the matrix U = [u1|u2|u3] and check that we get the identity:1 2 1
2 3 0
3 4 0

→
1 2 1

0 −1 −2
0 −2 −3

→
1 0 −3

0 1 2
0 0 1

→
1 0 0

0 1 0
0 0 1

 .
�

Exercise 26. Suppose that the list a1, a2, a3, a4, a5 is a basis for R5. Show that the list a1, a3, a5 is
linearly independent.

Solution: Suppose we have a linear relation λa1 + µa3 + νa5 = 0. This gives a linear relation

λa1 + 0a2 + µa3 + 0a4 + νa5 = 0

on the whole list. However, the whole list is a basis for R5, so in particular it is linearly independent.
Thus, the above linear relation must be the trivial one, so the coefficients λ, 0, µ, 0, ν, 0 must all be zero.
As λ, µ and ν are zero, we see that the original relation on the list a1, a3, a5 is the trivial relation. This
means that the list a1, a3, a5 is linearly independent, as claimed. �

6. Lecture 6

Exercise 27. Find the inverse of the matrix

A =


0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1

 .
Solution: We row-reduce the matrix [A|I4]:

0 0 0 1 1 0 0 0
0 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0
1 1 1 1 0 0 0 1

 1−→


0 0 0 1 1 0 0 0
0 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0
1 0 0 0 0 0 −1 1

 2−→


0 0 0 1 1 0 0 0
0 0 1 1 0 1 0 0
0 1 0 0 0 −1 1 0
1 0 0 0 0 0 −1 1


3−→


0 0 0 1 1 0 0 0
0 0 1 0 −1 1 0 0
0 1 0 0 0 −1 1 0
1 0 0 0 0 0 −1 1

 4−→


1 0 0 0 0 0 −1 1
0 1 0 0 0 −1 1 0
0 0 1 0 −1 1 0 0
0 0 0 1 1 0 0 0

 .
The conclusion is that

A−1 =


0 0 −1 1
0 −1 1 0
−1 1 0 0
1 0 0 0

 .
�

Exercise 28. Consider the matrix

A0 =

0 10 100 −1 10
0 11 110 −1 21
0 −1 −10 0 −11


(a) Find a row reduction

A0 → A1 → A2 → A3 → A4 → A5 → A6

where each step uses only a single row-operation and A6 is in RREF.
(b) Find elementary matrices U1, . . . , U6 such that Ai = UiAi−1.
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(c) Hence find an invertible matrix U such that A6 = UA0. (Be careful about the order of multipli-
cation.)

Solution: The relevant matrices are as follows:

A1 =

0 10 100 −1 10
0 11 110 −1 21
0 1 10 0 11

 U1 = D3(−1) =

1 0 0
0 1 0
0 0 −1


A2 =

0 0 0 −1 −100
0 11 110 −1 21
0 1 10 0 11

 U2 = E13(−10) =

1 0 −10
0 1 0
0 0 1


A3 =

0 0 0 −1 −100
0 0 0 −1 −100
0 1 10 0 11

 U3 = E23(−11) =

1 0 0
0 1 −11
0 0 1


A4 =

0 1 10 0 11
0 0 0 −1 −100
0 0 0 −1 −100

 U4 = F13 =

0 0 1
0 1 0
1 0 0


A5 =

0 1 10 0 11
0 0 0 1 100
0 0 0 −1 −100

 U5 = D2(−1) =

1 0 0
0 −1 0
0 0 1


A6 =

0 1 10 0 11
0 0 0 1 100
0 0 0 0 0

 U6 = E32(1) =

1 0 0
0 1 0
0 1 1

 .
Indeed, the reduction steps are as follows:

(1) Multiply row 3 by −1.
(2) Add −10 times row 3 to row 1.
(3) Add −11 times row 3 ro row 2.
(4) Swap rows 1 and 3.
(5) Multiply row 3 by −1.
(6) Add row 2 to row 3.

The matrices Ui correspond to these row operations as in Proposition 11.3. It follows that

A1 = U1A0

A2 = U2A1 = U2U1A0

A3 = U3A2 = U3U2U1A0

and so on, so A6 = UA0 where U = U6U5U4U3U2U1. Here

U6U5U4 =

1 0 0
0 1 0
0 1 1

1 0 0
0 −1 0
0 0 1

0 0 1
0 1 0
1 0 0

 =

0 0 1
0 −1 0
1 −1 0


U3U2U1 =

1 0 0
0 1 −11
0 0 1

1 0 −10
0 1 0
0 0 1

1 0 0
0 1 0
0 0 −1

 =

1 0 10
0 1 11
0 0 −1


U =

0 0 1
0 −1 0
1 −1 0

1 0 10
0 1 11
0 0 −1

 =

0 0 −1
0 −1 −11
1 −1 −1

 .
As a check, we can verify directly that

UA0 =

0 0 −1
0 −1 −11
1 −1 −1

0 10 100 −1 10
0 11 110 −1 21
0 −1 −10 0 −11

 =

0 1 10 0 11
0 0 0 1 100
0 0 0 0 0

 = A6.

�
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Exercise 29. Which of the following matrices are invertible? Justify your answers.

A =


1 2 2 1
2 3 3 2
2 3 3 2
1 2 2 1

 B =


2 2 2 2
1 2 2 2
1 1 2 2
1 1 1 2

 C =


2 1 1 1
2 2 1 1
2 2 2 1
2 2 2 2

 D =


1 2 3 4
0 0 5 6
0 0 7 8
0 0 0 9

 E =


1 1
10 11
100 111
1000 1111


Solution:

(a) The matrix A is not invertible. Indeed, the first and last rows are the same, as are the middle
two rows. Thus, we can perform row operations on A to get a matrix A′ with two rows of zeros.
It follows that A cannot row-reduce to the identity. Alternatively, we can say that there are only
two distinct columns, which means that the columns cannot possibly form a basis for R4, which
again means that the matrix is not invertible.

(b) We can start row-reducing B as follows:

B =


2 2 2 2
1 2 2 2
1 1 2 2
1 1 1 2

→


1 1 1 1
1 2 2 2
1 1 2 2
1 1 1 2

→


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 = B′.

As B′ is upper-triangular with 1s on the diagonal we have det(B′) = 1, and it follows that
det(B) 6= 0, so B is invertible. More specifically, only the first of our row operations (where we
multiplied row 1 by 1/2) affects the determinant, so det(B) = det(B′)/(1/2) = 2. Alternatively,
we can just carry out a few more row operations to see that B′ → I4.

(c) We have C = BT and it is clear from Theorem 11.5 that the transpose of any invertible matrix
is invertible, so C is invertible.

(d) As D is upper triangular, the determinant is the product of the diagonal entries, which is zero
because D22 = 0. It follows that D is not invertible. This can also be seen from the row-reduction

1 2 3 4
0 0 5 6
0 0 7 8
0 0 0 9

→


1 2 3 4
0 0 1 6/5
0 0 1 8/7
0 0 0 1

→


1 2 3 0
0 0 1 0
0 0 1 0
0 0 0 1

→


1 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
(e) The matrix E is not invertible, just because invertibility only makes sense for square matrices.

�

Exercise 30. Find the inverse of the following matrix, either by creative experimentation or by row-
reduction.

A =


0 0 1 0
0 0 0 1
1 0 a b
0 1 c d


Solution: The answer is

A−1 =


−a −b 1 0
−c −d 0 1
1 0 0 0
0 1 0 0

 .
There are various ways to see this. Perhaps the most conceptual is as follows. We can put B =

[
a b
c d

]
and divide A into 2× 2 blocks. We then have A =

[
0 I
I B

]
, and the claim is that A−1 =

[
−B I
I 0

]
.

To check this we just need the equation[
0 I
I B

] [
−B I
I 0

]
=

[
I 0
0 I

]
.

This is clear provided that we believe that we can treat the 2×2 blocks as though they were just numbers
when we perform the above matrix product. This is not completely obvious, but it can be justified.
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For a more pedestrian approach, we row-reduce the matrix [A|I4]:
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
1 0 a b 0 0 1 0
0 1 c d 0 0 0 1

→


0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
1 0 0 b −a 0 1 0
0 1 0 d −c 0 0 1

→


0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 −a −b 1 0
0 1 0 0 −c −d 0 1

→


1 0 0 0 −a −b 1 0
0 1 0 0 −c −d 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0


(Subtract multiples of row 1 from rows 3 and 4; subtract multiples of row 2 from rows 3 and 4; swap
rows 1 and 3, and also swap rows 2 and 4.) The matrix A−1 appears as the right hand half of the final
result. �

7. Lecture 7

Exercise 31. Calculate the determinant of the matrix

A =


a 0 b c
d 0 0 0
e f g h
i 0 0 j


Solution: The most obvious approach is to expand along the top row. This gives

det(A) = a det(B1)− 0 det(B2) + bdet(B3)− cdet(B4),

where

B1 =

0 0 0
f g h
0 0 j

 B2 =

d 0 0
e g h
i 0 j

 B3 =

d 0 0
e f h
i 0 j

 B4 =

d 0 0
e f g
i 0 0


As B1 has a row of zeros we have det(B1) = 0. As det(B2) gets multiplied by zero, we need not evaluate
it. Straightforward expansion gives det(B3) = dfj and det(B4) = 0. Putting this together, we get
det(A) = bdfj.

Alternatively, we can expand det(A) down the second column, and then along the second row, giving

det(A) = (−1)3+2f det

a b c
d 0 0
i 0 j

 = (−1)3+2(−1)2+1fddet

[
b c
0 j

]
= fdbj = bdfj.

�

Exercise 32. Consider the matrix

A =


a b c d
e 0 0 f
g 0 0 h
i j k l

 .
Prove that det(A) = det

[
e f
g h

]
det

[
b c
j k

]
. (You can reduce the work involved if you choose carefully

how to expand the determinant.)

Solution: We expand along the second row. Note that e occurs in the (2, 1) position and so comes
with a sign (−1)2+1 = −1, whereas f occurs in the (2, 4) position with a sign (−1)2+4 = +1. We thus
have

det(A) = −edet

b c d
0 0 h
j k l

+ f det

a b c
g 0 0
i j k

 .
We now expand out these two 3 × 3 determinants along the middle row. Note that h is in the (2, 3)
position of the first 3×3 matrix and so comes with a sign −1, and g is in the (2, 1) position of the second
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3× 3 matrix and so also comes with a sign −1. This gives

det

b c d
0 0 h
j k l

 = −hdet

[
b c
j k

]
= −h(bk − cj)

det

a b c
e 0 0
i j k

 = −g det

[
b c
j k

]
= −g(bk − cj).

Putting this together we get

det(A) = (−e)(−h)(bk − cj) + f(−g)(bk − cj) = (eh− fg)(bk − cj) = det

[
e f
g h

]
det

[
b c
j k

]
.

�

Exercise 33. Calculate the determinant of the matrix

A =


a a a a
a b b b
a b c c
a b c d

 .
(The easiest method is to start with some carefully chosen row operations as in Method 12.9.)

Solution: We subtract the third row from the fourth row, the second row from the third row, and the
first row from the second row to get a new matrix B:

A =


a a a a
a b b b
a b c c
a b c d

→

a a a a
0 b− a b− a b− a
0 0 c− b c− b
0 0 0 d− c

 = B.

As we have not swapped any rows or multiplied any rows by a constant, there are no correcting factors
and Method 12.9 just tells us that det(A) = det(B). As B is upper triangular, the determinant is just
the product of the diagonal entries, giving

det(A) = a(b− a)(c− b)(d− c).
�

Exercise 34. Find the adjugate, determinant and inverse of the matrix C =

a b c
b c a
c a b

.

(Note that the intermediate calculations that you need for det(C) are a subset of those that you need
for adj(C). Try not to repeat work unnecessarily.)

Solution: The minors are

m11 = det

[
c a
a b

]
= bc− a2 m12 = det

[
b a
c b

]
= b2 − ac m13 = det

[
b c
c a

]
= ab− c2

m21 = det

[
b c
a b

]
= b2 − ac m22 = det

[
a c
c b

]
= ab− c2 m23 = det

[
a b
c a

]
= a2 − bc

m31 = det

[
b c
c a

]
= ab− c2 m32 = det

[
a c
b a

]
= a2 − bc m33 = det

[
a b
b c

]
= ac− b2.

This gives

adj(C) =

 m11 −m21 m31

−m12 m22 −m32

m13 −m23 m33

 =

bc− a2 ac− b2 ab− c2
ac− b2 ab− c2 bc− a2
ab− c2 bc− a2 ac− b2


det(C) = C11m11 − C12m12 + C13m13 = a(bc− a2)− b(b2 − ac) + c(ab− c2)

= 3abc− a3 − b3 − c3

C−1 =
adj(C)

det(C)
=

1

3abc− a3 − b3 − c3

bc− a2 ac− b2 ab− c2
ac− b2 ab− c2 bc− a2
ab− c2 bc− a2 ac− b2
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Exercise 35. Find the adjugate, determinant and inverse of the matrix H =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

.

(Note again that the intermediate calculations that you need for det(H) are a subset of those that you
need for adj(H).)

Solution: The minors are

m11 = det

[
1/3 1/4
1/4 1/5

]
=

1

240
m12 = det

[
1/2 1/4
1/3 1/5

]
=

1

60
m13 = det

[
1/2 1/3
1/3 1/4

]
=

1

72

m21 = det

[
1/2 1/3
1/4 1/5

]
=

1

60
m22 = det

[
1 1/3

1/3 1/5

]
=

4

45
m23 = det

[
1 1/2

1/3 1/4

]
=

1

12

m31 = det

[
1/2 1/3
1/3 1/4

]
=

1

72
m32 = det

[
1 1/3

1/2 1/4

]
=

1

12
m33 = det

[
1 1/2

1/2 1/3

]
=

1

12
.

This gives

adj(H) =

 m11 −m21 m31

−m12 m22 −m32

m13 −m23 m33

 =


1

240 − 1
60

1
72

− 1
60

4
45 − 1

12
1
72 − 1

12
1
12


det(H) = H11m11 −H12m12 +H13m13 =

1

240
− 1

2
× 1

60
+

1

3
× 1

72

=
1

2160

H−1 = adj(H)/ det(H) =


2160
240 − 2160

60
2160
72

− 2160
60

4×2160
45 − 2160

12
2160
72 − 2160

12
2160
12


=

 9 −36 30
−36 192 −180
30 −180 180

 .
�

8. Lecture 8

Exercise 36. Find the characteristic polynomial of the matrix

A =


0 0 0 −d
1 0 0 −c
0 1 0 −b
0 0 1 −a


Solution: The characteristic polynomial is the determinant of the matrix

A− tI =


−t 0 0 −d
1 −t 0 −c
0 1 −t −b
0 0 1 −a− t

 .
Expanding along the top row, we get

det(A− tI) = −tdet

−t 0 −c
1 −t −b
0 1 −a− t

+ ddet

1 −t 0
0 1 −t
0 0 1

 .
The second matrix above is upper triangular and so the determinant is easily seen to be 1. For the first
matrix we have

det

−t 0 −c
1 −t −b
0 1 −a− t

 = −tdet

[
−t −b
1 −a− t

]
−cdet

[
1 −t
0 1

]
= −t(t2+at+b)−c = −(t3+at2+bt+c).
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Putting this together, we get

det(A− tI) = t(t3 + at2 + bt+ c) + d = t4 + at3 + bt2 + ct+ d.

�

Exercise 37. Find the characteristic polynomial, eigenvalues and all the corresponding eigenvectors of
the matrix

A =

1 4 6
0 2 5
0 0 3


Solution: The characteristic polynomial is

det(A− tI3) = det

1− t 4 6
0 2− t 5
0 0 3− t

 = −(t− 1)(t− 2)(t− 3).

(Recall that the determinant of an upper triangular 3× 3 matrix is the product of the diagonal entries.)
Hence the eigenvalues of A are 1, 2 and 3.

To find the eigenvectors corresponding to the eigenvalue 1, we solve the system of linear equations

(A− 1I3)

 x
y
z

 = 0. The augmented matrix of this system

(
A− I3|0

)
=

0 4 6 0
0 1 5 0
0 0 2 0

 ∼
0 2 3 0

0 1 5 0
0 0 2 0


∼

0 2 3 0
0 0 7

2 0
0 0 2 0

 ∼
0 2 3 0

0 0 2 0
0 0 0 0

 ,
in row echelon form. We therefore see by back substitution that the general solution of the system
is given by z = 0, y = 0, x = µ where µ can be any number; therefore the set of eigenvectors of A
corresponding to the eigenvalue 1 is µ

 1
0
0

 : 0 6= µ ∈ R

 .

To find the eigenvectors corresponding to the eigenvalue 2, we solve the system of linear equations

(A− 2I3)

 x
y
z

 = 0. The augmented matrix of this system

(
A− 2I3|0

)
=

−1 4 6 0
0 0 5 0
0 0 1 0

 ∼
−1 4 6 0

0 0 1 0
0 0 0 0

 ,
in row echelon form. We therefore see by back substitution that the general solution of the system is
given by z = 0, y = µ, x = 4µ where µ can be any number; therefore the set of eigenvectors of A
corresponding to the eigenvalue 2 is µ

 4
1
0

 : 0 6= µ ∈ R

 .

To find the eigenvectors corresponding to the eigenvalue 3, we solve the system of linear equations

(A− 3I3)

 x
y
z

 = 0. The augmented matrix of this system

(
A− 3I3|0

)
=

−2 4 6 0
0 −1 5 0
0 0 0 0
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is in row echelon form. We therefore see by back substitution that the general solution of the system
is given by z = µ, y = 5µ, x = 1

2 (4(5µ) + 6µ) = 13µ, where µ can be any number; therefore the set of
eigenvectors of A corresponding to the eigenvalue 3 isµ

 13
5
1

 : 0 6= µ ∈ R

 .

�

Exercise 38. Find the characteristic polynomial, eigenvalues and all the corresponding eigenvectors of
the matrix

B =

3 2 1
0 1 2
0 1 −1


Solution: The characteristic polynomial is

det(B − tI3) = det

3− t 2 1
0 1− t 2
0 1 −1− t

 = −(t− 3)((1− t)(−1− t)− 2)

= −(t− 3)(t2 − 3) = −(t− 3)(t−
√

3)(t+
√

3).

Hence the eigenvalues of B are 3,
√

3 and −
√

3.
To find the eigenvectors corresponding to the eigenvalue 3, we solve the system of linear equations

(B − 3I3)

 x
y
z

 = 0. The augmented matrix of this system

(
B − 3I3|0

)
=

0 2 1 0
0 −2 2 0
0 1 −4 0

 ∼
0 2 1 0

0 0 3 0
0 0 − 9

2 0

 ∼
0 2 1 0

0 0 3 0
0 0 0 0

 ,
in row echelon form. We therefore see by back substitution that the general solution of the system
is given by z = 0, y = 0, x = µ where µ can be any number; therefore the set of eigenvectors of B
corresponding to the eigenvalue 1 is µ

 1
0
0

 : 0 6= µ ∈ R

 .

To find the eigenvectors corresponding to the eigenvalue
√

3, we solve the system of linear equations

(B −
√

3I3)

 x
y
z

 = 0. The augmented matrix of this system

(
B −

√
3I3|0

)
=

3−
√

3 2 1 0

0 1−
√

3 2 0

0 1 −1−
√

3 0

 ∼
3−

√
3 2 1 0

0 1 −1−
√

3 0
0 0 0 0

 ,
in row echelon form. We therefore see by back substitution that the general solution of the system is
given by z = µ, y = (1 +

√
3)µ, and

x =
[
(−2(1+

√
3)−1)

(3−
√
3)

]
µ =

[
(−3−2

√
3)(3+

√
3)

(3−
√
3)(3+

√
3)

]
µ =

[
−15−9

√
3

6

]
µ =

[
−5−3

√
3

2

]
µ,

where µ can be any number; therefore the set of eigenvectors of B corresponding to the eigenvalue
√

3 isµ
 −5−3

√
3

2

1 +
√

3

1

 : 0 6= µ ∈ R

 .
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To find the eigenvectors corresponding to the eigenvalue −
√

3, we solve the system of linear equations

(B +
√

3I3)

 x
y
z

 = 0. The augmented matrix of this system

(
B +

√
3I3|0

)
=

3 +
√

3 2 1 0

0 1 +
√

3 2 0

0 1 −1 +
√

3 0

 ∼
3 +

√
3 2 1 0

0 1 −1 +
√

3 0
0 0 0 0

 ,
in row echelon form. We therefore see by back substitution that the general solution of the system is
given by z = µ, y = (1−

√
3)µ, and

x =
[
(−2(1−

√
3)−1)

(3+
√
3)

]
µ =

[
(−3+2

√
3)(3−

√
3)

(3+
√
3)(3−

√
3)

]
µ =

[
−15+9

√
3

6

]
µ =

[
−5+3

√
3

2

]
µ,

where µ can be any number; therefore the set of eigenvectors of B corresponding to the eigenvalue −
√

3
is µ

 −5+3
√
3

2

1−
√

3

1

 : 0 6= µ ∈ R

 .

�

Exercise 39. Show, directly from the definition of eigenvalue, that 0 is an eigenvalue of the matrix

N :=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
Show, also directly from the definition of eigenvalue, that an arbitrary non-zero number k is not an
eigenvalue of N . Find all the eigenvectors of N .

Solution: A real number k is an eigenvalue of N if and only if the system of linear equations

(†k) (N − kI4)


x
y
z
w

 = 0

has a non-trivial solution.
When k = 0, the augmented matrix of (†0) is

(
N |0

)
=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0


and this is already in row echelon form. Thus we see by back substitution that the complete solution of
(†0) is w = 0, z = 0, y = 0, x = µ, where µ can be any number. Thus there is a non-trivial solution to
(†0), and so 0 is an eigenvalue of N . Also the set of eigenvectors of N corresponding to the eigenvalue 0
is µ


1
0
0
0

 : 0 6= µ ∈ R

 .

Now consider the case where k 6= 0. Then the augmented matrix of (†k) is

(
N − kI4|0

)
=


k 1 0 0 0
0 k 1 0 0
0 0 k 1 0
0 0 0 k 0


and this is already in row echelon form. We see, by back substitution, that (because k 6= 0) the complete
solution of (†k) is w = 0, z = 0, y = 0, x = 0. Thus the only solution of (†k) is the trivial one, and
therefore k is not an eigenvalue of N . �
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Exercise 40. Find the characteristic polynomial, eigenvalues and eigenvectors of the matrix

A =

3 −5 5
2 −4 5
2 −2 3

 .
Solution: The characteristic polynomial is

det(A− tI3) = det

3− t −5 5
2 −4− t 5
2 −2 3− t

 =

∣∣∣∣∣∣
1− t t− 1 0

2 −4− t 5
0 t+ 2 −2− t

∣∣∣∣∣∣
(on subtracting the middle row from each of the other two rows)

= (1− t)(2 + t)

∣∣∣∣∣∣
1 −1 0
2 −4− t 5
0 1 −1

∣∣∣∣∣∣ = (1− t)(2 + t)

∣∣∣∣∣∣
1 0 0
2 −2− t 5
0 1 −1

∣∣∣∣∣∣
(on adding the first column to the second column)

= (1− t)(2 + t)(2 + t− 5) = −(t− 1)(t+ 2)(t− 3).

Hence the eigenvalues of A are 1, −2 and 3.
To find the eigenvectors corresponding to the eigenvalue 1, we solve the system of linear equations

(A− 1I3)

 x
y
z

 = 0. The augmented matrix of this system

(
A− I3|0

)
=

2 −5 5 0
2 −5 5 0
2 −2 2 0

 ∼
2 −5 5 0

0 0 0 0
0 3 −3 0

 ∼
2 −5 5 0

0 3 −3 0
0 0 0 0

 ,
in row echelon form. We therefore see by back substitution that the general solution of the system is
given by z = µ, y = µ, x = 1

2 (5µ− 5µ) = 0 where µ can be any number; therefore the set of eigenvectors
of A corresponding to the eigenvalue 1 isµ

 0
1
1

 : 0 6= µ ∈ R

 .

To find the eigenvectors corresponding to the eigenvalue −2, we solve the system of linear equations

(A+ 2I3)

 x
y
z

 = 0. The augmented matrix of this system

(
A+ 2I3|0

)
=

5 −5 5 0
2 −2 5 0
2 −2 5 0

 ∼
1 −1 1 0

0 0 3 0
0 0 0 0

 ,
in row echelon form. We therefore see by back substitution that the general solution of the system
is given by z = 0, y = µ, x = µ where µ can be any number; therefore the set of eigenvectors of A
corresponding to the eigenvalue −2 is µ

 1
1
0

 : 0 6= µ ∈ R

 .

To find the eigenvectors corresponding to the eigenvalue 3, we solve the system of linear equations

(A− 3I3)

 x
y
z

 = 0. The augmented matrix of this system

(
A− 3I3|0

)
=

0 −5 5 0
2 −7 5 0
2 −2 0 0

 ∼
2 −2 0 0

2 −7 5 0
0 −5 5 0

 ∼
2 −2 0 0

0 −5 5 0
0 −5 5 0

 ∼
2 −2 0 0

0 −5 5 0
0 0 0 0

 ,
in row echelon form. We therefore see by back substitution that the general solution of the system is
given by z = µ, y = µ, x = µ, where µ can be any number; therefore the set of eigenvectors of A
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corresponding to the eigenvalue 3 is µ
 1

1
1

 : 0 6= µ ∈ R

 .

�

Exercise 41. Let A be an n × n matrix, and let λ1, . . . , λh be h distinct eigenvalues of A. For each
i = 1, . . . , h, let the vectors vi,1, . . . , vi,ti be linearly independent eigenvectors of A all corresponding to
the eigenvalue λi. We collect these lists together into a single list

v1,1, . . . , v1,t1 , v2,1, . . . , v2,t2 , . . . , vh,1, . . . , vh,th .

Prove (as was stated in lectures) that this list is linearly independent.

Solution: For each i = 1, . . . , h, the vectors vi,1, . . . , vi,ti are linearly independent eigenvectors of A all
corresponding to the eigenvalue λi. We show that

v1,1, . . . , v1,t1 , v2,1, . . . , v2,t2 , . . . , vh,1, . . . , vh,th

(taken all together) are linearly independent by induction on h.
When h = 1, there is nothing to prove, because we are given that v1,1, . . . , v1,t1 are linearly indepen-

dent.
Assume now that h > 1 and that the claim is true for h− 1 distinct eigenvalues of A.
Let

a1,1, . . . , a1,t1 , a2,1, . . . , a2,t2 , . . . , ah,1, . . . , ah,th
be scalars such that

(1)

h∑
i=1

ti∑
j=1

ai,jvi,j = 0.

Then

0 = A0 = A

 h∑
i=1

ti∑
j=1

ai,jvi,j

 =

h∑
i=1

ti∑
j=1

ai,jAvi,j

and so

(2)

h∑
i=1

ti∑
j=1

ai,jλivi,j = 0

because Avi,j = λivi,j for all j = 1, . . . , ti and i = 1, . . . , h. If we now subtract λh times (1) from (2) we
get

h∑
i=1

ti∑
j=1

ai,j(λi − λh)vi,j = 0,

that is
h−1∑
i=1

ti∑
j=1

ai,j(λi − λh)vi,j = 0

(since the addends for i = h are zero).
By the induction hypothesis,

v1,1, . . . , v1,t1 , v2,1, . . . , v2,t2 , . . . , vh−1,1, . . . , vh−1,th−1

(taken all together) are linearly independent. Therefore

ai,j(λi − λh) = 0 for all j = 1, . . . , ti and i = 1, . . . , h− 1.

Since λi − λh 6= 0 for all i = 1, . . . , h− 1, it follows that

ai,j = 0 for all j = 1, . . . , ti and i = 1, . . . , h− 1.

With this information, equation (1) now simplifies to

th∑
j=1

ah,jvh,j = 0,
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and so it follows from the fact that vh,1, . . . , vh,th are linearly independent that ah,1 = · · · = ah,th = 0.
Thus, ai,j = 0 for all j = 1, . . . , ti and all i = 1, . . . , h.

We have now shown that

v1,1, . . . , v1,t1 , v2,1, . . . , v2,t2 , . . . , vh,1, . . . , vh,th

are linearly independent. This completes the inductive step. By the Principle of Mathematical Induction,
the claim is proved.

�

9. Lecture 9

Exercise 42. Consider the matrix A =

[
4 1
−6 9

]
. Find an invertible matrix U and a diagonal matrix

D such that A = UDU−1. Check directly that the equation A = UDU−1 holds.

Solution: The characteristic polynomial is

χA(t) = det

[
4− t 1
−6 9− t

]
= (4− t)(9− t)− (−6) = t2 − 13t+ 42 = (t− 6)(t− 7).

Thus, the eigenvalues are λ1 = 6 and λ2 = 7. To find the corresponding eigenvectors we use the following
row-reductions:

A− λ1I =

[
−2 1
−6 3

]
→
[

1 −1/2
−6 3

]
→
[
1 −1/2
0 0

]
= B1

A− λ2I =

[
−3 1
−6 2

]
→
[

1 −1/3
−6 2

]
→
[
1 −1/3
0 0

]
= B2

The eigenvector u1 must satisfy B1u1 = 0, and it is clear that u1 =

[
1
2

]
will do. Similarly, the eigenvector

u2 must satisfy B2u2 = 0, and it is clear that u2 =

[
1
3

]
will do. We now take

U = [u1|u2] =

[
1 1
2 3

]
D = diag(λ1, λ2) =

[
6 0
0 7

]
.

The general method (Proposition 14.4) tells us that A = UDU−1. To check this directly, we need to
work out U−1. The general formula [

a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
gives

U−1 =
1

3− 2

[
3 −1
−2 1

]
=

[
3 −1
−2 1

]
.

We thus have

UDU−1 =

[
1 1
2 3

] [
6 0
0 7

] [
3 −1
−2 1

]
=

[
1 1
2 3

] [
18 −6
−14 7

]
=

[
4 1
−6 9

]
.

As expected, this is the same as A. �

Exercise 43. Show that the matrix A =

[
4 1
−1 2

]
cannot be diagonalised.

Solution: The characteristic polynomial is

det(A− tI) = det

[
4− t 1
−1 2− t

]
= (4− t)(2− t) + 1 = 9− 6t+ t2 = (t− 3)2.

This shows that the only eigenvalue is 3. The eigenvectors of eigenvalue 3 are the vectors u =

[
x
y

]
satisfying (A − 3I)u = 0. Here A − 3I =

[
1 1
−1 −1

]
, so (A − 3I)u =

[
x+ y
−x− y

]
. This means that
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u is an eigenvector iff x + y = 0, or in other words u =

[
x
−x

]
= x

[
1
−1

]
. As every eigenvector is

a nonzero multiple of

[
1
−1

]
, we see that any two eigenvectors are multiples of each other and so are

linearly dependent. Thus, there is no basis of eigenvectors. Proposition 14.4 therefore tells us that A
cannot be diagonalised. �

Exercise 44. Consider the matrix

A =

100 10 1
100 10 1
100 10 1

 .
Find a basis for R3 consisting of eigenvectors for A. Using this, find a diagonalisation A = UDU−1.

Solution: The characteristic polynomial is as follows.

χA(t) = det

100− t 10 1
100 10− t 1
100 10 1− t


= (100− t) det

[
10− t 1

10 1− t

]
− 10 det

[
100 1
100 1− t

]
+ det

[
100 10− t
100 10

]
= (100− t)(t2 − 11t)− 10(−100t) + (100t) = −t3 + 111t2 = −t2(t− 111).

It follows that the eigenvalues are 0 and 111. The eigenvectors of eigenvalue 0 are the vectors u =[
x y z

]T
satisfying Au = 0 or equivalently 100x+ 10y + z = 0. This gives z = −100x− 10y, so

u =

 x
y

−100x− 10y

 = x

 1
0
−100

+ y

 0
1
−10

 .
Taking x = 1 and y = 0 gives u1 =

[
1 0 −100

]T
. Taking x = 0 and y = 1 gives u2 =

 0
1
−10

. These

are two linearly independent eigenvectors of eigenvalue zero.
Next, to find an eigenvector of eigenvalue 111 we row-reduce the matrix A − 111I. If we row-reduce

in the obvious way we get the following sequence: 1 −10/11 −1/11
100 −101 1
100 10 −110

→
 1 −10/11 −1/11

0 −111/11 111/11
100 10 −110

→
1 −10/11 −1/11

0 −111/11 111/11
0 1110/11 −1110/11

→
1 −10/11 −1/11

0 1 −1
0 1110/11 −1110/11

→
1 −10/11 −1/11

0 1 −1
0 0 0

→
1 0 −1

0 1 −1
0 0 0


If we proceed in a more creative order we can avoid fractions:−11 10 1

100 −101 1
100 10 −110

→
−11 10 1

100 −101 1
0 111 −111

→
−11 10 1

100 −101 1
0 1 −1

→
−11 0 11

100 0 −100
0 1 −1

→
1 0 −1

0 0 0
0 1 −1

→
1 0 −1

0 1 −1
0 0 0


Either way, we get the same final matrix B. An eigenvector u =

[
x y z

]T
of eigenvalue 111 must

satisfy Bu = 0, which means that x = z and y = z. Thus, we can take u3 =
[
1 1 1

]T
. In fact, if

we were sufficiently alert we could have seen that this vector satisfies Au3 = 111u3 by inspection, and
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avoided the whole row-reduction process. We now put

U =

 u1 u2 u3

 =

 1 0 1
0 1 1
−100 −10 1


D = diag(λ1, λ2, λ3) = diag(0, 0, 111) =

0 0 0
0 0 0
0 0 111

 .
The general theory now tells us that A = UDU−1. It would not be hard to check this directly, but the
question does not ask us to do so. We just record the value of U−1 for any students who wish to check
their work:

U−1 =
1

111

 11 −10 −1
−100 101 −1
100 10 1

 .
�

Exercise 45. Consider the matrix

A =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
Find a basis for R4 consisting of eigenvectors for A. Using this, find a diagonalisation A = UDU−1.
Ideally, you should do all this by inspection rather than using the characteristic polynomial and row-
reduction.

Solution: In terms of the standard basis vectors ei, we have

Ae1 = e3 Ae2 = e4 Ae3 = e1 Ae4 = e2.

It follows that if we put

u1 = e1 + e3 u2 = e2 + e4 u3 = e1 − e3 u4 = e2 − e4
then

Au1 = u1 Au2 = u2 Au3 = u3 Au4 = u4,

so the vectors ui are eigenvectors, with eigenvalues λ1 = λ2 = 1 and λ3 = λ4 = −1. Thus, if we put

U = [u1|u2|u3|u4] =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 D = diag(λ1, λ2, λ3, λ4) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


then we have A = UDU−1. Also, it is not hard to see that U2 = 2I4, so U−1 = 1

2U . �

Exercise 46. Diagonalise the matrix A =

1 1 1
1 0 1
1 1 1

.

Hint: One of the eigenvalues, and the corresponding eigenvector, involves
√

3. You can find another
eigenvalue and eigenvector by just changing

√
3 to −

√
3 everywhere. You may also find it useful to

remember the rule
1

a+ b
√

3
=

a− b
√

3

(a− b
√

3)(a+ b
√

3)
=
a− b

√
3

a2 − 3b2
.

Solution: The characteristic polynomial is

χA(t) = det

1− t 1 1
1 −t 1
1 1 1− t


= (1− t) det

[
−t 1
1 1− t

]
− det

[
1 1
1 1− t

]
+ det

[
1 −t
1 1

]
= (1− t)(t2 − t− 1)− (−t) + (1 + t) = t2 − t− 1− t3 + t2 + t+ t+ 1 + t = −t3 + 2t2 + 2t

= −t(t2 − 2t− 2).
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The quadratic formula tells that the roots of t2 − 2t − 2 are 1 ±
√

3. Thus, the eigenvalues are λ1 = 0

and λ2 = 1 +
√

3 and λ3 = 1−
√

3. By inspection, the vector u1 =
[
1 0 −1

]T
satisfies Au1 = 0, so it

is an eigenvector of eigenvalue 0. To find an eigenvector of eigenvalue λ2 = 1 +
√

3, we row-reduce the
matrix A− λ2I:−√3 1 1

1 −1−
√

3 1

1 1 −
√

3

 1−→

−√3 1 1

1 −1−
√

3 1

0 2 +
√

3 −1−
√

3

 2−→

0 −2−
√

3 1 +
√

3

1 −1−
√

3 1

0 2 +
√

3 −1−
√

3

 3−→

0 0 0

1 −1−
√

3 1

0 2 +
√

3 −1−
√

3

 4−→

0 0 0

1 −1−
√

3 1

0 1 1−
√

3

 5−→

0 0 0
1 0 −1

0 1 1−
√

3

 6−→

1 0 −1

0 1 1−
√

3
0 0 0


The steps are as follows:

(1) Subtract row 2 from row 3.

(2) Add
√

3 times row 2 to row 1.
(3) Add row 3 to row 1.

(4) We now want to divide row 3 by 2 +
√

3. Taking a = 2 and b = 1 in the equation for 1/(a+ b
√

3)

we get 1/(2 +
√

3) = 2−
√

3. We therefore multiply row 3 by 2−
√

3.

(5) Add 1 +
√

3 times row 3 to row 2.
(6) Reorder the rows.

We conclude that an eigenvector u2 =

xy
z

 of eigenvalue 1+
√

3 must satisfy x−z = 0 and y+(1−
√

3)z =

0. Taking z = 1 we get u2 =
[
1 −1 +

√
3 1

]T
. Finally, following the hint we see that the final

eigenvector u3 is just
[
1 −1−

√
3 1

]
(obtained by changing the

√
3 in u2 to −

√
3). We now have a

diagonalisation A = UDU−1, where

U =

 u1 u2 u3

 =

 1 1 1

0 −1 +
√

3 −1−
√

3
−1 1 1


D = diag(λ1, λ2, λ3) =

0 0 0

0 −1 +
√

3 0

0 0 −1−
√

3

 .
�

10. Lecture 10

Exercise 47. Let A be the 5× 5 matrix in which every entry is 1.

(a) Show that A2 = 5A.
(b) Suppose that λ is an eigenvalue of A, so there exists a nonzero vector u with Au = λu. By

considering A2u, show that λ2 = 5λ, so λ = 0 or λ = 5. (You should not write out any matrices
here, or attempt to calculate the characteristic polynomial; just use part (a).)

(c) Find an eigenvector v of eigenvalue 5, and a linearly independent list w1, . . . , w4 of eigenvectors
of eigenvalue 0.

(d) Now put B = 1
2I5 + 1

10A. Show that B is stochastic.

(e) Prove by induction on k that Bk = 2−kI5 + (1 − 2−k)A/5 for all k ≥ 0. (You should not write
out any matrices here; just use part (a).) What happens when k is large?

Solution:

(a) One way to say this is to introduce the vector v =
[
1 1 1 1 1

]T
, so v.v = 5. We also have

A =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 =


vT

vT

vT

vT

vT

 =

 v v v v v
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so

A2 =


v.v v.v v.v v.v v.v
v.v v.v v.v v.v v.v
v.v v.v v.v v.v v.v
v.v v.v v.v v.v v.v
v.v v.v v.v v.v v.v

 =


5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5

 = 5A.

(b) Suppose we have an eigenvalue λ, and an associated eigenvector u (so u 6= 0 and Au = λu). We
then have

A2u = A(Au) = A(λu) = λAu = λ2u.

On the other hand, we have A2 = 5A, so

A2u = 5Au = 5λu.

By comparing these two equations, we see that λ2u = 5λu, so (λ2 − 5λ)u = 0 or λ(λ− 5)u = 0.
As u 6= 0 it follows that λ = 0 or λ = 5.

(c) Put

v =


1
1
1
1
1

 w1 =


1
−1
0
0
0

 w2 =


0
1
−1
0
0

 w3 =


0
0
1
−1
0

 w4 =


0
0
0
1
−1

 .
It is easy to see that Av = 5v and Awi = 0 for all i, so v is an eigenvector of eigenvalue 5, and
w1, . . . , w4 are eigenvectors of eigenvalue 0. It is also clear that the list w1, . . . , w4 is linearly
independent. This is not the only possible answer. For example, the list

w′1 =


1
0
0
0
−1

 w′2 =


0
1
0
0
−1

 w′3 =


0
0
1
0
−1

 w′4 =


0
0
0
1
−1


would do equally well.

(d) In the metrix B, every entry away from the diagonal is 1
10 , and every entry on the diagonal is

1
10 + 1

2 = 6
10 . In particular, all entries are positive. Moreover, each column contains four entries

equal to 1
10 and one entry equal to 6

10 , adding up to (4 × 1 + 6)/10 = 1. Thus, the matrix is
stochastic.

(e) We claim that for all k ≥ 0 we have Bk = 2−kI5 + (1− 2−k)A/5. When k = 0 the left hand side
is B0 = I5, whereas the right hand side is 20I5 + (1 − 20)A = I5, as required. When k = 1 the
left hand side is B1 = B = 1

2I5 + 1
10A. We also have 2−1 = 1 − 2−1 = 1

2 so on the right hand

side we have 1
2I5 + 1

10A again, as required.
Now suppose that the claim is true for a particular value of k. We can the equation B =

1
2I5 + 1

10A by the equation Bk = 2−kI5 + (1− 2−k)A/5 and expand out to get

Bk+1 = ( 1
2I5 + 1

10A)(2−kI5 + (1− 2−k)A/5)

= 1
22−kI5 + 1

2
1
5 (1− 2−k)A+ 1

102−kA+ 1
10

1
5 (1− 2−k)A2.

Using A2 = 5A this becomes

Bk+1 = 1
22−kI5 + 1

2
1
5 (1− 2−k)A+ 1

102−kA+ 1
10 (1− 2−k)A

= 2−k−1I5 +
(
1
2 (1− 2−k) + 1

22−k + 1
2 (1− 2−k)

)
A/5

= 2−k−1I5 +
(
1
2 − 2−k−1 + 2−k−1 + 1

2 − 2−k−1)
)
A/5

= 2−k−1I5 + (1− 2−k−1)A/5.

This is the case k + 1 of our claim. It follows by induction that the claim holds for all k.

�

Exercise 48. Show that the matrix A =

 1 1 0
−1 2 1
−1 0 3

 cannot be diagonalised.

Hint: the eigenvalues are small integers.
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Solution: The characteristic polynomial is

χA(t) = det

1− t 1 0
−1 2− t 1
−1 0 3− t

 = (1− t) det

[
2− t 1

0 3− t

]
− det

[
−1 1
−1 3− t

]
= (1− t)(2− t)(3− t)− (t− 2) = (2− t)((1− t)(3− t) + 1)

= (2− t)(4− 4t+ t2) = (2− t)3.

(If we had not spotted that 2− t was a common factor and had just expanded everything out, we would
have found that χA(t) = −t3 + 6t2 − 12t+ 8. Using the hint we could have tried various small integers
and found that χA(2) = 0, then we could have divided χA(t) by t− 2 to get −t2 + 4t− 4, then we could
have used the quadratic formula to see that 2 is the only root.)

We now see that 2 is the only eigenvalue of A. To find the eigenvectors, we row-reduce A− 2I:−1 1 0
−1 0 1
−1 0 1

→
1 −1 0

0 −1 1
0 −1 1

→
1 −1 0

0 1 −1
0 0 0

→
1 0 −1

0 1 −1
0 0 0


From this we see that the eigenvectors of eigenvalue 2 are just the nonzero vectors of the form u =[
x x x

]T
. In particular, any two eigenvectors are multiples of each other, and so are linearly depen-

dent. It follows that there is no basis of eigenvectors, so the matrix cannot be diagonalised. �

Exercise 49. Consider the matrix

A =
1

16

10 2 2
3 11 7
3 3 7

 .
For this matrix it turns out that the powers An converge to a limit as n → ∞. Use Maple to find a
diagonalisation A = UDU−1, then find the limit of Dn as n→∞, then find the limit of An.

Solution: We enter the definition of A and find the eigenvectors as follows:

with(LinearAlgebra):

A := <<10|2|2>,<3|11|7>,<3|3|7>>/16;

L,U := Eigenvectors(A);

Maple responds by printing

L,U :=

 1
1/4
1/2

 ,
1 0 −1

2 −1 1
1 1 0


This indicates that the eigenvalues are λ1 = 1, λ2 = 1

4 and λ3 = 1
2 , and the corresponding eigenvectors

are the columns of the above matrix, namely

u1 =

1
2
1

 u2 =

 0
−1
1

 u3 =

−1
1
0

 .
We therefore have a diagonalisation A = UDU−1, where

U =

1 0 −1
2 −1 1
1 1 0

 D =

1 0 0
0 1/4 0
0 0 1/2

 .
We can calculate the inverse of U by entering U^(-1) in Maple; we find that

U−1 =
1

4

 1 1 1
−1 −1 3
−3 1 1


This gives

lim
n→∞

Dn = lim
n→∞

1 0 0
0 1/4n 0
0 0 1/2n

 =

1 0 0
0 0 0
0 0 0

 .
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We will call this matrix D∞. As An = UDnU−1 we see that

lim
n→∞

An = UD∞U−1 =
1

4

1 0 −1
2 −1 1
1 1 0

1 0 0
0 0 0
0 0 0

 1 1 1
−1 −1 3
−3 1 1


=

0.25 0 −0.25
0.5 −0.25 0.25
0.25 0.25 0

1 1 1
0 0 0
0 0 0

 =

0.25 0.25 0.25
0.5 0.5 0.5
0.25 0.25 0.25

 .
As a check, we can enter evalf(A^10) in Maple to calculate a numerical approximation to A10, which is0.2507324219 0.2497558594 0.2497558594

0.4992678165 0.5002443790 0.5002434254
0.2499997616 0.2499997616 0.2500007153

 .
This is already quite close to the limiting value. �

Exercise 50. Consider the matrix

A =

1 1 1
0 1 1
0 0 1

 .
You may assume that this matrix cannot be diagonalised. Nonetheless, the powers An follow a simple
pattern. Calculate An for some small values of n, then see if you can find the general rule, then prove it
by induction.

Solution: The first few powers are as follows:

A0 =

1 0 0
0 1 0
0 0 1

 A1 =

1 1 1
0 1 1
0 0 1


A2 =

1 2 3
0 1 2
0 0 1

 A3 =

1 3 6
0 1 3
0 0 1


A4 =

1 4 10
0 1 4
0 0 1

 A5 =

1 5 15
0 1 5
0 0 1

 .
From this it is at least clear that

An =

1 n pn
0 1 n
0 0 1


for some number pn. The remaining problem is to find a formula for pn. The first few cases are

p0 = 0 p1 = 1 p2 = 3 p3 = 6 p4 = 10 p5 = 15.

You might recognise these numbers as coming from Pascal’s triangle, or you might notice that pn−pn−1 =
n and work from there, or you might notice that pn is approximately n2/2 and so study pn−n2/2, or you
might enter the above numbers in the Online Encyclopedia of Integer Sequences at http://oeis.org

and see what it finds. By any of these means you can arrive at the formula

pn =

(
n+ 1

2

)
= (n2 + n)/2.

We thus conclude that

An =

1 n (n2 + n)/2
0 1 n
0 0 1

 .
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We can prove this formally by induction. The claim is clearly true for n = 0. If it holds for a particular
value of n, then we have

An+1 = AAn =

1 1 1
0 1 1
0 0 1

1 n (n2 + n)/2
0 1 n
0 0 1


=

1 n+ 1 (n2 + n)/2 + n+ 1
0 1 n+ 1
0 0 1

 .
Here

(n2 + n)/2 + n+ 1 = n2/2 + 3n/2 + 1 = ((n+ 1)2 + (n+ 1))/2,

so we see that the claim also holds for n+ 1. Thus, by induction, it holds for all natural numbers n. �

11. Lecture 11

Exercise 51. Solve the following system of differential equations using the method in Section 15:

ẋ1 = 0.2x1 + 0.5x2 + 0.3x3

ẋ2 = 0.6x1 + 0.6x2 + 0.7x3

ẋ3 = 0.1x1 + 0.4x2 + 0.8x3,

with x =
[
1 0 0

]T
at t = 0. You should use Maple to calculate the relevant eigenvalues and eigenvec-

tors. Unlike most examples in this course, this one has not been fine-tuned to work out with nice round
numbers.

Solution: We have ẋ = Ax and x = c at t = 0, where

A =

0.2 0.5 0.3
0.6 0.6 0.7
0.1 0.4 0.8

 c =

1
0
0

 .
The general method is to diagonalise A as UDU−1 with D = diag(λ1, λ2, λ3) say, then x = UEU−1c,
where E = diag(eλ1t, eλ2t, eλ3t). We can do this in Maple as follows:

with(LinearAlgebra):

unprotect(’D’):

A := <<0.2|0.5|0.3>,<0.6|0.6|0.7>,<0.1|0.4|0.8>>;

L,U := Eigenvectors(A);

D := DiagonalMatrix(L);

E := DiagonalMatrix([exp(L[1]*t),exp(L[2]*t),exp(L[3]*t)]);

c := <1,0,0>;

x := U . E . U^(-1);

Maple responds with

x :=

0.1471732926 e1.442698079 t + 0.5641142246 e−0.2096633632 t + 0.2887124828 e0.3669652806 t

0.2563257383 e1.442698079 t − 0.5623411149 e−0.2096633632 t + 0.3060153766 e0.3669652806 t

0.1824303322 e1.442698079 t + 0.1669120914 e−0.2096633632 t − 0.3493424236 e0.3669652806 t


which is the solution for x. Some comments on these commands:

• Maple usually uses the symbol D for differentiataion, so if we want to use D as the name of a
matrix, we need to enter unprotect(’D’) first. The quotation marks are important here.

• The line L,U := Eigenvectors(A) sets L to be the vector
[
λ1 λ2 λ3

]T
, whose entries are

the eigenvalues. It also sets U to be the usual matrix whose columns are the corresponding
eigenvectors.

�

Exercise 52. Consider the matrix A =

[
1 1
2 1

]
.

(a) Find the eigenvalues of A.
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(b) For each eigenvalue, find a corresponding eigenvector of A.

(c) Define recursively a sequence of vectors

[
un
vn

]
as follows: we have u0 = 1 and v0 = 0, and for all

n > 0 we have

un = un−1 + vn−1

vn = 2un−1 + vn−1.

Use your eigenvectors of A to find expressions for un and vn (for a general positive integer n).

Solution:
We have

χA(t) =

∣∣∣∣ 1− t 1
2 1− t

∣∣∣∣ = (t− 1)2 − 2 = t2 − 2t− 1 =
[
t− 1−

√
2
] [
t− 1 +

√
2
]
.

We thus see that the eigenvalues of A are λ1 = 1 +
√

2 and λ2 = 1 −
√

2. There are two distinct
eigenvalues, and so it is possible to find a basis for R2 consisting of eigenvectors of A. Notice that
(1 +

√
2)(1−

√
2) = −1 and (1 +

√
2) + (1−

√
2) = 2.

To find an eigenvector corresponding to λ1, we consider (A− λ1I2)
[
x y

]T
= 0:(

A− λ1I2|0
)

=

[
1− (1 +

√
2) 1 0

2 1− (1 +
√

2) 0

]
=

[
−
√

2 1 0

2 −
√

2 0

]
→
[
−
√

2 1 0
0 0 0

]
,

so that w1 :=

[
1√
2

]
is an eigenvector of A corresponding to λ1.

To find an eigenvector corresponding to λ2, we consider (A− λ2I2)
[
x y

]T
= 0:(

A− λ2I2|0
)

=

[
1− (1−

√
2) 1 0

2 1− (1−
√

2) 0

]
=

[ √
2 1 0

2
√

2 0

]
→
[ √

2 1 0
0 0 0

]
,

so that w2 :=

[
1

−
√

2

]
is an eigenvector of A corresponding to λ2.

We have[
u0
v0

]
=

[
1
0

]
and

[
un
vn

]
=

[
1 1
2 1

] [
un−1
vn−1

]
= A

[
un−1
vn−1

]
for n > 0.

Therefore [
un
vn

]
= An

[
1
0

]
for n > 0.

We calculate this by using the above eigenvectors w1 and w2 of A. Since w1 and w2 are eigenvectors of
A corresponding to different eigenvalues, they are linearly independent, and so form a basis for R2. We

express
[

1 0
]T

as a linear combination of w1 and w2:[
1
0

]
= 1

2

[
1√
2

]
+ 1

2

[
1

−
√

2

]
= 1

2w1 + 1
2w2.

Therefore, for all n > 0,[
un
vn

]
= An

[
1
0

]
= An

(
1
2w1 + 1

2w2

)
= 1

2A
nw1 + 1

2A
nw2 = 1

2λ
n
1w1 + 1

2λ
n
2w2

= 1
2

(
1 +
√

2
)n [ 1√

2

]
+ 1

2

(
1−
√

2
)n [ 1

−
√

2

]

=

 1
2

((
1 +
√

2
)n

+
(
1−
√

2
)n)

√
2
2

((
1 +
√

2
)n − (1−√2

)n)
 .

32



Thus

un = 1
2

(
(1 +

√
2)n + (1−

√
2)n
)

and vn = 1√
2

(
(1 +

√
2)n − (1−

√
2)n
)

for all n > 0. �

Exercise 53. The sequence (an)∞n=0 is given by a0 = 1001001, a1 = 1010100, a2 = 1110000 and

an+3 = 111an+2 − 1110an+1 + 1000an ( for n > 2)

(a) Write down a matrix equation relating the vector un to un+1, where un =

an+2

an+1

an

.

(b) Find the eigenvalues and eigenvectors of the matrix occuring in (a). (If you have done this
correctly, the answers will be integers with a nice pattern.)

(c) Express u0 as a linear combination of the eigenvectors in (b).
(d) Give a general formula for an.
(e) Check directly that your formula satisfies an+3 = 111an+2 − 1110an+1 + 1000an and that a0, a1

and a2 are as they should be.

Solution:

(a) We have

un+1 =

an+3

an+2

an+1

 =

111an+2 − 1110an+1 + 1000an
an+2

an+1

 =

111 −1110 1000
1 0 0
0 1 0

an+2

an+1

an

 .
In other words, if we put

A =

111 −1110 1000
1 0 0
0 1 0


then un+1 = Aun. It follows that for all n ≥ 0 we have

un = Anu0 = An

1110000
1010100
1001001

 .
(b) The characteristic polynomial is

χA(t) = det

111− t −1110 1000
1 −t 0
0 1 −t

 = (111− t) det

[
−t 0
1 −t

]
+ 1110 det

[
1 0
0 −t

]
+ 1000 det

[
1 −t
0 1

]
= (111− t)t2 − 1110t+ 1000 = 1000− 1110t+ 111t2 − t3

= (1− t)(10− t)(100− t).

Thus, the eigenvalues are 1, 10 and 100. To find the corresponding eigenvectors, we perform the
following row-reductions:

A− I =

110 −1110 1000
1 −1 0
0 1 −1

→
1 0 −1

0 1 −1
0 0 0

 =: B1

A− 10I =

101 −1110 1000
1 −10 0
0 1 −10

→
1 0 −100

0 1 −10
0 0 0

 =: B2

A− 100I =

10 −1110 1000
1 −100 0
0 1 −100

→
1 0 −10000

0 1 −100
0 0 0

 =: B3.

To find an eigenvector w2 =
[
x y z

]T
of eigenvalue 10, we need to solve (A− 10I)w2 = 0, or

equivalently B2w2 = 0, which just reduces to x = 100z and y = 10z with z arbitrary. Taking
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z = 1, we see that
[
100 10 1

]T
is an eigenvector of eigenvalue 10. Treating the other two

eigenvalues in the same way, we find that the vectors

w1 =

1
1
1

 w2 =

100
10
1

 w3 =

10000
100
1


are eigenvectors of eigenvalues 1, 10 and 100 respectively.

(c) By inspection we have

u0 =

1110000
1010100
1001001

 =

1000000
1000000
1000000

+

100000
10000
1000

+

10000
100
1


= 1000000

1
1
1

+ 1000

100
10
1

+

10000
100
1

 = 106w1 + 103w2 + w3.

(d) Recall that Aw1 = w1 and Aw2 = 10w2 and Aw3 = 100w3. It follows that for all n ≥ 0 we have
Anw1 = w1 and Anw2 = 10nw2 and Anw3 = 100nw3 = 102nw3. This gives

un = Anu0 = An(106w1 + 103w2 + w3) = 106Anw1 + 103Anw2 +Anw3

= 106w1 + 10n+3w2 + 102nw3 = 106

1
1
1

+ 10n+3

102

10
1

+ 102n

104

102

1


=

106 + 10n+5 + 102n+4

106 + 10n+4 + 102n+2

106 + 10n+3 + 102n

 .
In particular, an is the bottom entry in un, which is

an = 106 + 10n+3 + 102n.

(e) Our formula gives

a0 = 106 + 103 + 100 = 1001001

a1 = 106 + 104 + 102 = 1010100

a0 = 106 + 105 + 104 = 1110000

as it should. We also have

111an+2 − 1110an+1 + 1000an

=111(106 + 10n+5 + 102n+4)− 1110(106 + 10n+4 + 102n+2) + 1000(106 + 10n+3 + 102n)

=106(111− 1110 + 1000) + 10n+3(11100− 11100 + 1000) + 102n(1110000− 111000 + 1000)

=106 + 1000× 10n+3 + 1000000× 102n = 106 + 10n+6 + 102n+6 = an+3.

�

Exercise 54. Let (an) be the sequence given by a0 = 2 and a1 = 4 and an+2 = 4an+1 − an for n ≥ 0.
Give a general formula for an.

Solution: The vectors vn =

[
an
an+1

]
satisfy v0 =

[
2
4

]
and

vn+1 =

[
an+1

an+2

]
=

[
an+1

4an+1 − an

]
=

[
0 1
−1 4

] [
an
an+1

]
= Avn,

where A =

[
0 1
−1 4

]
. It follows that vk = Akv0 for all k ≥ 0. To understand this more explicitly, we

need to find the eigenvalues and eigenvectors of A. The characteristic polynomial is

χA(t) = det

[
−t 1
−1 4− t

]
= −t(4− t)− (−1) = t2 − 4t+ 1.
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The eigenvalues of A are the roots of χA(t), which are λ1 = (4 +
√

16− 4)/2 = 2 +
√

3 and λ2 = 2−
√

3.

We next want to find an eigenvector u1 =

[
x
y

]
with Au1 = λ1u1, or in other words[

0 1
−1 4

] [
x
y

]
=

[
λ1x
λ1y

]
or y = λ1x and 4y − x = λ1y. If we substitute y = λ1x then the equation 4y − x = λ1y becomes
4λ1x−x = λ21x or (λ21− 4λ1 + 1)x = 0, which holds automatically because λ1 is a root of t2− 4t+ 1 = 0.

It follows that we can take u1 =

[
1
λ1

]
. Similarly, the vector u2 =

[
1
λ2

]
is an eigenvector of A with

eigenvalue λ2.

We next need to express the vector v0 =

[
2
4

]
as a linear combination of u1 and u2. Equivalently, we

must find α1 and α2 such that [
2
4

]
= α1

[
1
λ1

]
+ α2

[
1
λ2

]
.

Looking on the top line gives α2 = 2 − α1, and then the second line gives 4 = λ1α1 + λ2(2 − α1) and

so α1(λ1 − λ2) = 4 − 2λ2. Here λ1 − λ2 = 2
√

3 and 4 − 2λ2 = 2
√

3 as well so α1 = 1. It follows that
α2 = 2− α1 = 1, so v0 = u1 + u2. (This can also be seen by inspection.)

We now have Anui = λni ui, so

vn = Anv0 = An(u1 + u2) = Anu1 +Anu2 = λn1u1 + λn2u2

=

[
λn1 + λn2

λn+1
1 + λn+1

2

]
.

On the other hand, we have vn =

[
an
an+1

]
, so we conclude that an = λn1 +λn2 = (2+

√
3)n+(2−

√
3)n. �

12. Lecture 12

Exercise 55. Over a period of 5 minutes, in a typical MAS201 lecture, 90% of students who are awake
at the beginning of the 5-minute period will still be so at the end of it (but the other 10% will fall asleep)
and 90% of students who are asleep at the beginning of the 5-minute period will still be so at the end of
it (and the other 10% will wake up). If all the students are awake at the beginning of the lecture, what
percentage will be awake at the end of the lecture, 50 minutes later?

Solution: For each k = 0, . . . , 10, let ak and bk be the proportions of students who are awake and who

are asleep after 5k minutes of the lecture, respectively, and set vk =
[
ak bk

]T
. We have[

a0
b0

]
=

[
1
0

]
and

[
ak+1

bk+1

]
=

[
9
10

1
10

1
10

9
10

] [
ak
bk

]
for k = 0, . . . , 9. Set

A =

[
9
10

1
10

1
10

9
10

]
.

We are thus considering the difference equation vk+1 = Avk, so that vk = Akv0 for k = 0, . . . , 10, and
we wish to find v10 = A10v0.

The matrix A is stochastic, and so has 1 as an eigenvalue. The characteristic polynomial of A is

χA(t) =

∣∣∣∣∣ 9
10 − t

1
10

1
10

9
10 − t

∣∣∣∣∣ =
(
t− 9

10

)2 − ( 1
10

)2
= (t− 1)

(
t− 8

10

)
.

Thus the eigenvalues of A are 1 and 8
10 . Since A has 2 distinct eigenvalues, we can find a basis for R2

consisting of eigenvectors of A.
To find an eigenvector of A corresponding to the eigenvalue λ1 := 1, we need to solve the system of

linear equations (A− I2)
[
x y

]T
= 0. This has augmented matrix

[
A− I2|0

]
=

[
− 1

10
1
10 0

1
10 − 1

10 0

]
→
[
− 1

10
1
10 0

0 0 0

]
,
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and so w1 :=
[
1 1

]T
is an eigenvector of A corresponding to the eigenvalue 1.

To find an eigenvector of A corresponding to the eigenvalue λ2 := 8
10 , we need to solve the system of

linear equations
[
A− 8

10I2
] [
x y

]T
= 0. This has augmented matrix

[
A− 8

10I2|0
]

=

[
1
10

1
10 0

1
10

1
10 0

]
→
[ 1

10
1
10 0

0 0 0

]
,

and so w2 :=
[
1 −1

]T
is an eigenvector of A corresponding to the eigenvalue 8

10 .

Now, w1 =

[
1
1

]
and w2 =

[
1
−1

]
, being eigenvectors corresponding to distinct eigenvalues of A,

form a basis for R2. We express v0 as a linear combination of these two eigenvectors:

v0 =

[
1
0

]
= 1

2

[
1
1

]
+ 1

2

[
1
−1

]
= 1

2w1 + 1
2w2.

We have

vk = Akv0 = Ak
(
1
2w1 + 1

2w2

)
= 1

2A
kw1 + 1

2A
kw2 = 1

2λ
k
1w1 + 1

2λ
k
2w2 = 1

21kw1 + 1
2 (0.8)kw2.

In particular,

v10 =

[
a10
b10

]
= 1

2w1 + 1
2 (0.8)10w2 = 1

2

[
1
1

]
+ 1

2 (0.8)10
[

1
−1

]
.

Since (0.8)10 ≈ 0.107374, we conclude that approximately 55.37% of students are awake at the end of
the lecture. �

Exercise 56. Put d =
[
1 · · · 1

]T ∈ Rn.

(a) If P ∈Mn(R) is a stochastic matrix, show that dTP = dT .
(b) Deduce that if q ∈ Rn is a probability vector, then Pq is also a probability vector.
(c) Deduce that if Q ∈Mn(R) is another stochastic matrix, then PQ is also a stochastic matrix.

(Hint: how are the columns of PQ related to the columns of Q?)

Solution:

(a) Let the columns of P be v1, . . . , vn. As P is stochastic, we know that the sum of the entries in
vi is equal to 1, so d.vi = 1. This means that

dTP =
[
1 · · · 1

] [
v1 · · · vn

]
=
[
d.v1 · · · d.vn

]
=
[
1 · · · 1

]
= dT .

(b) Now let q be a probability vector. Then all entries in P and q are nonnegative, and the entries in
Pq are sums of entries in P multiplied by entries in q, so they are again nonnegative. Moreover,
the sum of the entries in Pq is d.Pq = dTPq, but dTP = d, so this is the same as dT q = d.q,
which is 1 by assumption. This proves that Pq is a probability vector.

(c) Now let Q be another n × n stochastic matrix. Let w1, . . . , wn be the columns of Q, which are
probability vectors. We then have

PQ = P
[
w1 · · · wn

]
=
[
Pw1 · · · Pwn

]
.

The vectors Pw1, . . . , Pwn are probability vectors by part (b), and it follows that PQ is a
stochastic matrix.

�

Exercise 57. Suppose that 0 < p < 1 and 0 < q < 1, and put P =

[
p 1− q

1− p q

]
(so P is a stochastic

matrix). Find the eigenvalues and eigenvectors of P in terms of p and q.
(Hint: a general theorem from lectures tells you one of the eigenvalues.)

Solution: The characteristic polynomial is

χP (t) = det

[
p− t 1− q
1− p q − t

]
= (p− t)(q − t)− (1− p)(1− q) = t2 − (p+ q)t+ (p+ q − 1).

Every stochastic matrix has 1 as an eigenvalue, so one of the roots of χP (t) is at t = 1. We can divide
t2− (p+ q)t+ (p+ q− 1) by t− 1 to obtain the factorisation χP (t) = (t− 1)(t− (p+ q− 1)), so the other
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eigenvalue is r = p+ q − 1. To find an eigenvector u1 =

[
x
y

]
of eigenvalue 1, we must solve

(P − I)u1 =

[
p− 1 1− q
1− p q − 1

] [
x
y

]
=

[
0
0

]
.

This reduces to (1−p)x = (1−q)y so we can take y = 1/(1−q) to get x = 1/(1−p) and u1 =

[
1/(1− p)
1/(1− q)

]
.

Next, to find an eigenvector of eigenvalue r we note that

P − rI =

[
p 1− q

1− p q

]
−
[
p+ q − 1 0

0 p+ q − 1

]
=

[
1− q 1− q
1− p 1− p

]
.

It follows that the vector u2 =

[
1
−1

]
satisfies (P − rI)u2 = 0, so this is the required eigenvector. �

Exercise 58. Consider the following Markov chain:

1 2 3

2
3

2
3

1
3

1
3

1
3

1
3

1
3

Write down the transition matrix and find its eigenvalues and eigenvectors. What is the stationary
distribution?

Solution: The transition matrix is

P =

p1←−1 p1←−2 p1←−3

p2←−1 p2←−2 p2←−3

p3←−1 p3←−2 p3←−3

 =

1/3 1/3 0
2/3 1/3 2/3
0 1/3 1/3

 .
For the characteristic polynomial, we have

χP (t) = det

1/3− t 1/3 0
2/3 1/3− t 2/3
0 1/3 1/3− t


= (1/3− t) det

[
1/3− t 2/3

1/3 1/3− t

]
− (1/3) det

[
2/3 2/3
0 1/3− t

]
det

[
1/3− t 2/3

1/3 1/3− t

]
= (1/3− t)2 − 2/9 = t2 − (2/3)t− 1/9

det

[
2/3 2/3
0 1/3− t

]
= 2/9− (2/3)t

χP (t) = (1/3− t)(t2 − (2/3)t− 1/9)− (1/3)(2/9− (2/3)t)

= −1/9 + (1/9)t+ t2 − t3 = (1− t)(t2 − 1/9) = (1− t)(t− 1/3)(t+ 1/3).

From this we see that the eigenvalues are 1/3, −1/3 and 1. To find an eigenvector u1 of eigenvalue 1/3
we row-reduce P − 1

3I:  0 1/3 0
2/3 0 2/3
0 1/3 0

→
1 0 1

0 1 0
0 0 0

 .
This means that if u1 =

[
x y z

]T
we must have1 0 1

0 1 0
0 0 0

xy
z

 =

0
0
0
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which gives x = −z with y = 0. Taking z = 1 we get u1 =
[
−1 0 1

]T
. Next, to find an eigenvector

u2 of eigenvalue −1/3 we row-reduce P + 1
3I:2/3 1/3 0

2/3 2/3 2/3
0 1/3 2/3

→
1 1/2 0

1 1 1
0 1 2

→
1 0 −1

0 1 2
0 0 0

 .
This means that if u2 =

[
x y z

]T
we must have1 0 −1

0 1 2
0 0 0

xy
z

 =

0
0
0


which gives x = z and y = −2z. Taking z = 1 we get u2 =

[
1 −2 1

]T
. Finally, to find an eigenvector

of eigenvalue 1 we row-reduce P − I:−2/3 1/3 0
2/3 −2/3 2/3
0 1/3 −2/3

→
1 −1/2 0

1 −1 1
0 1 −2

→
1 0 −1

0 1 −2
0 0 0

 .
This means that if u3 =

[
x y z

]T
we must have1 0 −1

0 1 −2
0 0 0

xy
z

 =

0
0
0


which gives x = z and y = 2z. Taking z = 1, we get u3 =

[
1 2 1

]T
.

We are also asked for a stationary distribution, which should be an eigenvector of eigenvalue 1 that
is also a probability vector. To make u3 into a probability vctor we need to divide it by 4, giving[
1
4

1
2

1
4

]T
as the stationary distribution. �

Exercise 59. Consider the following Markov chain:

1 2

34

1
2

1
2

1
21

2
1
2

1
2

1
2

1
2

Write down the transition matrix P and check that P 3 = P . Deduce that P 2k+1 = P for all k ≥ 0. If
we start in state 1 at t = 0, what is the probability of being in state 3 at t = 1111?

Note: you do not need to calculate any eigenvalues or eigenvectors for this question.

Solution: The transition matrix is

P =


p1←−1 p1←−2 p1←−3 p1←−4

p2←−1 p2←−2 p2←−3 p2←−4

p3←−1 p3←−2 p3←−3 p3←−4

p4←−1 p4←−2 p4←−3 p4←−4

 =
1

2


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
This gives

P 2 =
1

4


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 =
1

2


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1



P 3 =
1

4


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 =
1

2


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 = P.
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We can now multiply both sides of the equation P 3 = P by P 2 to get P 5 = P 3, but P 3 = P so P 5 = P .
We now multiply both sides by P 2 again to get P 7 = P 3 = P , and again to get P 9 = P 3 = P and so
on. Ths shows that P 2k+1 = P for all k ≥ 0.

Now suppose we are definitely in state 1 at t = 0, so the distribution vector r0 is
[
1 0 0 0

]T
. The

distribution at t = 1111 is then r1111 = P 1111r0, but we have just seen that P 1111 = P , so

r1111 = Pr0 =
1

2


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




1
0
0
0

 =


0

1/2
0

1/2

 .

By looking at the third entry, we see that the probability of being in state 3 at t = 1111 is zero. In
fact, this can be seen even more directly. From the diagram we see that every second we switch from
an odd-numbered state to an even-numbered state or vice-versa. We start in state 1 at t = 0, and at
t = 1111 we have switched over an odd number of times, so we must be in an even-numbered state, and
in particular we cannot be in state 3. �

13. Lecture 13

Exercise 60. Consider the following web of pages and links.

1

2

3

4

5

6

7

8

9

Let a be the PageRank of page 1, and let b be the PageRank of page 9. By symmetry, pages 2 to 8 must
also have rank a. Use the consistency and normalisation conditions to find a and b (without writing
down any 9× 9 matrices).

Solution: First, the normalisation condition says that
∑9
i=1 ri = 1. As r1 = · · · = r8 = a and r9 = b,

this means that 8a+ b = 1.
Next, note that the numbers of outgoing links are N1 = · · · = N8 = 2 and N9 = 8. As page 1 has

links from pages 8 and 9, the consistency condition says that r1 = r8/N8 + r9/N9, or in other words
a = a/2 + b/8. By symmetry, pages 2 to 8 have the same consistency condition as page 1. On the other
hand, page 9 has links from pages 1 to 8, so the consistency condition there is

b = r9 = r1/N1 + · · ·+ r8/N8 = a/2 + · · ·+ a/2 = 4a.

Solving the equations 8a+ b = 1, a = a/2 + b/8 and b = 4a gives a = 1/12 and b = 1/3. �
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14. Lecture 14

Exercise 61. Consider the following sets

P0 = {
[
x y

]T ∈ R2 | x2 ≥ 1}

P1 = {
[
x y

]T ∈ R2 | xy ≥ 0}

P2 = {
[
x y

]T ∈ R2 | y ≤ x2}

P3 = {
[
x y

]T ∈ R2 | x+ y is an integer }

P4 = {
[
x y

]T ∈ R2 | x2 + y2 ≤ 1}

The set P0 is not closed under addition, because the vectors u0 =

[
1
0

]
and u1 =

[
−1
0

]
both lie in P0, but

the sum u0 +u1 =

[
0
0

]
does not lie in P0. Moreover, the set P0 is not closed under scalar multiplication,

because the vector u2 =

[
1
1

]
lies in P0, but the product 0.5u2 =

[
0.5
0.5

]
does not lie in P0. Give similarly

specific examples to show that

(a) P1 is not closed under addition.
(b) P2 is not closed under addition.
(c) P2 is not closed under scalar multiplication.
(d) P3 is not closed under scalar multiplication.
(e) P4 is not closed under scalar multiplication.

Solution:

(a) P1 contains the vectors u3 =

[
0
1

]
and u4 =

[
−1
0

]
but not the sum u3 + u4 =

[
−1
1

]
.

(b) P2 contains the vectors u5 =

[
1
1

]
and u6 =

[
−1
1

]
but not the sum u5 + u6 =

[
0
2

]
.

(c) P2 contains the vector u7 =

[
0
−1

]
but not the vector (−1)u7 =

[
0
1

]
.

(d) P3 contains the vector u8 =

[
1
0

]
but not the vector 0.5u8 =

[
0.5
0

]
.

(e) P4 contains the vector u8 as above, but not the vector 2u8 =

[
2
0

]
.

�

Exercise 62. Which of the following sets is a subspace of R4?

(a) V1 is the set of vectors of the form
[
s t+ s t− s t

]T
(for some s, t ∈ R).

(b) V2 is the set of vectors of the form
[
t t2 t3 t4

]T
(for some t ∈ R).

(c) V3 is the set of vectors v =
[
w x y z

]T
that satisfy w + 10x+ 100y + 1000z = 1.

(d) V4 is the set of vectors v =
[
w x y z

]T
that satisfy w − x+ y − z = 0.

(e) V5 is the set of vectors v =
[
w x y z

]T
that satisfy (w − x)2 + (y − z)2 = 0.

Solution:

(a) The set V1 is a subspace of R4. Indeed, if v, v′ ∈ V1 then we have v =
[
s t+ s t− s t

]T
and

v′ =
[
s′ t′ + s′ t′ − s′ t′

]T
for some s, t, s′, t′ ∈ R. This means that

v + v′ =
[
s′′ t′′ + s′′ t′′ − s′′ t′′

]T
,

where s′′ = s + s′ and t′′ = t + t′. It follows that v + v′ ∈ V1, so V1 is closed under addition.

Similarly, if a is any scalar, we have av =
[
s∗ t∗ + s∗ t∗ − s∗ t∗

]T
, where s∗ = as and

t∗ = at. This shows that av ∈ V1, so V1 is closed under scalar multiplication. Finally, by taking
s = t = 0 we see that the zero vector lies in V1.
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(b) The set V2 is not a subspace of R4. Indeed, by taking t = 1 we see that the vector v =[
1 1 1 1

]T
lies in V2, but the vector 2v =

[
2 2 2 2

]T
does not lie in V2, so V2 is not

closed under scalar multiplication.
(c) The set V3 is not a subspace of R4, because the zero vector does not satisfy w + 10x + 100y +

1000z = 1 and so is not an element of V3.

(d) The set V4 is a subspace of R4. Indeed, the zero vector
[
w x y z

]T
=
[
0 0 0 0

]T
satisfies

w−x+y−z and so 0 ∈ V4. If we have elements v =
[
w x y z

]T
and v′ =

[
w′ x′ y′ z′

]T
in V4 then the we have w−x+ y− z = 0 and w′−x′+ y′− z′ = 0. By adding these equations we
see that (w+w′)− (x+x′) + (y+ y′)− (z+ z′) = 0, which shows that the sum v+ v′ is again an
element of V4, so V4 is closed under addition. A similar argument shows that it is closed under
scalar multiplication.

(e) The set V5 is also a subspace of R4, although this fact is slightly disguised by the way that we have
defined it. Because all squares are nonnegative, we see that the only way (w−x)2 + (y− z)2 can

be zero is if w = x and y = z. This means that V5 is the set of vectors of the form
[
s s t t

]T
,

which is a subspace by the same method that we used in part (a).

�

Exercise 63. (a) Give an example of a subset U0 ⊆ R2 that contains zero and is closed under
addition but is not closed under scalar multiplication.

(b) Give an example of a subset U1 ⊆ R2 that contains zero and is closed under scalar multiplication
but is not closed under addition.

(c) Suppose that U2 is a nonempty subset of R2 that is closed under addition and scalar multiplica-
tion. Show that U2 contains the zero vector.

(d) Let U3 be a subspace of R1 = R. Show that U3 is either {0} or all of R.

Solution:

(a) The simplest example is

U0 =

{[
x
y

]
∈ R2 | x, y ≥ 0

}
.

This is not closed under scalar multiplication, because

[
1
1

]
∈ U0 but (−1)

[
1
1

]
6∈ U0.

(b) The simplest example is

U1 =

{[
x
y

]
∈ R2 | xy = 0

}
.

This is not closed under addition, because

[
1
0

]
∈ U1 and

[
0
1

]
∈ U1 but

[
1
0

]
+

[
0
1

]
=

[
1
1

]
6∈ U1.

(c) As U2 is nonempty, we can choose a vector u ∈ U2. As U2 is closed under scalar multiplication,
we can multiply the vector u ∈ U2 by the scalar 0 ∈ R, and the result 0u will again be an element
of U2. Of course 0u is just the zero vector, so the zero vector is an element of U2.

(d) Let U3 be a subspace of R. As it is a subspace, it must contain zero. If it does not contain
anything else, then U3 = {0}. Suppose instead that it does contain something else, so there is
a nonzero element u ∈ U3. Consider another element v ∈ R. As we are working with elements
of R1 which are just numbers, we can make sense of multiplication and division (which are not
defined for vectors in R2 and beyond). We can thus express v as the product of the scalar v/u
with the vector u ∈ U3. (There is no problem with dividing by u, because we have assumed that
u 6= 0.) As U3 is closed under scalar multiplication, the product (v/u)u lies in U3, or in other
words v ∈ U3. This works for all vectors v ∈ R1, so we have U3 = R1.

�

15. Lecture 15

Exercise 64. Let V be the set of vectors of the form

v =
[
2p− q q + r + s 3p+ 2s r − s

]
(where p, q, r and s are arbitrary real numbers). Find a list of vectors whose span is V .
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Solution: This is similar to examples 19.16 and 19.17. The general form for elements of V is

v =
[
2p− q q + r + s 3p+ 2s r − s

]
= p


2
0
3
0

+ q


−1
1
0
0

+ r


0
1
0
1

+ s


0
1
0
−1

 .
In other words, the elements of V are all the possible linear combinations of the four vectors occuring in
the above formula. In other words, we have

V = span




2
0
3
0

 ,

−1
1
0
0

 ,


0
1
0
1

 ,


0
1
0
−1


 .

�

Exercise 65. Put

A =

[
1 6 8
7 2 3

]
and V = {v ∈ R3 | Av = 0}. Find a list of vectors whose annihilator is V .

Solution: This is an instance of Proposition 19.14: the space V is by definition the kernel of A, and
that proposition tells us that the kernel is the annihilator of the transposed rows. Thus, if we put

a1 =
[
1 6 8

]T
and a2 =

[
7 2 3

]T
then V = ann(a1, a2). This can also be seen quite easily without

reference to Proposition 19.14. If v =
[
x y z

]T
then

Av =

[
1 6 8
7 2 3

]xy
z

 =

[
x+ 6y + 8z
7x+ 2y + 3z

]
=

[
a1.v
a2.v

]
,

so v lies in V iff Av = 0 iff a1.v = a2.v = 0 iff v lies in ann(a1, a2); this means that V = ann(a1, a2) as
before. �

Exercise 66. Put

a1 =


1
2
3
4

 a2 =


4
3
2
1

 u =


1
−1
−1
1

 v =


1
1
1
1

 .
(a) Does u lie in ann(a1, a2)?
(b) Does v lie in ann(a1, a2)?
(c) Does u lie in span(a1, a2)?
(d) Does v lie in span(a1, a2)?

Solution:

(a) Yes, we have u.a1 = 1− 2− 3 + 4 = 0 and u.a2 = 4− 3− 2 + 1 = 0, so u ∈ ann(a1, a2).
(b) No, we have v.a1 = 1 + 2 + 3 + 4 = 10 6= 0, so v 6∈ ann(a1, a2). (We also have v.a2 6= 0, but the

fact that v.a1 6= 0 is already enough to show that v 6∈ ann(a1, a2), so we do not really need to
consider v.a2.)

(c) No, u cannot be written as a linear combination of a1 and a2, so it does not lie in span(a1, a2).
One way to check this is to use Method 7.6, which involves row-reducing the matrix [a1|a2|u]:

1 4 1
2 3 −1
3 2 −1
4 1 1

→


1 4 1
0 −5 −3
0 −10 −4
0 −15 −5

→


1 4 1
0 1 0.6
0 −10 −4
0 −15 −5

→


1 0 −1.4
0 1 0.6
0 0 2
0 0 4

→


1 0 0
0 1 0
0 0 1
0 0 0

 .
We end up with a pivot in the last column, which indicates that the equation λ1a1 + λ2a2 = u
cannot be solved for λ1 and λ2, or equivalently that u is not a linear combination of a1 and a2.

(d) Yes, it is easy to see by inspection that v = (a1+a2)/5 = 0.2a1+0.2a2, so v is a linear combination
of a1 and a2, or in other words v ∈ span(a1, a2).

�
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Exercise 67. Put

a1 =


1
1
2
2

 a2 =


2
2
1
1

 b1 =


3
−3
4
−4

 b2 =


4
−4
3
−3

 .
Show that span(a1, a2) ⊆ ann(b1, b2).

Solution: First, we have

a1.b1 = 3− 3 + 8− 8 = 0

a1.b2 = 4− 4 + 6− 6 = 0

a2.b1 = 6− 6 + 4− 4 = 0

a2.b2 = 8− 8 + 3− 3 = 0.

Now consider an arbitrary element v ∈ span(a1, a2). By the definition of span(a1, a2), this means that v
can be expressed as v = λ1a1 + λ2a2 for some scalars λ1 and λ2. This gives

v.b1 = (λ1a1 + λ2a2).b1 = λ1(a1.b1) + λ2(a2.b1) = λ1 × 0 + λ2 × 0 = 0

v.b2 = (λ1a1 + λ2a2).b2 = λ1(a1.b2) + λ2(a2.b2) = λ1 × 0 + λ2 × 0 = 0.

As v.b1 = v.b2 = 0, we have v ∈ ann(b1, b2). As this holds for every element of span(a1, a2), we have
span(a1, a2) ⊆ ann(b1, b2) as claimed. �

Exercise 68. Consider the vectors

v1 =


−1
2
−1
3

 v2 =


1
−1
2
−2

 v3 =


1
0
3
−1

 w1 =


−1
5
2
6

 w2 =


1
1
4
0


(a) Show that span(v1, v2, v3) = span(v1, v2) = span(w1, w2).
(b) Find dim(span(v1, v2, v3, w1, w2)).

Solution: We will first give a solution that involves observing various identities between the given
vectors, then a longer but more systematic solution by row-reduction.

First, we observe that v3 = v1 + 2v2. This allows us to rewrite any linear combination of v1, v2 and
v3 as a linear combination of v1 and v2 alone. Thus, we have span(v1, v2, v3) = span(v1, v2).

Next, we observe that w1 = 4v1+3v2 and w2 = 2v1+3v2. This shows that w1, w2 ∈ span(v1, v2) and so
span(w1, w2) ⊆ span(v1, v2). In the opposite direction, we have v1 = (w1−w2)/2 and v2 = (2w2−w1)/3,
which shows that v1, v2 ∈ span(w1, w2) and so span(v1, v2) ⊆ span(w1, w2).

We now see that all of the given vectors are linear combinations of v1 and v2, so the space V =
span(v1, v2, v3, w1, w2) is just the same as span(v1, v2). Recall that a list of two nonzero vectors is only
linearly dependent if the vectors are scalar multiples of each other. This is clearly not the case for v1
and v2, so we see that the list v1, v2 is a basis for V , so dim(V ) = 2.

The more systematic approach is just to find the canonical bases for all the spaces involved. We have

[v1|v2|v3]T =

−1 2 −1 3
1 −1 2 −2
1 0 3 −1

→
1 −2 1 −3

0 1 1 1
0 2 2 2

→
1 0 3 −1

0 1 1 1
0 0 0 0


It follows that the vectors a1 =

[
1 0 3 −1

]T
and a2 =

[
0 1 1 1

]T
form the canonical basis for

span(v1, v2, v3). We can perform the same row-reduction leaving out the last row to see that a1 and a2
also form the canonical basis for span(v1, v2), so span(v1, v2, v3) = span(v1, v2). Similarly, we have

[w1|w2]T =

[
−1 5 2 6
1 1 4 0

]
→
[
1 −5 −2 −6
0 6 6 6

] [
1 0 3 −1
0 1 1 1

]
= [a1|a2]T

This shows that a1 and a2 also form the canonical basis for span(w1, w2), so span(v1, v2, v3) = span(v1, v2) =
span(w1, w2). From this it follows as before that span(v1, v2, v3, w1, w2) is yet another description of the
same space, and the canonical basis has two vectors so the dimension is 2. �
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16. Lecture 16

Exercise 69. Put V = span(v1, v2, v3), where

v1 =
[
0 2 6 10 1 0

]T
v2 =

[
0 1 3 5 1 −3

]T
v3 =

[
0 3 9 15 1 3

]T
.

(a) What is the dimension of V ?
(b) What is the canonical basis for V ?
(c) What is the set J(V ) of jumps for V ?

Solution: We can row-reduce the matrix A = [v1|v2|v3]T as follows:

A =

0 2 6 10 1 0
0 1 3 5 1 −3
0 3 9 15 1 3

→
0 0 0 0 −1 6

0 1 3 5 1 −3
0 0 0 0 −2 12

→
0 1 3 5 0 3

0 0 0 0 1 −6
0 0 0 0 0 0

 = B.

According to Method 20.14, the canonical basis for V consists of the transposes of the nonzero rows in
B, or in other words the vectors

u1 =
[
0 1 3 5 0 3

]T
u2 =

[
0 0 0 0 1 −6

]
.

As this basis consists of two vectors, we have dim(V ) = 2. According to Lemma 20.13, the jumps for V
are the pivot columns for the above matrix B. There are pivots in columns 2 and 5, so J(V ) = {2, 5}. �

Exercise 70. Let V be the set of all vectors of the form

v =
[
p+ q p+ 2q p+ r p+ 3r

]T
.

You may assume that this is a subspace. Find a list of vectors that spans V , and then find the canonical
basis for V .

Solution: A general element of V has the form

v =
[
p+ q p+ 2q p+ r p+ 3r

]
= p


1
1
1
1

+ q


1
2
0
0

+ r


0
0
1
3

 .
In other words, the elements of V are precisely the linear combinations of the vectors

v1 =


1
1
1
1

 v2 =


1
2
0
0

 v3 =


0
0
1
3

 .
For the canonical basis, we perform the following row-reduction:1 1 1 1

1 2 0 0
0 0 1 3

→
1 1 1 1

0 1 −1 −1
0 0 1 3

→
1 0 2 2

0 1 −1 −1
0 0 1 3

→
1 0 0 −4

0 1 0 2
0 0 1 3

 .
We conclude that the canonical basis consists of the vectors

w1 =
[
1 0 0 −4

]T
w2 =

[
0 1 0 2

]T
w3 =

[
0 0 1 3

]T
.

�

Exercise 71. Put V = span(e1 − e2, e2 − e3, . . . , en−1 − en) ⊆ Rn, where ei is the i’th standard basis
vector for Rn.

(a) What is the dimension of V ?
(b) What is the canonical basis for V ?
(c) What is the set J(V ) of jumps for V ?

(You can start by doing the case n = 5 by row-reduction if you like, but ideally you should give an
answer for the general case, together with a more abstract proof that your answer is correct.)
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Solution: Put vi = ei − ei+1, so V = span(v1, . . . , vn−1). For the case n = 5 we have can row-reduce
the matrix A = [v1|v2|v3|v4]T as follows:

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

→


1 −1 0 0 0
0 1 −1 0 0
0 0 1 0 −1
0 0 0 1 −1

→


1 −1 0 0 0
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1

→


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1


The final matrix B can be described as [w1|w2|w3|w4]T , where wi = ei− e4. It follows that these vectors
wi form the canonical basis for V , so dim(V ) = 4. Moreover, the set of jumps for V is the set of pivot
columns for B, namely {1, 2, 3, 4}.

The same pattern works for general n. In more detail, we can define vectors w1, . . . , wn−1 by wi =
ei − en, and we set W = span(w1, . . . , wn−1). For i < n− 1 we have

vi = ei − ei+1 = (ei − en)− (ei+1 − en) = wi − wi+1,

whereas vn−1 is just equal to wn−1. This shows that vi ∈W for all i, and it follows that V ⊆W . In the
opposite direction, we have

vi + vi+1 + · · ·+ vn−1 = (ei − ei+1) + (ei+1 − ei+2) + · · ·+ (en−1 − en) = ei − en = wi,

which shows that wi ∈ V for all i, and thus that W ⊆ V . It follows that W = V , so the list W =
w1, . . . , wn−1 spans V . The corresponding matrix B = [w1| · · · |wn−1]T is clearly in RREF (and has
no zero rows), so W is in fact the canonical basis for V . It follows that dim(V ) = n − 1 and J(V ) =
{1, 2, . . . , n− 1}. �

Exercise 72. Put V = ann(a1, a2, a3) ⊆ R6, where

a1 =
[
1 1 2 3 3 2

]T
a2 =

[
3 3 2 1 1 2

]T
a3 =

[
0 0 1 1 1 1

]T
.

Find the canonical basis for V .

Solution: The equations a3.x = a2.x = a1.x = 0 can be written as

x6 + x5 + x4 + x3 = 0

2x6 + x5 + x4 + 2x3 + 3x2 + x1 = 0

2x6 + 3x5 + 3x4 + 2x3 + x2 + x1 = 0.

The matrix A on the left below is [a1|a2|a3]T ; the matrix A∗ on the right is obtained by turning A
through 180◦ and is the matrix of coefficients in the above system of equations.

A =

1 1 2 3 3 2
3 3 2 1 1 2
0 0 1 1 1 1

 A∗ =

1 1 1 1 0 0
2 1 1 2 3 3
2 3 3 2 1 1

 .
We can row-reduce A∗ as follows:

A∗ →

1 1 1 1 0 0
0 −1 −1 0 3 3
0 1 1 0 1 1

→
1 0 0 1 3 3

0 1 1 0 −3 −3
0 0 0 0 4 4

→
1 0 0 1 0 0

0 1 1 0 0 0
0 0 0 0 1 1

 = B∗

The matrix B∗ corresponds to the system of equations

x6 + x3 = 0

x5 + x4 = 0

x2 + x1 = 0,

which can be rewritten as x6 = −x3 and x5 = −x4 and x2 = −x1. This gives

x =


x1
x2
x3
x4
x5
x6

 =


x1
−x1
x3
x4
−x4
−x3

 = x1


1
−1
0
0
0
0

+ x3


0
0
1
0
0
−1

+ x4


0
0
0
1
−1
0

 .
45



It follows that the vectors

v1 =
[
1 −1 0 0 0 0

]T
v2 =

[
0 0 1 0 0 −1

]T
v3 =

[
0 0 0 1 −1 0

]T
form the canonical basis for V .

The calculation can be written more compactly in terms of Method 20.23. The matrix B∗ has pivot
columns 1, 2 and 5, and non-pivot columns 3, 4 and 6. Deleting the pivot columns leaves the matrix

C∗ =

 cT1
cT2
cT3

 =

0 1 0
1 0 0
0 0 1

 .
We then construct the matrix

D∗ =
[
−c1 −c2 e1 e2 −c3 e3

]
=

 0 −1 1 0 0 0
−1 0 0 1 0 0
0 0 0 0 −1 1


and rotate it to get

D =

1 −1 0 0 0 0
0 0 1 0 0 −1
0 0 0 1 −1 0

 .
The canonical basis vectors vi appear as the rows of D. �

Exercise 73. Put

A =


1 1 1 1
1 2 2 1
1 3 3 1
1 4 4 1

 .
Find the canonical basis for img(A), and the canonical basis for ker(A).

Solution: First, let a1, . . . , a4 be the columns of A. Proposition 19.19 tellus us that img(A) =
span(a1, . . . , a4). To find the canonical basis for this space, Method 20.14 tells us that we should form
the matrix whose rows are aT1 , . . . , a

T
4 , but that matrix is just AT . We can row-reduce AT as follows:

1 1 1 1
1 2 3 4
1 2 3 4
1 1 1 1

→


1 1 1 1
0 1 2 3
0 1 2 3
0 0 0 0

→


1 0 −1 −2
0 1 2 3
0 0 0 0
0 0 0 0


By looking at the transposed rows of the final matrix, we see that the canonical basis for img(A) consists
of the vectors

u1 =


1
0
−1
−2

 and u2 =


0
1
2
3

 .
Next, we recall that ker(A) is the set of vectors x that satisfy Ax = 0. After noting that

1 1 1 1
1 2 2 1
1 3 3 1
1 4 4 1



x1
x2
x3
x4

 =


x1 + x2 + x3 + x4
x1 + 2x2 + 2x3 + x4
x1 + 3x2 + 3x3 + x4
x1 + 4x2 + 4x3 + x4

 ,
we see that ker(A) is the set of solutions to the equations

x1 + x2 + x3 + x4 = 0

x1 + 2x2 + 2x3 + x4 = 0

x1 + 3x2 + 3x3 + x4 = 0

x1 + 4x2 + 4x3 + x4 = 0.
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These are easily solved to give x4 = −x1 and x3 = −x2 with x1 and x2 arbitrary. (In order to get the
canonical basis rather than any other basis, we need to write things this way around, with the higher-
numbered variables on the left written in terms of the lower-numbered variables on the right.) This
gives

x =


x1
x2
−x2
−x1

 = x1


1
0
−1
0

+ x2


0
1
0
−1

 .
From this we see that the canonical basis for ker(A) consists of the vectors

v1 =


1
0
−1
0

 and v2 =


0
1
0
−1

 .
�

17. Lecture 17

Exercise 74. Put

v1 =


1
3
5
3

 v2 =


1
1
1
−3

w1 =


1
2
3
4

w2 =


3
2
1
0


and V = span(v1, v2) and W = span(w1, w2).

(a) Find the canonical basis for V +W .
(b) Find vectors a1 and a2 such that V = ann(a1, a2).
(c) Find vectors b1 and b2 such that W = ann(b1, b2).
(d) Find the canonical basis for V ∩W .

Solution:

(a) We can row-reduce the matrix [v1|v2|w1|w2]T as follows:
1 3 5 3
1 1 1 −3
1 2 3 4
3 2 1 0

→


0 2 4 6
1 1 1 −3
0 1 2 7
0 −1 −2 9

→


1 1 1 −3
0 1 2 7
0 0 0 −8
0 0 0 2

→


1 0 −1 0
0 1 2 0
0 0 0 1
0 0 0 0


We deduce that the vectors

p1 =
[
1 0 −1 0

]T
p2 =

[
0 1 2 0

]T
p3 =

[
0 0 0 1

]T
form the canonical basis for V +W .

(b) The equations x.v2 = x.v1 = 0 can be written as

−3x4 + x3 + x2 + x1 = 0

3x4 + 5x3 + 3x2 + x1 = 0.

These can be solved in the usual way to give x4 = x2/9 + 2x1/9 and x3 = −2x2/3− x1/3. This
in turn gives

x =


x1
x2
x3
x4

 =


x1
x2

−2x2/3− x1/3
x2/9 + 2x1/9

 = x1


1
0
−1/3
2/9

+ x2


0
1
−2/3
1/9

 .
It follows that V = ann(a1, a2), where

a1 =
[
1 0 −1/3 2/9

]T
a2 =

[
0 1 −2/3 1/9

]T
.

(c) The method is the same as for part (b). The equations x.w2 = x.w1 = 0 can be written as

x3 + 2x2 + 3x1 = 0

4x4 + 3x3 + 2x2 + x1 = 0
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and these can be solved to give x4 = x2 + 2x1 and x3 = −2x2 − 3x1. This in turn gives

x =


x1
x2
x3
x4

 =


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 .
It follows that W = ann(b1, b2), where

b1 =
[
1 0 −3 2

]T
b2 =

[
0 1 −2 1

]T
.

(d) Now V ∩W = ann(a1, a2)∩ann(b1, b2) = ann(a1, a2, b1, b2). To save writing we will use the pure
matrix method to calculate this. The relevant matrix A∗ has rows consisting of the vectors b2,
b1, a2 and a1 written backwards:

A∗ =


1 −2 1 0
2 −3 0 1

1/9 −2/3 1 0
2/9 −1/3 0 1


This can be row-reduced as follows:

A∗ →


1 −2 1 0
2 −3 0 1
1 −6 9 0
2 −3 0 9

→


1 −2 1 0
0 1 −2 1
0 −4 8 0
0 1 −2 9

→


1 0 −3 0
0 1 −2 0
0 0 0 1
0 0 0 0

 = B∗

The matrix B∗ corresponds to the system of equations x4 = 3x2 and x3 = 2x2 and x1 = 0, so x =

x2
[
0 1 2 3

]
. It follows that V ∩W is the set of multiples of the vector q =

[
0 1 2 3

]T
,

so q on its own is the canonical basis for V ∩W .

�

Exercise 75. Put

U = {x ∈ R3 | x1 + 2x2 + 2x3 = 0}
V = {x ∈ R3 | 4x1 − x2 − x3 = 0}.

Find the canonical bases for U , V , U + V and U ∩ V .

Solution: First, we put a =
[
1 2 2

]
and b =

[
4 −1 −1

]
. We have a.x = x1 + 2x2 + 2x3, so U can

be described as U = {x | x.a = 0} or equivalently U = ann(a). Similarly, we have V = ann(b).
For x ∈ U we have x3 = −x1/2− x2, so

x =

 x1
x2

−x1/2− x2

 = x1

 1
0
−1/2

+ x2

 0
1
−1

 .
It follows that the vectors u1 =

[
1 0 −1/2

]T
and u2 =

[
0 1 −1

]T
form the canonical basis for U .

Similarly, for x ∈ V we have x3 = 4x1 − x2 so

x =

 x1
x2

4x1 − x2

 = x1

1
0
4

+ x2

 0
1
−1

 ,
so the vectors v1 =

[
1 0 4

]T
and v2 =

[
0 1 −1

]T
form the canonical basis for V .

It now follows that U + V = span(u1, u2, v1, v2). However, we can omit v2 because it is the same as
u2, so U + V = span(u1, u2, v1). To find the canonical basis for this space we row-reduce the matrix
[u1|u2|v1]T :1 0 −1/2

0 1 −1
1 0 4

→
1 0 −1/2

0 1 −1
0 0 9/2

→
1 0 −1/2

0 1 −1
0 0 1

→
1 0 0

0 1 0
0 0 1

 =

 eT1
eT2
eT3


It follows that e1, e2, e3 is the canonical basis for U + V and so U + V = R3.

The dimension formula now gives

dim(U ∩ V ) = dim(U) + dim(V )− dim(U + V ) = 2 + 2− 3 = 1.
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It follows that any nonzero vector in U ∩ V (considered as a list of length 1) forms a basis for U ∩ V .

We have seen that the vector w =
[
0 1 −1

]T
= u2 = v2 lies in both U and V , so it forms a basis for

U ∩ V . The first nonzero entry in w is 1, so this is the canonical basis.
For a more direct approach, we can use the fact that

U ∩ V = ann(a) ∩ ann(b) = ann(a, b).

The equations x.b = x.a = 0 can be written with the variables in decreasing order as

2x3 + 2x2 + x1 = 0

−x3 − x2 + 4x1 = 0.

These equations can be solved to give x3 = −x2 and x1 = 0, so

x =

 0
x2
−x2

 = x2

 0
1
−1

 = x2w.

Form this we again see that w is the canonical basis for U ∩ V . �

Exercise 76. Let V be the set of all vectors of the form

v =
[
p+ q 2p− 2q 3p+ 3q 4p− 4q

]T
.

(a) Find vectors v1 and v2 such that V = span(v1, v2).
(b) Find vectors w1 and w2 such that V = ann(w1, w2).

Solution:

(a) A general element v ∈ V can be written as

v =


p+ q

2p− 2q
3p+ 3q
4p− 4q

 = p


1
2
3
4

+ q


1
−2
3
−4

 .
It follows that if we put v1 =

[
1 2 3 4

]T
and v2 =

[
1 −2 3 −4

]T
then the elements of

V are precisely the linear combinations of v1 and v2, or in other words V = span(v1, v2).
If we want we can tidy this up by row-reduction:

[v1|v2]T =

[
1 2 3 4
1 −2 3 −4

]
→
[
1 2 3 4
0 −4 0 −8

]
→
[
1 2 3 4
0 1 0 2

]
→
[
1 0 3 0
0 1 0 2

]
.

It follows that V can also be described as span(v′1, v
′
2), where v′1 =

[
1 0 3 0

]T
and v′2 =[

0 1 0 2
]T

. (In fact, v′1 and v′2 form the canonical basis for V .)
(b) The equations x.v2 = 0 and x.v1 = 0 can be written as

−4x4 + 3x3 − 2x2 + x1 = 0

4x4 + 3x3 + 2x2 + x1 = 0.

By adding the above equations we get 6x2 + 2x1 = 0 or x3 = −x1/3. By subtracting the above
equations we get 8x4 + 4x2 = 0 or x4 = −x2/2. This gives

x =


x1
x2
x3
x4

 =


x1
x2
−x1/3
−x2/2

 = x1


1
0
−1/3

0

+ x2


0
1
0
−1/2

 .
It follows that V = ann(w1, w2), where w1 =

[
1 0 −1/3 0

]T
and w2 =

[
0 1 0 −1/2

]
.

Note that we could also have started with the equations x.v′2 = x.v′1 = 0 instead of x.v2 =
x.v1 = 0 and we would still have obtained the same vectors wi.

�

Exercise 77. For each of the following configurations, either find an example, or show that no example
is possible.

(a) Subspaces U, V ≤ R4 with dim(U) = dim(V ) = 3 and dim(U ∩ V ) = 1.
(b) Subspaces U, V ≤ R4 with dim(U) = dim(V ) = 3 and dim(U ∩ V ) = 2.
(c) Subspaces U, V ≤ R5 with dim(U) = dim(V ) = 2 and dim(U + V ) = 5.
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(d) Subspaces U, V ≤ R3 with dim(U) = dim(V ) = dim(U + V ) = dim(U ∩ V ).

Solution: We will repeatedly use the dimension formula

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ).

(a) This is not possible. Indeed, the dimension formula can be rearranged to give dim(U + V ) =
dim(U) + dim(V ) − dim(U ∩ V ) = 3 + 3 − 1 = 5, but U + V is a subspace of R4, so it cannot
have dimension greater than 4.

(b) The simplest example is

U = span(e1, e2, e3) = {
[
w x y 0

]T | w, x, y ∈ R}

V = span(e1, e2, e4) = {
[
w x 0 z

]T | w, x, z ∈ R}

U ∩ V = span(e1, e2) = {
[
w x 0 0

]T | w, x ∈ R}.
(c) This is not possible. Indeed, the dimension formula can be rearranged to give dim(U ∩ V ) =

dim(U) + dim(V )−dim(U +V ) = 2 + 2−5 = −1, but no subspace can have negative dimension.
(d) The minimal example here is to take U = V = {0}, so U + V = U ∩ V = {0} and dim(U) =

dim(V ) = dim(U + V ) = dim(U ∩ V ) = 0. More generally, we can choose U to be any subspace
of R3 (of dimension d, say) and take V = U . We then have U + V = U + U = U and
U ∩ V = U ∩ U = U so dim(U) = dim(V ) = dim(U + V ) = dim(U ∩ V ) = d.

�

18. Lecture 18

Exercise 78. Find the ranks of the following matrices:

A =

 0 1 2
−1 0 3
−2 −3 0

 B =

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8

 C =

 1 10 100
10 100 1000
100 1000 10000

 D =


1 0 1 1 1
1 0 0 0 1
0 0 1 1 0
0 1 0 0 0
0 1 1 1 0


Solution: The rank of a matrix M is the number of nonzero rows in the row-reduced form of M . We
have row-reductions as follows:

A =

 0 1 2
−1 0 3
−2 −3 0

→
 0 1 2

1 0 −3
−2 −3 0

→
0 1 2

1 0 −3
0 −3 −6

→
1 0 −3

0 1 2
0 −3 −6

→
1 0 −3

0 1 2
0 0 0


and

B =

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8

→
1 2 3 4 5 6

0 −1 −2 −3 −4 −5
0 −2 −4 −6 −8 −10

→
1 2 3 4 5 6

0 1 2 3 4 5
0 −2 −4 −6 −8 −10

→
1 0 −1 −2 −3 −4

0 1 2 3 4 5
0 0 0 0 0 0


and

C =

 1 10 100
10 100 1000
100 1000 10000

→
 1 10 100

0 0 0
100 1000 10000

→
1 10 100

0 0 0
0 0 0


and

D =


1 0 1 1 1
1 0 0 0 1
0 0 1 1 0
0 1 0 0 0
0 1 1 1 0

→


1 0 1 1 1
0 0 −1 −1 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 0

→


1 0 1 1 1
0 0 −1 −1 0
0 0 1 1 0
0 1 0 0 0
0 0 1 1 0

→


1 0 0 0 1
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 0 0 0 0

→


1 0 0 0 1
0 1 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0
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From this we see that rank(A) = rank(B) = 2 and rank(C) = 1 and rank(D) = 3. �

Exercise 79. Give examples as follows, or explain why no such examples are possible.

(a) A 3× 5 matrix of rank 4.
(b) A 3× 3 matrix of rank 1, in which none of the entries are zero.
(c) A 2× 4 matrix A such that A has rank 1 and AT has rank 2.
(d) A 3× 3 matrix A such that A+AT = 0 and A has rank 2.
(e) An invertible 3× 3 matrix of rank 2.
(f) A matrix in RREF with rank 1 and 4 nonzero columns.

Solution:

(a) This is not possible, because the rank of any m× n matrix is at most the minimum of n and m,
so a 3× 5 matrix cannot have rank larger than 3.

(b) The simplest example is A =

1 1 1
1 1 1
1 1 1

.

(c) This is not possible, because A and AT always have the same rank.

(d) The simplest example is A =

 0 0 1
0 0 0
−1 0 0

.

(e) This is not possible. If A is an invertible n × n matrix, then the columns form a basis for Rn,
which means that the rank must be n.

(f) One example is the matrix

[
1 1 1 1
0 0 0 0

]
.

�

Exercise 80. Consider the following matrices, which depend on a parameter t.

A =

[
1 0
0 (t− 3)(t− 4)

]
B =

[
1 t
t 2t− 1

]
C =

1 1 1
1 2 t
1 4 t2

 D =

1 1 1 1 0
1 2 t 3 t
1 4 t2 7 3


It should be clear that A usually has rank 2, except that when t = 3 or t = 4 the second row becomes
zero and so the rank is only 1. In the same way, for each of the other matrices, there is a usual value for
the rank, but the rank drops for some exceptional values of t.

(1) Simplify B by row and column operations. Do not divide any row or column by anything that
depends on t, but make B as simple as you can without such divisions.

(2) What is the usual rank of B?
(3) What is the exceptional value of t for which the rank of B is lower? What is the rank in that

case?
(4) What is the usual rank of C, and what are the exceptional cases? (Use the same method as for

B.)
(5) What is the usual rank of D, and what are the exceptional cases? (Hint: how is D related to

C?)

Solution:

(1) Subtract t times the first row from the second row, then subtract t times the first column from
the second column:

B =

[
1 t
t 2t− 1

]
→
[
1 t
0 −t2 + 2t− 1

]
→
[
1 0
0 −t2 + 2t− 1

]
=

[
1 0
0 −(t− 1)2

]
= B′.

We might now be tempted to divide the second row by −(t − 1)2 to get the identity matrix.
However, that would not be valid when t = 1, because then we would be dividing by zero. It is
for this reason that the question tells you not to divide by anyhing that depends on t.

(2) As row and column operations do not affect the rank, we have rank(B) = rank(B′). If t 6= 1
then it is clear that the two rows in B′ are linearly independent and so rank(B) = rank(B′) = 2;
this is the usual case.

(3) In the exceptional case where t = 1 we have B′ =

[
1 0
0 0

]
and it is clear that rank(B) =

rank(B′) = 1.
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(4) We can simplify C by row and column operations as follows.

C =

1 1 1
1 2 t
1 4 t2

 1−→

1 1 1
0 1 t− 1
0 3 t2 − 1

 2−→

1 0 0
0 1 t− 1
0 3 t2 − 1

 3−→

1 0 0
0 1 0
0 3 t2 − 3t+ 2

 4−→

1 0 0
0 1 0
0 0 t2 − 3t+ 2

 = C ′

(Step 1: subtract row 1 from the other two rows; Step 2: subtract column 1 from the other two
columns; Step 3: add 1 − t times column 2 to column 3; Step 4: subtract 3 times row 2 from
row 3.) Note also that t2 − 3t + 2 = (t − 1)(t − 2). For most values of t this will be nonzero,
so rank(C) = rank(C ′) = 3. The exceptional cases are where t = 1 or t = 2, in which case

C ′ =
[
1 0 0
0 1 0
0 0 0

]
and rank(C) = rank(C ′) = 2.

(5) C consists of the first three columns of D. If t 6= 1, 2 then rank(C) = 3 so the columns of C
span R3, so the columns of D certainly span R3, so rank(D) = 3. In the case t = 1 we can write
down D and simplify by column operations as follows:

D =

1 1 1 1 0
1 2 1 3 1
1 4 1 7 3

→
1 0 0 0 0

1 1 0 2 1
1 3 0 6 3

→
 1 0 0 0 0

0 1 0 0 0
−2 3 0 0 0

 = D′.

It is clear that in this case we have rank(D) = rank(D′) = 2. In the other exceptional case where
t = 2 we can write down D and simplify by column operations as follows:

D =

1 1 1 1 0
1 2 2 3 2
1 4 4 7 3

→
1 0 0 0 0

1 1 0 2 2
1 3 0 6 3

→
1 0 0 0 0

1 1 0 0 0
1 3 0 0 −3

→
1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

 = D′′.

It is clear from this that the case t = 2 is not in fact exceptional for D, because we have
rank(D) = rank(D′′) = 3 in that case (which is the same answer as for every other value of t
except t = 1).
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