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1. Vector spaces

1.1. Finite-dimensional vector spaces and dimension
(continued)

As before, K denotes a field.
Recall the following from last lecture:

Definition 1.1.1. Let V be a vector space. We say that V is finite-dimensional
(for short, fin-dim) if there exists a finite list of vectors (v1, v2, . . . , vk) that spans
V.

Theorem 1.1.2 (Steinitz’s theorem). Let V be a vector space. Let n ∈ N. Let
v1, v2, . . . , vn be n vectors in V. Then, any n + 1 combinations of v1, v2, . . . , vn are
dependent.

We proved this theorem last time. Now, let us draw some consequences from it:

Definition 1.1.3. Let V be a fin-dim vector space. Then, the dimension of V is
defined to be the smallest length of a list of vectors (v1, v2, . . . , vk) that spans V.

We denote the dimension of V by dim V.

(The length of a list is simply its number of entries. For example, the list
(3, 2, 4, 4, 4) of numbers has length 5.)

Next, let us define the notion of a basis of a vector space. This is just a straight-
forward generalization of how we defined a basis of Rn (in the class notes from
2019-10-09):
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http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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Definition 1.1.4. Let V be a vector space. A basis of V means a list (v1, v2, . . . , vm)
of vectors in V that is both independent and spans V.

Let us also define “spanning lists” and “independent lists” (just shorthands for
lists that span V or are linearly independent, respectively):

Definition 1.1.5. Let V be a vector space. A spanning list of V means a list
(v1, v2, . . . , vm) of vectors in V that spans V. We shall also use “spanning” as an
adjective (i.e., we say that a list (v1, v2, . . . , vm) of vectors in V is spanning if it is
a spanning list).

Definition 1.1.6. Let V be a vector space. An independent list of V means a list
(v1, v2, . . . , vm) of vectors in V that is independent.

Thus, a basis of a vector space V is the same as an independent list that is a
spanning list at the same time.

Theorem 1.1.7. Let V be a fin-dim vector space with dim V = n.
(a) Any spanning list of V can be shrunk to a basis. (“Shrinking” a list of vec-

tors means removing some vectors from it. The word “some” includes the op-
tions “none” and “all”. For example, shrinking (v1, v2, v3, v4) can lead to (v1, v3)
or to (v2, v3, v4) or to the empty list () or to the full list (v1, v2, v3, v4).)

(b) Any independent list of V can be extended to a basis. (“Extending” a list
of vectors means inserting some new vectors at the end of it. Again, “some”
includes the option “none”.)

(c) Any basis of V has length n.
(d) There exists a basis of V.
(e) Any spanning list of V has length ≥ n.
(f) Any spanning list of V that has length n must be a basis of V.
(g) Any independent list of V has length ≤ n.
(h) Any independent list of V that has length n must be a basis of V.

Proof. (e) Recall that dim V = n. Hence, the definition of dimension shows that n
is the smallest length of a spanning list of V. So any spanning list of V has length
≥ n.

(a) Let us first prove the following fact:

Fact 1: If a spanning list of V is dependent, then there is a vector in it
that we can remove and still obtain a spanning list of V.

[Proof of Fact 1: Let (v1, v2, . . . , vk) be a spanning list of V that is dependent. Thus,
Proposition 1.1.1 in the class notes from 2019-11-25 shows that one of v1, v2, . . . , vk
is a combination of the others. Let vi be this one vector. Thus,

vi = α1v1 + α2v2 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αkvk

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-25.pdf
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for some scalars αj ∈ K. Now, I claim that (v1, v2, . . . , vi−1, vi+1, . . . , vk) is a span-
ning list of V.

Indeed, (v1, v2, . . . , vk) is a spanning list of V. Hence, every vector in V is a
combination of v1, v2, . . . , vk. In other words, every vector in V can be written as

λ1v1 + λ2v2 + · · ·+ λkvk

= λ1v1 + λ2v2 + · · ·+ λi−1vi−1

+ λi vi︸︷︷︸
=α1v1+α2v2+···+αi−1vi−1+αi+1vi+1+···+αkvk

+ λi+1vi+1 + · · ·+ λkvk

= λ1v1 + λ2v2 + · · ·+ λi−1vi−1

+ λi (α1v1 + α2v2 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αkvk)

+ λi+1vi+1 + · · ·+ λkvk

= λ1v1 + λ2v2 + · · ·+ λi−1vi−1

+ λiα1v1 + λiα2v2 + · · ·+ λiαi−1vi−1 + λiαi+1vi+1 + · · ·+ λiαkvk

+ λi+1vi+1 + · · ·+ λkvk

= (λ1 + λiα1) v1 + (λ2 + λiα2) v2 + · · ·+ (λi−1 + λiαi−1) vi−1

+ (λi+1 + λiαi+1) vi+1 + · · ·+ (λk + λiαk) vk,

which means that it is a combination of v1, v2, . . . , vi−1, vi+1, . . . , vk. Thus,
(v1, v2, . . . , vi−1, vi+1, . . . , vk) is a spanning list of V. This proves Fact 1.]

Now, start with any spanning list of V. Fact 1 shows that if this list is dependent,
then we can shrink it by removing some vector from it and still obtain a spanning
list. By iterating this, we can keep shrinking our spanning list further and further
until it becomes independent. This procedure cannot go on forever, because the
list gets shorter by 1 at each step. Thus, this procedure must eventually come to an
end. At the end, we obtain a spanning list of V that is independent – i.e., a basis of
V.

(d) Since V is fin-dim, we know that V has a spanning list. Thus, part (a) yields
that we can shrink this spanning list to a basis. Hence, V has a basis.

(g) Assume the contrary. Thus, there is an independent list of length > n. This
independent list must thus have length ≥ n + 1. Hence, there is an independent
list of length n + 1 (since any sublist of an independent list is still an independent
list).

On the other hand, there exists a spanning list (v1, v2, . . . , vn) of V that has length
n (since n = dim V). Thus, each vector in V is a combination of v1, v2, . . . , vn. But
Steinitz’s theorem shows that any n + 1 combinations of v1, v2, . . . , vn are depen-
dent. In other words, any n + 1 vectors in V are dependent (since each vector
in V is a combination of v1, v2, . . . , vn). This contradicts the fact that there is an
independent list of length n + 1.

This contradiction shows that our assumption was wrong. Thus, Theorem 1.1.7
(g) is proved.
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(b) Let us first prove the following fact:

Fact 2: If an independent list of V is not spanning, then there is a vector
in V that we can insert into this list and still obtain an independent list
of V.

[Proof of Fact 2: Let (v1, v2, . . . , vk) be an independent list of V that is not span-
ning. Thus, there exists a vector v ∈ V that is not a combination of v1, v2, . . . , vk.
Hence, Proposition 1.1.2 the class notes from 2019-11-25 shows that the k + 1 vec-
tors v1, v2, . . . , vk, v are independent. Thus, we can insert the vector v into our list
(v1, v2, . . . , vk) and still obtain an independent list of V. This proves Fact 2.]

Now, start with any independent list of V. Fact 2 shows that if this list is not
spanning, then we can extend it by adding some vector to it and still obtain an
independent list. By iterating this, we can keep expanding our independent list
further and further until it becomes spanning. This procedure cannot go on forever,
because the list gets longer by 1 at each step, but part (g) shows that it cannot
become longer than n (without losing its independence). Thus, this procedure
must eventually come to an end. At the end, we obtain an independent list of V
that is spanning – i.e., a basis of V.

(c) A basis of V is simultaneously a spanning list and an independent list. Hence,
part (e) shows that its length is ≥ n, while part (g) shows that its length is ≤ n.
Combining these, we conclude that its length is n.

(f) Let (v1, v2, . . . , vn) be a spanning list of V that has length n. Then, part (a)
shows that we can shrink this list to a basis b of V. But this latter basis b must,
too, have length n (by part (c)). But the only way to get a length-n list by shrinking
a length-n list is to leave it unchanged (i.e., to remove no entries)1. Thus, we
must have obtained our basis b from our spanning list (v1, v2, . . . , vn) by leaving it
unchanged. Hence, b = (v1, v2, . . . , vn). Thus, the original list (v1, v2, . . . , vn) is a
basis of V (since b is a basis of V).

(h) This is proved similarly to part (f), but using part (b) instead of (a).

Example 1.1.8. Let n ∈N. The vector space Kn (of column vectors of size n) has
dimension n.

To see this, let us construct a basis of Kn:
For each i ∈ {1, 2, . . . , n}, let ei be the vector (0, 0, . . . , 0, 1, 0, 0, . . . , 0)T (with the

1 being placed in position i). Then, (e1, e2, . . . , en) is a basis of Kn, known as the
standard basis of Kn. Thus, Theorem 1.1.7 (c) shows that the dimension of Kn

is n (since this basis has length n).

Example 1.1.9. Let n, m ∈ N. The vector space Kn×m (of n × m-matrices) has
dimension nm.

Indeed, we can construct a basis as follows:

1since any removal of entries would make it shorter

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-25.pdf
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For each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we let Ei,j be the n×m-matrix
whose (i, j)-th entry is 1 and whose all other entries are 0. For example, if n = 4
and m = 5, then

E2,3 =


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 .

This Ei,j is called the (i, j)-th matrix unit. There is a total of nm matrix units in
Kn×m. Listing up all these nm matrix units, we obtain a basis of Kn×m. Since
this basis has length nm, we conclude that the dimension of Kn×m is nm.

Let us show this basis in full in the case n = 2 and m = 2: In this case, we have

E1,1 =

(
1 0
0 0

)
, E1,2 =

(
0 1
0 0

)
,

E2,1 =

(
0 0
1 0

)
, E2,2 =

(
0 0
0 1

)
.

Thus, the list (E1,1, E1,2, E2,1, E2,2) is a basis of the 4-dimensional vector space
K2×2.

Example 1.1.10. Fix k ∈N. Let Pk be the R-vector space of polynomials of degree
≤ k with real coefficients. Thus,

Pk =
{

a0 + a1x + a2x2 + · · ·+ akxk | a0, a1, . . . , ak ∈ R
}

.

We have dim Pk = k + 1. Indeed, the list
(
1, x, x2, . . . , xk) of length k + 1 is a basis

of Pk.

The next two examples show that one and the same set can underlie two different
vector spaces of two different dimensions:

Example 1.1.11. Recall that C is an R-vector space. Its dimension is 2, since the
list (1, i) is a basis of this vector space.

Example 1.1.12. Recall that C is a C-vector space. Its dimension is 1, since the
list (1) is a basis of this vector space. More generally, any field K is a K-vector
space of dimension 1, with basis (1).

Proposition 1.1.13. (a) Any subspace of a fin-dim vector space is fin-dim.
(b) If U is a subspace of a fin-dim vector space V, then U is fin-dim and

satisfies dim U ≤ dim V.
(c) If U is a subspace of a fin-dim vector space V that satisfies dim U = dim V,

then U = V.
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Proof of Proposition 1.1.13 (sketched). (b) Let U be a subspace of a fin-dim vector
space V.

Let n = dim V. Any independent list of U is clearly an independent list of V,
and thus has length ≤ n (by Theorem 1.1.7 (g)). Now, we claim:

Claim 1: Any independent list of U can be extended to a basis of U.

[Proof of Claim 1: If we knew that U is fin-dim, then this would follow from The-
orem 1.1.7 (b) (applied to U instead of V). But we don’t know yet that U is fin-dim.
Nevertheless, we can apply the same argument that we used to prove Theorem 1.1.7
(b) to U instead of V. The only difference is that we need a new reason why the
procedure (of gradually extending our list by inserting new vectors into it) cannot
go on forever. But we have such a reason: We know that any independent list of
U has length ≤ n; thus, we cannot insert more than n vectors into our list without
breaking its independence. Thus, Claim 1 is proved.]

But the empty list () is clearly an independent list of U. Thus, Claim 1 shows
that this empty list () can be extended to a basis of U. Hence, there exists a basis
of U. Thus, U is fin-dim (since a basis of U is clearly a list of vectors that spans U).

To prove that dim U ≤ dim V, we start with a basis of U and expand it to a
basis of V (Theorem 1.1.7 (b) tells us that we can do this, since any basis of U is
an independent list of V). Since a list can only grow in length when it is being
expanded, we thus conclude that the length of our basis of U is ≤ to the length of
our basis of V. In other words, dim U ≤ dim V (since Theorem 1.1.7 (c) shows that
the dimension of a fin-dim vector space is the length of any basis).

(a) This is just the first half of part (b).
(c) Left to the reader.

Example 1.1.14. Here are the subspaces of R3 again:

• The one-element subspace
{−→

0
}

. This has dimension 0.

• The lines through the origin. They have dimension 1.

• The planes through the origin. They have dimension 2.

• The whole space R3. It has dimension 3.

Remark 1.1.15. The notions of “basis” and of “dimension” can be extended even
to vector spaces that are not fin-dim. But this would require modifying them
(e.g., the dimension would not longer be a nonnegative integer, but rather a
cardinal number). If we did that, we would be able to claim one of the most cel-
ebrated results of linear algebra: Every vector space has a basis (in the extended
sense of the word).
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1.2. The fundamental subspaces of a matrix

Any matrix gives rise to four interesting subspaces:

Definition 1.2.1. Let n, m ∈N. Let A ∈ Kn×m be an n×m-matrix.
(a) We define the column space of A to be

Col A = (the span of the columns of A) =
{

Av | v ∈ Km×1
}

.

(b) We define the row space of A to be

Row A = (the span of the rows of A) =
{

wA | w ∈ K1×n
}

.

(c) We define the kernel (or nullspace) of A to be

Ker A =
{

v ∈ Km×1 | Av = 0n×1

}
.

(d) We define the left kernel (or left nullspace) of A to be

LKer A =
{

w ∈ K1×n | wA = 01×m

}
.

It is easy to see:

Proposition 1.2.2. The four sets we just defined are subspaces of the respective
vector spaces:

• Col A is a subspace of Kn×1.

• Row A is a subspace of K1×m.

• Ker A is a subspace of Km×1.

• LKer A is a subspace of K1×n.

Moreover, the equality signs in parts (a) and (b) of Definition 1.2.1 hold.

These four sets are called the four fundamental subspaces of the matrix A.
Note that Ker A is the set of all solutions to the system of equations Av = 0.

Gaussian elimination yields a basis of Ker A.

1.3. The rank of a matrix
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Definition 1.3.1. The rank of a matrix A ∈ Kn×m is defined to be dim (Col A). It
is denoted by rank A.

The following theorem is far from obvious (see, e.g., [Strickland, §22] for proofs of
some of its parts2):

Theorem 1.3.2. Let A be an n×m-matrix.
(a) We have rank A = dim (Col A) = dim (Row A).
(b) We have rank A = rank

(
AT).

(c) We have dim (Ker A) = m− rank A and dim (LKer A) = n− rank A.
(d) We have rank A = (# of pivots in the RREF of A).

For the next theorem, we need the notion of column operations:

Definition 1.3.3. We define column operations in the same way as we defined
row operations, just replacing each word “row” by “column”. Thus, the column
operations are the following operations on a matrix:

• ECO1: Exchange two columns.

• ECO2: Scale a column by a nonzero constant.

• ECO3: Add a multiple of a column to another column.

Now, we state the theorem (whose proof can be found in [Strickland, Proposition
22.11]3):

Theorem 1.3.4. Let A be an n×m-matrix. By a sequence of row and column op-
erations, we can transform A into what is called the rank normal form: an n×m-
matrix whose “diagonal” entries (i.e., the entries in cells (1, 1) , (2, 2) , . . . , (k, k),
where k = min {n, m}) are

1, 1, . . . , 1︸ ︷︷ ︸
rank A many 1’s

, 0, 0, . . . , 0 (in this order)

and whose all other entries are 0.

Example 1.3.5. Here is an example for Theorem 1.3.4:

Let A be the 3 × 4-matrix

 1 5 2 8
−1 −5 1 1
1 5 1 5

 over the field Q. Its rank is

rank A = 2. Thus, Theorem 1.3.4 claims that by a sequence of row and column

2Note that [Strickland, §22] writes img (A) for what we call Col A, and writes ker (A) for what we
call Ker A.

3What we call “rank normal form” is being just called “normal form” in [Strickland, §22].



Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-12-04 page 9

operations, we can transform A into the rank normal form – i.e., into the matrix 1 0 0 0
0 1 0 0
0 0 0 0

 (since rank A = 2).

Let us see how to actually do this. First, we know how to transform A into
RREF using row operations:

A =

 1 5 2 8
−1 −5 1 1
1 5 1 5


a sequence of

row operations
−→

 1 5 0 2
0 0 1 3
0 0 0 0

 .

(As usual, the pivots are boxed.) Now, let us use column operations (specifically,
ECO3) to clear out the nonzero entries to the right of the pivots: 1 5 0 2

0 0 1 3
0 0 0 0

 subtract 5·column 1−→
from column 2

 1 0 0 2
0 0 1 3
0 0 0 0


subtract 2·column 1−→

from column 4

 1 0 0 0
0 0 1 3
0 0 0 0

 subtract 3·column 3−→
from column 4

 1 0 0 0
0 0 1 0
0 0 0 0

 .

We have obtained a matrix whose only nonzero entries are its pivots. Finally,
we use column operations (specifically, ECO1) in order to put the pivots into the
first two columns: 1 0 0 0

0 0 1 0
0 0 0 0

 swap columns 2 and 3−→

 1 0 0 0
0 1 0 0
0 0 0 0

 .

This is the rank normal form of A.

(As you might have noticed, column operation ECO2 is not needed in this pro-
cedure.)

We notice another important property of the rank:

Proposition 1.3.6. The rank of a matrix does not change when we apply row
operations or column operations to the matrix.

1.4. Linear maps
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Definition 1.4.1. Let V and W be two vector spaces (over a field K). Let f : V →
W be a map. Then, we say that f is linear if and only if it satisfies the following
three axioms:

• We have f (v + w) = f (v) + f (w) for all v, w ∈ V.

• We have f (λv) = λ · f (v) for all λ ∈ K and v ∈ V.

• We have f
(−→

0
)
=
−→
0 . (More precisely: Applying f to the zero vector of V

yields the zero vector of W.)

Linear maps are also called homomorphisms of vector spaces. (Hefferon uses this
latter terminology in [Heffer16].)

Example 1.4.2. Let m, n ∈N. Let A ∈ Kn×m. Then, we define the map

LA : Km → Kn,
v 7→ Av.

This map LA is linear, because:

• For all v, w ∈ Km, we have

LA (v + w) = A (v + w) = Av + Aw = LA (v) + LA (w) .

• For all λ ∈ K and v ∈ Km, we have

LA (λv) = A (λv) = λ · Av = λ · LA (v) .

• We have
LA (0m×1) = A · 0m×1 = 0n×1.

Moreover, it can be showed that any linear map from Km to Kn has the form
LA for an n×m-matrix A.

Thus, the linear maps from Km to Kn are in 1-to-1 correspondence with the
n×m-matrices over K. Linear maps in general (i.e., not just between Km and Kn)
can thus be regarded as “generalized matrices”.

A straightforward computation proves the following proposition:

Proposition 1.4.3. Let A be an n×m-matrix. Let B be an m× p-matrix. Then,

LAB = LA ◦ LB.
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This proposition motivates the definition of the product of two matrices: it was
tailored to correspond to the composition of the corresponding linear maps.

When a matrix A is invertible, left-invertible or right-invertible, what does this
mean for the corresponding map LA? The following proposition (whose proof we,
again, omit) answers this question:

Proposition 1.4.4. Let A be an n×m-matrix. Then:
(a) The matrix A is invertible if and only if the map LA is invertible (i.e.,

bijective). Moreover, if B is the inverse of A, then LB is the inverse of LA.
(b) The matrix A is left-invertible if and only if the map LA is injective.
(c) The matrix A is right-invertible if and only if the map LA is surjective.

Here are some more examples of linear maps.

Example 1.4.5. Let V be any vector space. Then, the identity map id : V → V is
always linear. Also linear are the maps

V → V, v 7→ 0

and
V → V, v 7→ −v.

More generally, for any λ ∈ R, the map

V → V, v 7→ λv

is linear.

Example 1.4.6. Let P be the R-vector space of all polynomials in one variable x
with real coefficients.

(a) The map P → P, f 7→ f + 1 is not linear. (Indeed, for example, it fails to
send 0 to 0.)

(b) The map P → P, f 7→ f 2 is not linear. (Indeed, for example, it fails to
satisfy the first axiom, since two polynomials f and g do not usually satisfy
( f + g)2 = f 2 + g2.)

(c) The map P → P, f 7→ f (0) is linear. (Because, for example, ( f + g) (0) =
f (0) + g (0) for any two polynomials f and g.)

(d) The map P→ P, f 7→ f ′ =
d

dx
f is linear. (Because, for example, ( f + g)′ =

f ′ + g′ for any two polynomials f and g.)
(e) The map P→ P, f 7→ x · f is linear.

1.5. Representing linear maps by matrices

We have seen above that the linear maps from Km to Kn correspond to n × m-
matrices. But even more generally, linear maps between fin-dim vector spaces
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correspond to matrices, although we need to choose bases of both domain and
codomain in order to set up the correspondence (and the correspondence we obtain
will depend on the basis we chose). Here is how this works:

Definition 1.5.1. Let V and W be two fin-dim vector spaces.
Let v = (v1, v2, . . . , vm) be a basis of V.
Let w = (w1, w2, . . . , wn) be a basis of W.
Let f : V →W be a linear map.
The matrix repesenting f with respect to the bases v and w is the n × m-

matrix Mv,w, f defined as follows: For each j ∈ {1, 2, . . . , m}, we write the vector
f
(
vj
)

as a linear combination of the vectors w1, w2, . . . , wn as follows:

f
(
vj
)
= a1,jw1 + a2,jw2 + · · ·+ an,jwn.

Then, Mv,w, f is defined to be the n×m-matrix
(
ai,j
)

1≤i≤n, 1≤j≤m. (Note that the
coefficients ai,j exist and are uniquely determined, since w = (w1, w2, . . . , wn) is
a basis of W.)

Note that Hefferon, in [Heffer16], denotes this matrix Mv,w, f by Repv,w ( f ).
The point of this construction is: Unlike the map f , the matrix Mv,w, f is a finite

object that we can calculate with. It uniquely determines f (as long as v and w are
known).

This way of constructing a matrix Mv,w, f from a linear map f is inverse to the
above construction of a linear map LA from a matrix A, if the bases are chosen
appropriately.

Proposition 1.5.2. Let m, n ∈ N. Let e = (e1, e2, . . . , em) be the standard basis of
Km. Let f be the standard basis of Kn. Let h : Km → Kn be a linear map, and let
A ∈ Kn×m be an n×m-matrix. Then, we have the following equivalence:

(Me,f,h = A) ⇐⇒ (h = LA) .

Also, composition of linear maps corresponds to multiplication of the matrices
representing them, provided that we choose the “right” bases for it:

Theorem 1.5.3. Let U, V and W be three fin-dim vector spaces. Let f : V → W
and g : U → V be two linear maps. Let u, v and w be bases of U, V and W,
respectively. Then,

Mv,w, f ◦Mu,v,g = Mu,w, f ◦g.

Here we have to stop, since the quarter is over.
Further reading:

• Strickland’s [Strickland, §19–§22] for a hands-on study of the subspaces of Rn

(including algorithms for finding bases).
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• Strickland’s [Strickland, §23] for an introduction to the notions of orthogonal
and symmetric matrices. (This relies on the notion of dot product, which he
defines at the beginning of [Strickland, §3].)

• Hefferon’s [Heffer16] (especially Chapters Two, Three and Five) for a thor-
ough treatment of vector spaces. (In particular, [Heffer16, §Five.II] explains
diagonalization as finding a basis in which a given linear map has a particu-
larly simple representation.)
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