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1. Vector spaces

Let us generalize what we have done so far. We have worked with matrices (includ-
ing column vectors and row vectors). We have used “scalars” (i.e., numbers that
we could put into a matrix) and “vectors” (i.e., things formed out of scalars, but
more importantly, things that could be added to each other and scaled by scalars).
We will now extend both of these notions.

1.1. Fields

Let us first generalize the notion of a “scalar”.
We have mostly been using real numbers as scalars, but later said that complex

numbers also work. In practice, we have been using rational numbers as much as
possible, and algebraic numbers1 as a last resort.

1What are algebraic numbers? Algebraic numbers are complex numbers that can be expressed as
roots of nonzero polynomials with rational coefficients. For example,

•
√

2 is algebraic, since it is a root of t2 − 2;

•
√

3 is algebraic, since it is a root of t2 − 3;

• 3
√

2 is algebraic, since it is a root of t3 − 2;

•
√

2 +
√

3 is algebraic, since it is a root of t4 − 10t2 + 1;

• the imaginary unit i is algebraic, since it is a root of t2 + 1;

• etc.

The advantage of algebraic numbers (compared to arbitrary complex numbers) is that you can
calculate with them precisely, whereas true complex numbers can only be approximated. This
is why (almost) all of our examples have used algebraic numbers only. Computers don’t under-
stand real numbers either, so they also use algebraic numbers or some kind of approximation.

1
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We also have secretly used matrices whose entries are polynomials. Indeed, our
matrix A− tIn (which we used when defining the characteristic polynomial) was
such a matrix. So we (silently) stretched our notion of “scalar” so that it also
encompassed polynomials. What else do we want it to encompass?

The short answer is “too much to list”. We don’t want to restrict ourselves to
a list of specific things that we allow as scalars. Instead, we will formulate some
requirements that scalars should satisfy, and we shall allow any kind of objects that
satisfy these requirements to be considered “scalars”. Clearly, some requirements
are necessary; for example, there has to be a way to add and multiply our “scalars”,
because we want to be able to add and multiply matrices.

Our new, generalized meaning of “scalar” (or “number”, which – for our pur-
poses – is a synonym) is going to depend on the context. You can come up with
your custom type of scalars, as long as you can guarantee that they satisfy our
requirements.

So what exactly do we want to require from our scalars in order to be able to put
them into matrices (and have these matrices behave well)? We want them to belong
to a commutative ring:

Definition 1.1.1. A commutative ring means a set K equipped with the follow-
ing additional data:

• a binary operation called “+” (that is, a function that takes two elements
a ∈ K and b ∈ K as inputs, and outputs a new element of K which is
denoted by a + b);

• a binary operation called “·” (that is, a function that takes two elements
a ∈ K and b ∈ K as inputs, and outputs a new element of K which is
denoted by a · b or ab);

• an element of K called “0” (this may or may not be the integer 0);

• an element of K called “1” (this may or may not be the integer 1)

satisfying the following axioms (= requirements):

• Commutativity of addition: We have a + b = b + a for all a, b ∈ K.

• Commutativity of multiplication: We have ab = ba for all a, b ∈ K.

• Associativity of addition: We have a + (b + c) = (a + b) + c for all a, b, c ∈
K.

• Associativity of multiplication: We have a (bc) = (ab) c for all a, b, c ∈ K.

• Neutrality of 0: We have a + 0 = 0 + a = a for all a ∈ K.
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• Existence of additive inverses: For each a ∈ K, there exists an element
a′ ∈ K such that a + a′ = a′ + a = 0. This a′ is commonly denoted by −a,
and called the negative (or the additive inverse) of a. (It is easy to check
that it is unique.)

• Unitality (a.k.a. neutrality of 1): We have a · 1 = 1 · a = a for all a ∈ K.

• Annihilation: We have a · 0 = 0 · a = 0 for all a ∈ K.

• Distributivity: We have a (b + c) = ab + ac and (a + b) c = ac + bc for all
a, b, c ∈ K.

If K (equipped with +, ·, 0 and 1) is a commutative ring, then we refer to the
operation + as the addition of K; we refer to the operation · as the multiplica-
tion of K; we refer to the element 0 as the zero of K; we refer to the element 1
as the unity (or, somewhat confusingly, one) of K.

This definition was a mouthful, but its intention is rather simple: It defines a
commutative ring to be a set equipped with two operations which behave like
addition and mulitplication of numbers, and two elements which behave like the
number 0 and the number 1. They don’t have to be addition and multiplication of
numbers, but the axioms we imposed force them to behave similarly enough that
we can try to do with them whatever we can do with numbers.

As a consequence, if K is a commutative ring, then matrices filled with elements
of K will behave like matrices filled with numbers, at least as far as very basic
properties are concerned.

Here are some examples of commutative rings:

• Each of the sets Z, Q, R and C (endowed with the usual addition, the usual
multiplication, the usual 0 and the usual 1) is a commutative ring.

• The set of all polynomials in a single variable x with real coefficients is also a
commutative ring.

• The set of all functions from R to R (equipped with pointwise addition2,

2“Pointwise addition” means that the sum f + g of two functions f , g : R→ R is defined by

( f + g) (x) = f (x) + g (x) for all x ∈ R.

In other words, each value of the function f + g is the sum of the corresponding values of f and
g.
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pointwise multiplication3, the constant-0 function4 and the constant-1 func-
tion5) is a commutative ring.

• The set R2×2 of 2× 2-matrices with real entries (equipped with matrix addi-
tion, matrix multiplication, the zero matrix 02×2 and the identity matrix I2)
is not a commutative ring. In fact, it satisfies all of the axioms except for
commutativity of multiplication (which it fails to satisfy because in general,
AB 6= BA for matrices A and B).

• If you have seen “integers modulo n”: they also form a commutative ring (for
any given n ∈ Z).

• Consider the two-element set {0, 1} (consisting of two symbols 0 and 1, not
to be mistaken for the numbers 0 and 1). Equip this set with the following
operations and elements:

– Addition (i.e., the binary operation “+”) is given by

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0.

(This is almost like the usual addition of numbers, except that we are
setting 1 + 1 = 0 whereas usual numbers satisfy 1 + 1 = 2 6= 0.)

– Multiplication (i.e., the binary operation “·”) is given by

0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1.

(Unlike the addition, this multiplication is indeed the usual multiplica-
tion of numbers, with 0 and 1 replaced by 0 and 1.)

– The elements 0 and 1 are playing the roles of 0 and 1.

It turns out that this set {0, 1} (equipped with these operations and elements)
is a commutative ring. It just has two elements!

I should say that, despite me using the symbols “+” and “·” for the two binary
operations in Definition 1.1.1 and calling them “addition” and “multiplication”,

3“Pointwise multiplication” means that the product f · g of two functions f , g : R → R is defined
by

( f · g) (x) = f (x) · g (x) for all x ∈ R.

In other words, each value of the function f · g is the product of the corresponding values of f
and g.

4i.e., the function
R→ R, x 7→ 0

5i.e., the function
R→ R, x 7→ 1
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they don’t have to have any relation to the addition and the multiplication of num-
bers in the usual sense (say, real or complex numbers). This is partly because the
elements of K are not necessarily numbers in the usual sense; but even if they
are, the operations “+” and “·” may be different from the usual addition and
multiplication. In particular, there are many “alternative additions and alternative
multiplications” that we could equip Z with to obtain commutative rings. We shall
avoid such ambiguities, however. If we really need to define an “alternative addi-
tion” on a set that already has an addition defined on it, then we will instead create
a “fresh” copy of the set. (This is why we used two symbols 0 and 1 instead of the
numbers 0 and 1 in our last example above.)

What can we do if we have a commutative ring?
If K is a commutative ring, then some of the classical concepts of algebra make

sense in K:

• We can add and multiply elements of K, since K comes with an addition and
a multiplication (by Definition 1.1.1).

• We can subtract elements of K: Indeed, if a ∈ K and b ∈ K, then we define
a− b to be a + (−b)︸ ︷︷ ︸

additive inverse of b

.

• Finite sums (like a1 + a2 + · · ·+ ak or
k
∑

i=1
ai or ∑

i∈I
ai) of elements of K make

sense (and are defined in the same way as for numbers). So do finite products

(like a1a2 · · · ak or
k

∏
i=1

ai or ∏
i∈I

ai). The empty sum is defined to be 0 (the zero

of K); the empty product is defined to be 1 (the unity of K).

• We can take the power ak for all a ∈ K and k ∈ N; indeed, this power is
defined by ak = aa · · · a︸ ︷︷ ︸

k times

. (Thus, a0 = aa · · · a︸ ︷︷ ︸
0 times

= (empty product) = 1.)

• If n ∈ Z and a ∈ K, then we can define an element na ∈ K. This element na
is defined by

na = a + a + · · ·+ a︸ ︷︷ ︸
n times

if n ≥ 0

and
na = − ((−n) a) if n < 0.

• We cannot (in general) divide elements of K. That is, quotients like a/b (with
a, b ∈ K) may fail to exist, even if b is nonzero.

• We also cannot take powers ab with both a, b ∈ K. (Even for complex num-
bers, there is no good way to do this.)
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Now, fix a commutative ring K, and replace “real numbers”, “numbers” and
“scalars” by “elements of K” throughout the linear algebra that we have seen.
Which of our results remain true?

Matrices filled with elements of K will be called matrices over K. Their basic
properties are still true:

• Rules like A (BC) = (AB)C and A (B + C) = AB + AC and AIn = A (for
matrices of the appropriate sizes) remain true.

• Concepts like “diagonal”, “upper-triangular”, “transpose” etc. remain valid
and preserve most of their properties (for example, (AB)T = BT AT still
holds).

• Determinants still work, since the formula

det A = ∑
σ is a permutation of [n]

sign (σ) · A1,σ(1)A2,σ(2) · · · An,σ(n)

makes sense whenever the entries of A belong to a commutative ring. Basic
properties of determinants still hold. (For example, det (AB) = det A · det B.)

However, commutative rings are not enough for Gaussian elimination. Indeed,
some of the steps in Gaussian elimination require dividing by some entries of the
matrix6. But if K is merely a commutative ring, not every nonzero element of K

can be divided by. This has consequences: Gaussian elimination no longer works
(in general), and many facts that follow from Gaussian elimination (such as the
Inverse Matrix Theorem) no longer hold.

We can see this on an example with K = Z. If we perform Gaussian elimination

on the matrix
(

2 1
4 3

)
(which is a matrix over Z), we obtain(
2 1
4 3

)
scale row 1 by 1/2−→

(
1 1/2
4 3

)
in the first step, which already contains a non-integer entry. So we are missing a
notion of division. Commutative rings that allow division are called fields:

Definition 1.1.2. A commutative ring K is called a field if it satisfies the follow-
ing two axioms:

• Nontriviality: We have 0 6= 1. (Here, the “0” and the “1” stand not for
the two integers 0 and 1, but rather for the two elements of K that have
been designated “0” and “1” in the definition of a commutative ring. In
a commutative ring K, they can be equal, but for a field we are requiring
that they are not.)

6Namely, in order to turn a pivot entry λ into 1, we need to scale the corresponding row by 1/λ.
Thus, we need 1/λ to be well-defined, i.e., we need to be able to divide by λ.
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• Existence of multiplicative inverses: For each a ∈ K, we have either a = 0,
or there is a b ∈ K satisfying ab = ba = 1.

The element b in the latter axiom is unique (this is easy to see), and it is called
the inverse of a, and is denoted by a−1.

If u and v are two elements of a field K such that v 6= 0, then
u
v

is defined to

be the product uv−1. Thus, any two elements of K can be divided by each other
as long as the denominator is 6= 0.

For example, the commutative rings Q, R, C and our two-element ring {0, 1} are
fields, but Z is not.

Many results about matrices are based on the ability to divide by nonzero num-
bers; these results cannot be directly generalized to matrices over a commutative
ring K, but they can be generalized to matrices over a field K. In particular, if K is
a field, then

• Gaussian elimination works for matrices over K (so any matrix has a RREF);

• the Inverse Matrix Theorem holds;

• the notions of “linear combination”, “linear (in)dependence” and “spanning”
(for column vectors or row vectors over K) can be defined (in the same way
as we defined them for vectors over R), and enjoy the same properties;

• basic properties of eigenvectors hold (e.g., eigenvectors corresponding to dis-
tinct eigenvalues are linearly independent).

There do exist some properties of matrices over R that cannot be generalized to
matrices over an arbitrary field K. But we have not encountered such properties so
far, and will not encounter them in this class.7

1.2. Vector spaces

1.2.1. Definition

So we have generalized our concept of “scalars”: Instead of requiring them to be
real or complex numbers, we simply allow them to come from any field K.

Now, let us generalize “vectors”. We know row vectors and column vectors.
What else behaves like these kinds of vectors?

We have seen (in homework set #2) that the basic concepts we defined for col-
umn vectors (such as linear combinations, relations and linear independence) can
be used not only for column vectors (or row vectors), but also for matrices and
for polynomials. This is because these concepts are defined entirely in terms of

7Such properties are often found around the concepts of symmetric and orthogonal matrices.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw2s.pdf
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addition and scaling and the zero vector. We shall now agree to call any kind of
objects that can be added and scaled (and that support a notion of zero) vectors.
More precisely:

Definition 1.2.1. Let K be a field. The elements of K will be called scalars.
A vector space (over K) means a set V equipped with two binary operations:

• a binary operation called “+”, which takes as input two elements v, w ∈ V
and yields an element of V called v + w;

• a binary operation called “·”, which takes as input a scalar λ ∈ K (that is,
an element of K) and an element v ∈ V, and yields an element of V called
λ · v or λv

as well as a chosen element of V called “
−→
0 ”, satisfying the following axioms:

• Commutativity of addition: We have v + w = w + v for all v, w ∈ V.

• Associativity of addition: We have u + (v + w) = (u + v) + w for all
u, v, w ∈ V.

• Neutrality of
−→
0 : We have v +

−→
0 =

−→
0 + v = v for all v ∈ V.

• Right distributivity: We have (λ + µ) v = λv + µv for all λ, µ ∈ K and
v ∈ V.

• Left distributivity: We have λ (v + w) = λv + λw for all λ ∈ K and v, w ∈
V.

• Associativity: We have (λµ) v = λ (µv) for all λ, µ ∈ K and v ∈ V.

• Neutrality of 1: We have 1v = v for all v ∈ V.

• Annihilation I: We have 0v =
−→
0 for all v ∈ V.

• Annihilation II: We have λ
−→
0 =

−→
0 for all λ ∈ K.

The operation + is called the addition of the vector space V; the operation ·
is called the scaling of V; the element

−→
0 is called the zero vector of V. The

elements of V are called vectors.

So our new notion of “vector” is just “element of a vector space”.
We say “K-vector space” instead of “vector space over K”; we also omit the K if

it is clear from the context.
If v and w are two elements of a vector space V, then we define the difference

v− w to be v + (−1)w. We also set −w = (−1)w for any w ∈ V.

Finite sums (like v1 + v2 + · · · + vk or
k
∑

i=1
vi or ∑

i∈I
vi) of elements of any vector
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space V make sense; they are defined just as they are defined for numbers. Empty

sums (such as
2
∑

i=3
vi) are defined to be the zero vector

−→
0 .

Don’t get vector spaces confused with commutative rings! Both of these objects
come with an addition “+” and a multiplication-like operation “·”. But in a com-
mutative ring, the latter operation takes two elements of the ring as input, whereas
in a vector space, it takes a scalar and a vector as input. In other words, in a com-
mutative ring, you can multiply two elements of the ring, but in a vector space,
you can “multiply” (or, more precisely, scale) a vector by a scalar (but you cannot
multiply two vectors8). This is why, for example, there is no “commutativity of
multiplication” axiom for a vector space (and no “unity vector” similar to the 1 of
a commutative ring).

1.2.2. Examples of vector spaces

From now on, fix a field K.

Definition 1.2.2. Fix n, m ∈ N. The set of all n× m-matrices with entries in K

shall be denoted by Kn×m. This is a K-vector space, with the operation + being
addition of matrices, with the operation · being scaling of matrices, and with the
zero vector

−→
0 being the zero matrix 0n×m.

Thus, n×m-matrices are vectors (in the sense of being elements of the vector
space Kn×m). This does not mean that they are column vectors or row vectors;
we are just using the word “vector” in the general sense of “element of a vector
space” here.

But in particular, this includes row and column vectors. Indeed, n× 1-matrices
are column vectors, and 1×m-matrices are row vectors. Thus, row vectors and
column vectors are particular cases of vectors in the new sense of this word.

Note that the vector space Kn×m of n×m-matrices incorporates matrix addition
and matrix scaling, but it doesn’t “know” how matrices are multiplied; matrix
multiplication is not part of its structure. (And indeed, if n 6= m, then you cannot
multiply two n×m-matrices, so matrix multiplication cannot be considered to be
an “internal” operation on this vector space.)

Remark 1.2.3. Not only is Kn×m a vector space, but several useful subsets of
Kn×m are vector spaces as well. For example,{

A ∈ Kn×m | each row of A sums to 0
}

is a vector space (with the same addition and scaling as before). We will later
understand these as examples of “subspaces”.

8Of course, in some vector spaces, you can do that. But the definition of a vector space is not
responsible for that!
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Here are some simpler examples of vector spaces:

• The field K itself is a K-vector space (with addition being addition, and scal-
ing being multiplication, and the

−→
0 being 0). This is an example where

scalars and vectors are the same thing.

Thus, in particular, R is an R-vector space, and C is a C-vector space.

• However, C is also an R-vector space, because you can scale complex numbers
by real numbers (since real numbers are complex numbers).

• The one-element set {0} is a K-vector space for any field K. (Here, addition
and scaling and

−→
0 are defined in the only possible way: i.e., by setting 0+ 0 =

0 and λ · 0 = 0 for all λ ∈ K, and declaring 0 to be the zero vector.)

• The set of all infinite sequences (a1, a2, a3, . . .) ∈ K∞ is also a K-vector space,
if we define addition by

(a1, a2, a3, . . .) + (b1, b2, b3, . . .) = (a1 + b1, a2 + b2, a3 + b3, . . .)

and define scaling by

λ (a1, a2, a3, . . .) = (λa1, λa2, λa3, . . .)

and define the zero vector
−→
0 by

−→
0 = (0, 0, 0, . . .) .

You can view these infinite sequences as 1×∞-matrices, i.e., as row vectors
of infinite length; then, these are just particular cases of matrix addition and
scaling.

• The set R [x] of all polynomials in one variable x with real coefficients is an
R-vector space.

• Let S be any set, and K be any field. Consider the set KS of all maps from S
to K. Then, KS becomes a K-vector space if we define addition and scaling
pointwise9 and define

−→
0 to be the constant-0 map10.

9i.e., the sum f + g of two maps f , g : S→ K is defined by

( f + g) (s) = f (s) + g (s) for all s ∈ S;

and the map λ f (for any λ ∈ K and f : S→ K) is defined by

(λ f ) (s) = λ · f (s) for all s ∈ S.

10i.e., the map
S→ K, s 7→ 0
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• Thus, for example, the set of all maps (= functions) from R to R is an R-vector
space.

• The set C (R) of all continuous functions from R to R is an R-vector space as
well.

1.3. Linear combinations

We can now recall some notions we defined for column vectors, and extend their
definitions to vectors in arbitrary vector spaces over arbitrary fields. We begin with
the notions of “linear combination”, “relation”, “linear independence” and “linear
dependence”:

Definition 1.3.1. Let K be any field. Let v1, v2, . . . , vk be some vectors in a K-
vector space V. Then, a K-linear combination of v1, v2, . . . , vk means a vector
that can be written in the form

λ1v1 + λ2v2 + · · ·+ λkvk for some λ1, λ2, . . . , λk ∈ K.

We omit the “K” from “K-linear combination” if it is clear what field we mean.

Definition 1.3.2. Let K be a field. Let v1, v2, . . . , vk be some vectors in a K-vector
space V.

(a) A relation (more precisely: a K-linear relation) between v1, v2, . . . , vk
means a choice of λ1, λ2, . . . , λk ∈ K satisfying

λ1v1 + λ2v2 + · · ·+ λkvk =
−→
0 .

(b) The trivial relation between v1, v2, . . . , vk is the relation obtained by choos-
ing λ1 = λ2 = · · · = λk = 0. Clearly, v1, v2, . . . , vk always have this trivial
relation.

(c) We say that the vectors v1, v2, . . . , vk (or, more precisely, the list
(v1, v2, . . . , vk)) are independent (more precisely: K-linearly independent) if the
only relation between v1, v2, . . . , vk is the trivial relation. Otherwise, we say that
these vectors are dependent.

This encompasses independence of column vectors, of matrices, of polynomials
and of many other things – because all of these things are vectors in vector spaces.

How do we tell whether a list of vectors in a vector space is independent? There
is no general method (like for column vectors); you have to know the structure of
your vectors.

Example 1.3.3. (a) Recall that C is a C-vector space. Thus, any complex number
is in itself a vector over C. Consider the two vectors 1 and i in this space. Are
they C-linearly dependent?
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Yes, because

1 · 1 + i · i = 0 is a nontrivial relation between 1 and i.

(b) Recall that C is an R-vector space. Thus, any complex number is in itself a
vector over R. Consider the two vectors 1 and i in this space. Are they R-linearly
dependent? In other words, are there real coefficients λ1, λ2 (not both 0) such
that λ1 · 1 + λ2 · i = 0 ?

No, because for real numbers λ1, λ2, we have λ1 · 1 + λ2 · i = (λ1, λ2), and this
complex number is only 0 if both λ1 and λ2 are 0.

Example 1.3.4. Consider the R-vector space C (R) of continuous functions R→
R.

(a) Are the three functions 1, sin and cos linearly dependent? (Here, 1 means
the constant-1 function, i.e., the function that sends each x ∈ R to 1.)

(b) Are the three functions 1, sin2 and cos2 linearly dependent? (Here, sin2

means the function that sends each x ∈ R to (sin x)2. Similarly, cos2 means the
function that sends each x ∈ R to (cos x)2.)

Answers: (a) This would mean that there exist three reals λ1, λ2, λ3 (not all
zero) such that

λ1 · 1 + λ2 · sin+λ3 · cos = 0.

In other words, these reals would satisfy

λ1 + λ2 sin x + λ3 cos x = 0 for all x ∈ R.

We claim that they don’t exist. To see why, assume that they exist. Thus,

λ1 + λ2 sin x + λ3 cos x = 0 for all x ∈ R.

Plugging x = 0 into this equation yields

λ1 + λ2 sin 0︸︷︷︸
=0

+λ3 cos 0︸︷︷︸
=1

= 0, that is,

λ1 + λ3 = 0.

Plugging x = π/2 into the same equation yields

λ1 + λ2 sin (π/2)︸ ︷︷ ︸
=1

+λ3 cos (π/2)︸ ︷︷ ︸
=0

= 0, that is,

λ1 + λ2 = 0.

Plugging x = π into the same equation yields

λ1 + λ2 sin π︸ ︷︷ ︸
=0

+λ3 cos π︸ ︷︷ ︸
=−1

= 0, that is,
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λ1 − λ3 = 0.

Combining these three equations yields the system


λ1 + λ3 = 0
λ1 + λ2 = 0
λ1 − λ3 = 0

, whose only

solution is λ1 = λ2 = λ3 = 0. Thus, the only relation between 1, sin, cos is trivial.
Hence, 1, sin, cos are linearly independent.

(b) This would mean that there exist three reals λ1, λ2, λ3 (not all zero) such
that

λ1 · 1 + λ2 · sin2 +λ3 · cos2 = 0.

In other words, these reals would satisfy

λ1 + λ2 sin2 x + λ3 cos2 x = 0 for all x ∈ R.

Such reals exist: λ1 = −1, λ2 = 1 and λ3 = 1. Indeed,

−1 + 1 sin2 x + 1 cos2 x = −1 + sin2 x + cos2 x︸ ︷︷ ︸
=1

= −1 + 1 = 0.

So 1, sin2, cos2 are linearly dependent.

There is no general method to decide whether a bunch of functions in C (R) is
linearly dependent or not. But once you have some dependence/independence
statements, linear algebra can help derive some useful consequences from them.
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