Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-13

Darij Grinberg

December 7, 2019

1. Eigenvalues and eigenvectors ("eigenstuff")

1.1. Complex numbers

1.1.1. Some definitions done last time

Recall the definition of complex numbers:

Definition 1.1.1. (a) A **complex number** is defined as a pair (a, b) of two real numbers.

(b) We let C be the set of all complex numbers.

(c) For each real number r, we denote the complex number (r, 0) as $r_{\mathbb{C}}$ (and we will later equate it with r).

(d) We let i be the complex number (0, 1).

(e) We define three binary operations +, - and \cdot on \mathbb{C} by setting

$$(a,b) + (c,d) = (a+c,b+d),$$
 (1)

$$(a,b) - (c,d) = (a-c,b-d),$$
 (2)

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc).$$
 (3)

(Thus, the operations + and - are just entrywise addition and subtraction, just as for row vectors. The operation \cdot is more complicated, and we will soon see why we have defined it in this particular way.)

(f) As usual, we write $\alpha\beta$ for $\alpha \cdot \beta$ if α and β are complex numbers.

As usual, we write $-\alpha$ for $0_{\mathbb{C}} - \alpha$ if α is a complex number.

We equated each real number *r* with the complex number $r_{\mathbb{C}} = (r, 0)$.

The complex number i = (0, 1) satisfies $i^2 = -1$.

We represent complex numbers on the **Argand diagram**: To each complex number a + bi = (a, b) corresponds the point (a, b).

Definition 1.1.2. Let *z* be a complex number. Write *z* in the form z = (a, b) = a + bi for two real numbers *a*, *b*.

Let P_z be the point corresponding to the complex number z on the Argand diagram. (As you remember, this is the point with coordinates (a, b).)

(a) The real numbers *a* and *b* are called the **real part** and the **imaginary part** of *z*. They are the Cartesian coordinates of the point P_z .

(b) The **absolute value** of *z* is defined to be the real number $\sqrt{a^2 + b^2}$. This is the distance between the origin and P_z . This is the first (radial) **polar coordinate** of P_z . It is denoted by |z|.

(c) Assume that $z \neq 0$. Then, consider the angle φ (with $-\pi < \varphi \leq \pi$) at which the ray from 0 to P_z stands to the ray from 0 to 1 (i.e., the positive half-axis). This is the second (angular) **polar coordinate** of P_z . It is denoted by arg *z*, and is called the **argument** of *z*.

1.1.2. More about angles

Remark 1.1.3. Let z = a + bi (with $a, b \in \mathbb{R}$ and $z \neq 0$) be a complex number.

How to compute $\arg z$ through *a* and *b*?

Let P_z be the point (a, b) as in the previous definition. Recall that $\arg z$ is the angle at which the ray from 0 to P_z stands to the ray from 0 to 1. The slope of the former ray is b/a (since $P_z = (a, b)$). Thus, the classical relation between the slope of a line and its angle against the x-axis shows that

$$\tan\left(\arg z\right)=\frac{b}{a}.$$

Thus, it makes sense to expect $\arg z = \arctan \frac{b}{a}$. But this is not quite the case, since $\frac{b}{a}$ only determines the **line** from 0 to P_z , whereas $\arg z$ depends on the **ray** from 0 to P_z ; thus, $\arg z$ depends on "what side of the origin" z lies on. So the correct way to determine $\arg z$ is the following:

- We have $\tan(\arg z) = \frac{b}{a}$. (If a = 0, then this must be interpreted as $\tan(\arg z) = \frac{b}{0} = \infty$, which means that $\arg z$ is either $\frac{\pi}{2}$ or $\frac{-\pi}{2}$.)
- We have $\arg z \ge 0$ if and only if $b \ge 0$.

If you know the "two-variable arctangent function" atan2, then you can rewrite this as follows:

$$\arg z = \operatorname{atan2}(b, a)$$
.

Definition 1.1.4. For any angle φ , we define a complex number $\operatorname{cis} \varphi$ by

$$\operatorname{cis} \varphi = \cos \varphi + i \sin \varphi = (\cos \varphi, \sin \varphi).$$

Geometrically (i.e., on the Argand diagram), the point $P_{\operatorname{cis}\varphi}$ corresponding to this complex number $\operatorname{cis}\varphi$ is the point obtained by rotating $P_1 = (1,0)$ through the angle¹ φ around the origin. (Indeed, the latter point clearly has abscissa $\cos\varphi$ and ordinate $\sin\varphi$, because of how cosine and sine are defined; but so does the point $P_{\operatorname{cis}\varphi}$.) Thus, in particular, the point $P_{\operatorname{cis}\varphi}$ lies on the unit circle (i.e., the circle with center at the origin and radius 1).

Note that every angle φ satisfies $\operatorname{cis}(\varphi + 2\pi) = \operatorname{cis} \varphi$ (since $\cos(\varphi + 2\pi) = \cos \varphi$ and $\sin(\varphi + 2\pi) = \sin \varphi$). More general, two angles α and β satisfy $\operatorname{cis} \alpha = \operatorname{cis} \beta$ if and only if $\alpha - \beta$ is a multiple of 2π . This is often restated as follows: The complex number $\operatorname{cis} \varphi$ uniquely determines the angle φ up to a multiple of 2π .

Proposition 1.1.5. For any two angles α and β , we have

$$\operatorname{cis}\left(\alpha+\beta\right)=\operatorname{cis}\alpha\cdot\operatorname{cis}\beta.$$

Proof. This follows by comparing

$$\operatorname{cis} (\alpha + \beta) = \underbrace{\cos (\alpha + \beta)}_{=\cos \alpha \cos \beta - \sin \alpha \sin \beta} + i \underbrace{\sin (\alpha + \beta)}_{=\sin \alpha \cos \beta + \cos \alpha \sin \beta}$$
$$= \cos \alpha \cos \beta - \sin \alpha \sin \beta + i (\sin \alpha \cos \beta + \cos \alpha \sin \beta)$$

with

Note that Proposition 1.1.5 "packages" both formulas

$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \text{and} \\ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.$$

¹Angles are always measured counterclockwise in mathematics. For example, the point obtained by rotating P_1 through the angle $\pi/2 = 90^\circ$ around the origin is the point $P_i = (0, 1)$.

$$z = |z| \cdot \operatorname{cis}\left(\arg z\right).$$

Proof sketch. Geometrically, this can be seen as follows: The complex numbers cis (arg *z*) and *z* have the same argument (namely, arg *z*); thus, the points corresponding to them lie on the same ray from the origin. Hence, $z = r \cdot \text{cis}(\arg z)$ for some nonnegative real *r*. To find this *r*, we just compare |z| with $|\text{cis}(\arg z)| = 1$. Thus, we get r = |z|.

Corollary 1.1.7. When we multiply two complex numbers, their absolute values get multiplied, while their arguments get added (modulo 2π).

Proof sketch. We are claiming that any complex numbers z and w satisfy

$$|zw| = |z| \cdot |w|$$
 and $\arg(zw) \equiv \arg z + \arg w \mod 2\pi$

where " $\alpha \equiv \beta \mod 2\pi$ " means " $\alpha - \beta$ is an integer multiple of 2π ".

How do we prove this?

To prove $|zw| = |z| \cdot |w|$, it suffices to recall the definition of absolute value and compute both sides. (This is Exercise 10 on MT2 preparation.)

It remains to prove that

$$\arg(zw) \equiv \arg z + \arg w \mod 2\pi.$$

In other words, it remains to prove that

$$\operatorname{cis}\left(\operatorname{arg}\left(zw\right)\right) = \operatorname{cis}\left(\operatorname{arg}z + \operatorname{arg}\left(w\right)\right)$$
,

because cis φ uniquely determines φ up to a multiple of 2π .

Proposition 1.1.6 yields $z = |z| \cdot \operatorname{cis} (\arg z)$, thus

$$\operatorname{cis}\left(\operatorname{arg} z\right) = \frac{z}{|z|}$$

Similarly,

$$\operatorname{cis}(\operatorname{arg} w) = \frac{w}{|w|}$$
 and $\operatorname{cis}(\operatorname{arg}(zw)) = \frac{zw}{|zw|}$.

Hence,

$$\operatorname{cis}\left(\operatorname{arg}\left(zw\right)\right) = \frac{zw}{|zw|} = \frac{zw}{|z| \cdot |w|} \qquad (\operatorname{since} |zw| = |z| \cdot |w|)$$
$$= \underbrace{\frac{z}{|z|}}_{=\operatorname{cis}\left(\operatorname{arg} z\right)} \cdot \underbrace{\frac{w}{|w|}}_{=\operatorname{cis}\left(\operatorname{arg} z\right)} = \operatorname{cis}\left(\operatorname{arg} z\right) \cdot \operatorname{cis}\left(\operatorname{arg} w\right)$$
$$= \operatorname{cis}\left(\operatorname{arg} z + \operatorname{arg} w\right)$$

(since Proposition 1.1.5 yields $\operatorname{cis}(\operatorname{arg} z + \operatorname{arg} w) = \operatorname{cis}(\operatorname{arg} z) \cdot \operatorname{cis}(\operatorname{arg} w)$).

Thus, for a fixed complex number *z*, the map

$$\mathbb{C} \to \mathbb{C},$$

 $w \mapsto zw$

is a rotation (around the origin, with angle $\arg z$) composed with a homothety (around the origin, with scaling factor |z|).

Remark 1.1.8. Here is a digression for those who know a bit of complex analysis (or at least the complex exponential function).

The complex exponential function $exp : \mathbb{C} \to \mathbb{C}$ is defined by

$$\exp t = 1 + \frac{t}{1!} + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \cdots .$$
(4)

The infinite sum on the right hand side of this equation converges (once you have appropriately defined convergence of sums of complex numbers), so this function exp is well-defined. If *t* is a real number, then $\exp t = e^t$ (where $e \approx 2$. 7183 is the famous "number *e*"); thus, it is common to write e^t for $\exp t$ even when *t* is a complex number (although there is no general well-defined concept of a^b for complex numbers *a* and *b*).

Now, Euler's formula says that $\operatorname{cis} \varphi = \exp(i\varphi)$ for any angle φ . Restated in explicit language, this is saying that if you plug $i\varphi$ for *t* in the power series (4), then you get a power series that converges to $\operatorname{cis} \varphi$. In other words,

$$1 + \frac{i\varphi}{1!} + \frac{(i\varphi)^2}{2!} + \frac{(i\varphi)^3}{3!} + \frac{(i\varphi)^4}{4!} + \dots = \operatorname{cis} \varphi = \cos \varphi + i \sin \varphi.$$

Since the powers of *i* are

$$i^{0} = 1,$$
 $i^{1} = i,$ $i^{2} = -1,$ $i^{3} = -i,$
 $i^{4} = 1,$ $i^{5} = i,$ $i^{6} = -1,$ $i^{7} = -i,$
 $i^{8} = 1,$... (so $i^{n+4} = i^{n}$ for each n),

you can rewrite this as

$$1 + \frac{i\varphi}{1!} - \frac{\varphi^2}{2!} - \frac{i\varphi^3}{3!} + \frac{\varphi^4}{4!} + \frac{i\varphi^5}{5!} - \frac{\varphi^6}{6!} - \frac{i\varphi^7}{7!} + \dots = \cos\varphi + i\sin\varphi.$$

Splitting this equality into its real and imaginary parts, we obtain

$$1 - \frac{\varphi^2}{2!} + \frac{\varphi^4}{4!} - \frac{\varphi^6}{6!} + \dots = \cos \varphi \qquad \text{and} \\ \frac{\varphi}{1!} - \frac{\varphi^3}{3!} + \frac{\varphi^5}{5!} - \frac{\varphi^7}{7!} + \dots = \sin \varphi.$$

These are the classical Maclaurin power series for cos and sin.

Also, $e^{i\varphi} = \exp(i\varphi) = \operatorname{cis} \varphi$ yields $e^{i\pi} = \operatorname{cis} \pi = -1$, the famous Euler identity.

1.2. Application of diagonalization to ODEs

Let us talk a bit about an application of diagonalization of matrices.

This section follows [Strickland, §15].

Recall one of the simplest forms of an ODE (ordinary differential equation): We are looking for a function x in a single variable t that satisfies x' = ax, where a is a real constant, and where x' denotes the derivative of x in t. (People often write \dot{x} for x'.)

The solutions of this ODE are all functions of the form ce^{at} for constants $c \in \mathbb{R}$.

Now, imagine we want to solve a system of two ODEs for two functions *x* and *y*. For example, let us solve

$$\begin{cases} x' = x + y \\ y' = x + y \end{cases}$$

Rewrite this system as

$$\begin{pmatrix} x'\\ y' \end{pmatrix} = A \begin{pmatrix} x\\ y \end{pmatrix}$$
, where $A = \begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix}$.

Note that the column vectors now have functions as entries (rather than numbers), but this doesn't change anything.

Now, let us diagonalize *A*:

$$A = UDU^{-1},$$
 $U = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},$ $D = \operatorname{diag}(2,0) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}.$

Note that

$$U^{-1} = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{array}\right).$$

Thus, our system rewrites as

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = UDU^{-1}\left(\begin{array}{c} x\\ y\end{array}\right).$$

Rewrite this further by multiplying both sides by U^{-1} :

$$U^{-1}\left(\begin{array}{c}x'\\y'\end{array}\right) = DU^{-1}\left(\begin{array}{c}x\\y\end{array}\right)$$

Note that

$$U^{-1}\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}\frac{1}{2} & \frac{1}{2}\\\frac{1}{2} & -\frac{1}{2}\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}\frac{x+y}{2}\\\frac{x-y}{2}\end{array}\right)$$

and

$$U^{-1}\begin{pmatrix} x'\\y'\end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x'\\y'\end{pmatrix} = \begin{pmatrix} \frac{x'+y'}{2}\\ \frac{x'-y'}{2} \end{pmatrix} = \begin{pmatrix} \left(\frac{x+y}{2}\right)'\\ \left(\frac{x-y}{2}\right)' \end{pmatrix}.$$

Setting

$$z = \frac{x+y}{2}$$
 and $w = \frac{x-y}{2}$,

we can rewrite these as

$$U^{-1}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} z\\ w \end{pmatrix}$$
 and $U^{-1}\begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} z'\\ w' \end{pmatrix}$.

So our system becomes

$$\left(\begin{array}{c} z'\\ w'\end{array}\right) = D\left(\begin{array}{c} z\\ w\end{array}\right).$$

But

$$D = \operatorname{diag}(2,0),$$
 so $D\begin{pmatrix} z\\ w \end{pmatrix} = \begin{pmatrix} 2z\\ 0w \end{pmatrix}$

So our system becomes

$$\left(\begin{array}{c} z'\\ w'\end{array}\right) = \left(\begin{array}{c} 2z\\ 0w\end{array}\right).$$

This is tantamount to z' = 2z and w' = 0w. The first of these equations involves z only, while the second involves w only. Solving them, we obtain $z = ce^{2t}$ and $w = d e^{0t} = d$ (for two real constants c and d).

So we know that

$$\frac{x+y}{2} = z = ce^{2t}$$
 and $\frac{x-y}{2} = w = d$

We can recover *x* and *y* from these by treating these equations as a system of linear equations and solving them by Gaussian elimination. We get

$$x = ce^{2t} + d;$$
 $y = ce^{2t} - d.$

See [Strickland, §15] for further examples.

See also [Strickland, §16] for another application of diagonalization: the study of Markov chains. See [Strickland, §17] for an application to ranking websites for web search (Google's PageRank algorithm).

2. More about determinants

Let us state (without proof) a few more facts about determinants.

2.1. Determinants of block matrices

Theorem 2.1.1. Let $\begin{bmatrix} A & B \\ 0_{q \times p} & D \end{bmatrix}$ be a block matrix, where *A* is a $p \times p$ -matrix and *D* is a $q \times q$ -matrix. Then,

$$\det \begin{bmatrix} A & B \\ 0_{q \times p} & D \end{bmatrix} = \det A \cdot \det D.$$

Example 2.1.2. Let p = 2 and q = 2. Then, this theorem is saying

$$\det \begin{pmatrix} a & b & c & d \\ a' & b' & c' & d' \\ 0 & 0 & c''' & d'' \\ 0 & 0 & c'''' & d''' \end{pmatrix} = \det \begin{pmatrix} a & b \\ a' & b' \end{pmatrix} \cdot \det \begin{pmatrix} c'' & d'' \\ c''' & d''' \end{pmatrix}.$$

Remark 2.1.3. It is **not** true that if *A* is a $p \times p$ -matrix and *D* is a $q \times q$ -matrix, then

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det A \cdot \det D - \det B \cdot \det C.$$
(5)

Indeed, if $p \neq q$, then det *B* and det *C* make no sense to begin with (since *B* and *C* are not square matrices). But even when p = q, you can find counterexamples to (5).

However, here is something that is true:

Theorem 2.1.4. (The Schur complement theorem for determinants.) Let $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ be a block matrix, where *A* is an invertible $p \times p$ -matrix and *D* is a $q \times q$ -matrix. Then,

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det A \cdot \det \left(D - CA^{-1}B \right).$$

There is also a way to compute the inverse of a block matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1}$ using its blocks. See Wikipedia: Schur complement.

2.2. An application of determinants

The following exercise is an example of how identifying a polynomial as a determinant can sometimes help us understand this polynomial better. Exercise 2.2.1. Factor the polynomial

$$ab^2 + bc^2 + ca^2 - ac^2 - ba^2 - cb^2$$

(in three indeterminates *a*, *b*, *c*).

Solution. The polynomial $ab^2 + bc^2 + ca^2 - ac^2 - ba^2 - cb^2$ looks very much like the determinant of a 3 × 3-matrix (it is a sum of 6 terms, 3 of which have negative signs). A bit of experimentation confirms that it is indeed the determinant of a very simple 3 × 3-matrix:

$$ab^{2} + bc^{2} + ca^{2} - ac^{2} - ba^{2} - cb^{2} = \det \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{pmatrix}.$$

We shall now compute this determinant in a different way: Rather than expanding it, we will use row operations to gradually simplify it:²

$$det \begin{pmatrix} \boxed{1} & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$$

$$= det \begin{pmatrix} \boxed{1} & 1 & 1 \\ 0 & \boxed{b-a} & c-a \\ a^2 & b^2 & c^2 \end{pmatrix}$$
(here, we have subtracted $a \cdot row 1$ from row 2)
$$= det \begin{pmatrix} \boxed{1} & 1 & 1 \\ 0 & \boxed{b-a} & c-a \\ 0 & b^2-a^2 & c^2-a^2 \end{pmatrix}$$
(here, we have subtracted $a^2 \cdot row 1$ from row 3)
$$= det \begin{pmatrix} \boxed{1} & 1 & 1 \\ 0 & \boxed{b-a} & c-a \\ 0 & 0 & c^2-a^2-(b+a)(c-a) \end{pmatrix}$$
(here, we have subtracted $(b+a) \cdot row 2$ from row 3)
$$= 1 (b-a) \underbrace{\left(c^2 - a^2 - (b+a)(c-a)\right)}_{=c^2-a^2-cb-ca+ab=(c-a)(c-b)}$$
(since the determinant of an upper-triangular matrix is the product of its diagonal entries)

²As we have already done many times, we draw boxes around pivot entries.

$$= (b-a) (c-a) (c-b).$$

Thus,

$$ab^{2} + bc^{2} + ca^{2} - ac^{2} - ba^{2} - cb^{2} = \det \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{pmatrix} = (b - a) (c - a) (c - b).$$

References

[Strickland] Neil Strickland, MAS201 Linear Mathematics for Applications, lecture notes, 28 September 2013. http://neil-strickland.staff.shef.ac.uk/courses/MAS201/