Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-13

Darij Grinberg

December 7, 2019

1. Eigenvalues and eigenvectors ("eigenstuff")

1.1. Complex numbers

1.1.1. Some definitions done last time

Recall the definition of complex numbers:
Definition 1.1.1. (a) A complex number is defined as a pair (a, b) of two real numbers.
(b) We let \mathbb{C} be the set of all complex numbers.
(c) For each real number r, we denote the complex number $(r, 0)$ as r_{C} (and we will later equate it with r).
(d) We let i be the complex number $(0,1)$.
(e) We define three binary operations + , - and \cdot on \mathbb{C} by setting

$$
\begin{align*}
(a, b)+(c, d) & =(a+c, b+d) \tag{1}\\
(a, b)-(c, d) & =(a-c, b-d) \tag{2}\\
(a, b) \cdot(c, d) & =(a c-b d, a d+b c) \tag{3}
\end{align*}
$$

(Thus, the operations + and - are just entrywise addition and subtraction, just as for row vectors. The operation - is more complicated, and we will soon see why we have defined it in this particular way.)
(f) As usual, we write $\alpha \beta$ for $\alpha \cdot \beta$ if α and β are complex numbers.

As usual, we write $-\alpha$ for $0_{C}-\alpha$ if α is a complex number.
We equated each real number r with the complex number $r_{C}=(r, 0)$.
The complex number $i=(0,1)$ satisfies $i^{2}=-1$.
We represent complex numbers on the Argand diagram: To each complex number $a+b i=(a, b)$ corresponds the point (a, b).

Definition 1.1.2. Let z be a complex number. Write z in the form $z=(a, b)=$ $a+b i$ for two real numbers a, b.

Let P_{z} be the point corresponding to the complex number z on the Argand diagram. (As you remember, this is the point with coordinates (a, b).)
(a) The real numbers a and b are called the real part and the imaginary part of z. They are the Cartesian coordinates of the point P_{z}.
(b) The absolute value of z is defined to be the real number $\sqrt{a^{2}+b^{2}}$. This is the distance between the origin and P_{z}. This is the first (radial) polar coordinate of P_{z}. It is denoted by $|z|$.
(c) Assume that $z \neq 0$. Then, consider the angle φ (with $-\pi<\varphi \leq \pi$) at which the ray from 0 to P_{z} stands to the ray from 0 to 1 (i.e., the positive halfaxis). This is the second (angular) polar coordinate of P_{z}. It is denoted by $\arg z$, and is called the argument of z.

1.1.2. More about angles

Remark 1.1.3. Let $z=a+b i$ (with $a, b \in \mathbb{R}$ and $z \neq 0$) be a complex number.
How to compute $\arg z$ through a and b ?
Let P_{z} be the point (a, b) as in the previous definition. Recall that $\arg z$ is the angle at which the ray from 0 to P_{z} stands to the ray from 0 to 1 . The slope of the former ray is b / a (since $P_{z}=(a, b)$). Thus, the classical relation between the slope of a line and its angle against the x-axis shows that

$$
\tan (\arg z)=\frac{b}{a}
$$

Thus, it makes sense to expect $\arg z=\arctan \frac{b}{a}$. But this is not quite the case, since $\frac{b}{a}$ only determines the line from 0 to P_{z}, whereas $\arg z$ depends on the ray from 0 to P_{z}; thus, $\arg z$ depends on "what side of the origin" z lies on. So the correct way to determine $\arg z$ is the following:

- We have $\tan (\arg z)=\frac{b}{a}$. (If $a=0$, then this must be interpreted as $\tan (\arg z)=\frac{b}{0}=\infty$, which means that $\arg z$ is either $\frac{\pi}{2}$ or $\frac{-\pi}{2}$.)
- We have $\arg z \geq 0$ if and only if $b \geq 0$.

If you know the "two-variable arctangent function" atan2, then you can rewrite this as follows:

$$
\arg z=\operatorname{atan} 2(b, a) .
$$

Definition 1.1.4. For any angle φ, we define a complex number $\operatorname{cis} \varphi$ by

$$
\operatorname{cis} \varphi=\cos \varphi+i \sin \varphi=(\cos \varphi, \sin \varphi)
$$

Geometrically (i.e., on the Argand diagram), the point $P_{\text {cis } \varphi}$ corresponding to this complex number cis φ is the point obtained by rotating $P_{1}=(1,0)$ through the angle ${ }^{1} \varphi$ around the origin. (Indeed, the latter point clearly has abscissa $\cos \varphi$ and ordinate $\sin \varphi$, because of how cosine and sine are defined; but so does the point $P_{\operatorname{cis} \varphi}$.) Thus, in particular, the point $P_{\operatorname{cis} \varphi}$ lies on the unit circle (i.e., the circle with center at the origin and radius 1).

Note that every angle φ satisfies cis $(\varphi+2 \pi)=\operatorname{cis} \varphi$ (since $\cos (\varphi+2 \pi)=\cos \varphi$ and $\sin (\varphi+2 \pi)=\sin \varphi)$. More general, two angles α and β satisfy cis $\alpha=\operatorname{cis} \beta$ if and only if $\alpha-\beta$ is a multiple of 2π. This is often restated as follows: The complex number $\operatorname{cis} \varphi$ uniquely determines the angle φ up to a multiple of 2π.

Proposition 1.1.5. For any two angles α and β, we have

$$
\operatorname{cis}(\alpha+\beta)=\operatorname{cis} \alpha \cdot \operatorname{cis} \beta
$$

Proof. This follows by comparing

$$
\begin{aligned}
\operatorname{cis}(\alpha+\beta)= & \underbrace{\cos (\alpha+\beta)}+i \underbrace{\sin (\alpha+\beta)}_{=\sin \alpha \cos \beta+\cos \alpha \sin \beta} \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \cos \alpha \cos \beta-\sin \alpha \sin \beta+i(\sin \alpha \cos \beta+\cos \alpha \sin \beta)
\end{aligned}
$$

with

$$
\begin{aligned}
& \underbrace{\operatorname{cis} \alpha}_{=\cos \alpha+i \sin \alpha} \cdot \underbrace{\operatorname{cis} \beta}_{=\cos \beta+i \sin \beta} \\
& =(\cos \alpha+i \sin \alpha) \cdot(\cos \beta+i \sin \beta) \\
& =\cos \alpha \cos \beta+\cos \alpha \cdot i \sin \beta+i \sin \alpha \cos \beta+\underbrace{i^{2}}_{=-1} \sin \alpha \sin \beta \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta+i(\sin \alpha \cos \beta+\cos \alpha \sin \beta) .
\end{aligned}
$$

Note that Proposition 1.1.5 "packages" both formulas

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta .
\end{aligned} \quad \text { and }
$$

[^0]Proposition 1.1.6. Let z be a nonzero complex number. Then,

$$
z=|z| \cdot \operatorname{cis}(\arg z) .
$$

Proof sketch. Geometrically, this can be seen as follows: The complex numbers cis $(\arg z)$ and z have the same argument (namely, $\arg z$); thus, the points corresponding to them lie on the same ray from the origin. Hence, $z=r \cdot \operatorname{cis}(\arg z)$ for some nonnegative real r. To find this r, we just compare $|z|$ with $|\operatorname{cis}(\arg z)|=1$. Thus, we get $r=|z|$.

Corollary 1.1.7. When we multiply two complex numbers, their absolute values get multiplied, while their arguments get added (modulo 2π).

Proof sketch. We are claiming that any complex numbers z and w satisfy

$$
|z w|=|z| \cdot|w| \quad \text { and } \quad \arg (z w) \equiv \arg z+\arg w \bmod 2 \pi,
$$

where " $\alpha \equiv \beta \bmod 2 \pi$ " means " $\alpha-\beta$ is an integer multiple of 2π ".
How do we prove this?
To prove $|z w|=|z| \cdot|w|$, it suffices to recall the definition of absolute value and compute both sides. (This is Exercise 10 on MT2 preparation.)

It remains to prove that

$$
\arg (z w) \equiv \arg z+\arg w \bmod 2 \pi
$$

In other words, it remains to prove that

$$
\operatorname{cis}(\arg (z w))=\operatorname{cis}(\arg z+\arg (w)),
$$

because cis φ uniquely determines φ up to a multiple of 2π.
Proposition 1.1.6 yields $z=|z| \cdot \operatorname{cis}(\arg z)$, thus

$$
\operatorname{cis}(\arg z)=\frac{z}{|z|}
$$

Similarly,

$$
\operatorname{cis}(\arg w)=\frac{w}{|w|} \quad \text { and } \quad \operatorname{cis}(\arg (z w))=\frac{z w}{|z w|}
$$

Hence,

$$
\begin{aligned}
\operatorname{cis}(\arg (z w)) & \left.=\frac{z w}{|z w|}=\frac{z w}{|z| \cdot|w|} \quad \quad \text { (since }|z w|=|z| \cdot|w|\right) \\
& =\underbrace{\frac{z}{|z|}}_{=\operatorname{cis}(\arg z)} \cdot \underbrace{\frac{w}{|w|}}_{=\operatorname{cis}(\arg w)}=\operatorname{cis}(\arg z) \cdot \operatorname{cis}(\arg w) \\
& =\operatorname{cis}(\arg z+\arg w)
\end{aligned}
$$

(since Proposition 1.1 .5 yields cis $(\arg z+\arg w)=\operatorname{cis}(\arg z) \cdot \operatorname{cis}(\arg w))$.

Thus, for a fixed complex number z, the map

$$
\begin{aligned}
\mathbb{C} & \rightarrow \mathbb{C}, \\
w & \mapsto z w
\end{aligned}
$$

is a rotation (around the origin, with angle $\arg z$) composed with a homothety (around the origin, with scaling factor $|z|$).

Remark 1.1.8. Here is a digression for those who know a bit of complex analysis (or at least the complex exponential function).

The complex exponential function $\exp : \mathbb{C} \rightarrow \mathbb{C}$ is defined by

$$
\begin{equation*}
\exp t=1+\frac{t}{1!}+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\frac{t^{4}}{4!}+\cdots \tag{4}
\end{equation*}
$$

The infinite sum on the right hand side of this equation converges (once you have appropriately defined convergence of sums of complex numbers), so this function \exp is well-defined. If t is a real number, then $\exp t=e^{t}$ (where $e \approx 2$. 7183 is the famous "number $e^{\prime \prime}$); thus, it is common to write e^{t} for $\exp t$ even when t is a complex number (although there is no general well-defined concept of a^{b} for complex numbers a and b).
Now, Euler's formula says that $\operatorname{cis} \varphi=\exp (i \varphi)$ for any angle φ. Restated in explicit language, this is saying that if you plug $i \varphi$ for t in the power series (4), then you get a power series that converges to $\operatorname{cis} \varphi$. In other words,

$$
1+\frac{i \varphi}{1!}+\frac{(i \varphi)^{2}}{2!}+\frac{(i \varphi)^{3}}{3!}+\frac{(i \varphi)^{4}}{4!}+\cdots=\operatorname{cis} \varphi=\cos \varphi+i \sin \varphi
$$

Since the powers of i are

$$
\begin{array}{llrr}
i^{0}=1, & i^{1}=i, & i^{2}=-1, & i^{3}=-i, \\
i^{4}=1, & i^{5}=i, & i^{6}=-1, & i^{7}=-i, \\
i^{8}=1, & \cdots & \left(\text { so } i^{n+4}=i^{n} \text { for each } n\right),
\end{array}
$$

you can rewrite this as

$$
1+\frac{i \varphi}{1!}-\frac{\varphi^{2}}{2!}-\frac{i \varphi^{3}}{3!}+\frac{\varphi^{4}}{4!}+\frac{i \varphi^{5}}{5!}-\frac{\varphi^{6}}{6!}-\frac{i \varphi^{7}}{7!}+\cdots=\cos \varphi+i \sin \varphi
$$

Splitting this equality into its real and imaginary parts, we obtain

$$
\begin{aligned}
& 1-\frac{\varphi^{2}}{2!}+\frac{\varphi^{4}}{4!}-\frac{\varphi^{6}}{6!}+\cdots=\cos \varphi \quad \text { and } \\
& \frac{\varphi}{1!}-\frac{\varphi^{3}}{3!}+\frac{\varphi^{5}}{5!}-\frac{\varphi^{7}}{7!}+\cdots=\sin \varphi
\end{aligned}
$$

These are the classical Maclaurin power series for cos and sin.
Also, $e^{i \varphi}=\exp (i \varphi)=\operatorname{cis} \varphi$ yields $e^{i \pi}=\operatorname{cis} \pi=-1$, the famous Euler identity.

1.2. Application of diagonalization to ODEs

Let us talk a bit about an application of diagonalization of matrices.
This section follows [Strickland, §15].
Recall one of the simplest forms of an ODE (ordinary differential equation): We are looking for a function x in a single variable t that satisfies $x^{\prime}=a x$, where a is a real constant, and where x^{\prime} denotes the derivative of x in t. (People often write \dot{x} for x^{\prime}.)

The solutions of this ODE are all functions of the form $c e^{a t}$ for constants $c \in \mathbb{R}$.
Now, imagine we want to solve a system of two ODEs for two functions x and y. For example, let us solve

$$
\left\{\begin{array}{l}
x^{\prime}=x+y \\
y^{\prime}=x+y
\end{array} .\right.
$$

Rewrite this system as

$$
\binom{x^{\prime}}{y^{\prime}}=A\binom{x}{y}, \quad \text { where } A=\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Note that the column vectors now have functions as entries (rather than numbers), but this doesn't change anything.

Now, let us diagonalize A :

$$
A=U D U^{-1}, \quad U=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad D=\operatorname{diag}(2,0)=\left(\begin{array}{cc}
2 & 0 \\
0 & 0
\end{array}\right)
$$

Note that

$$
U^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

Thus, our system rewrites as

$$
\binom{x^{\prime}}{y^{\prime}}=U D U^{-1}\binom{x}{y}
$$

Rewrite this further by multiplying both sides by U^{-1} :

$$
U^{-1}\binom{x^{\prime}}{y^{\prime}}=D U^{-1}\binom{x}{y}
$$

Note that

$$
U^{-1}\binom{x}{y}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\binom{x}{y}=\binom{\frac{x+y}{2}}{\frac{x-y}{2}}
$$

and

$$
U^{-1}\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}=\binom{\frac{x^{\prime}+y^{\prime}}{2}}{\frac{x^{\prime}-y^{\prime}}{2}}=\binom{\left(\frac{x+y}{2}\right)^{\prime}}{\left(\frac{x-y}{2}\right)^{\prime}}
$$

Setting

$$
z=\frac{x+y}{2} \quad \text { and } \quad w=\frac{x-y}{2},
$$

we can rewrite these as

$$
U^{-1}\binom{x}{y}=\binom{z}{w} \quad \text { and } \quad U^{-1}\binom{x^{\prime}}{y^{\prime}}=\binom{z^{\prime}}{w^{\prime}} .
$$

So our system becomes

$$
\binom{z^{\prime}}{w^{\prime}}=D\binom{z}{w} .
$$

But

$$
D=\operatorname{diag}(2,0), \quad \text { so } \quad D\binom{z}{w}=\binom{2 z}{0 w} .
$$

So our system becomes

$$
\binom{z^{\prime}}{w^{\prime}}=\binom{2 z}{0 w} .
$$

This is tantamount to $z^{\prime}=2 z$ and $w^{\prime}=0 w$. The first of these equations involves z only, while the second involves w only. Solving them, we obtain $z=c e^{2 t}$ and $w=d \underbrace{e^{0 t}}_{=1}=d$ (for two real constants c and d).

So we know that

$$
\frac{x+y}{2}=z=c e^{2 t} \quad \text { and } \quad \frac{x-y}{2}=w=d
$$

We can recover x and y from these by treating these equations as a system of linear equations and solving them by Gaussian elimination. We get

$$
x=c e^{2 t}+d ; \quad y=c e^{2 t}-d
$$

See [Strickland, §15] for further examples.
See also [Strickland, §16] for another application of diagonalization: the study of Markov chains. See [Strickland, §17] for an application to ranking websites for web search (Google's PageRank algorithm).

2. More about determinants

Let us state (without proof) a few more facts about determinants.

2.1. Determinants of block matrices

Theorem 2.1.1. Let $\left[\begin{array}{cc}A & B \\ 0_{q \times p} & D\end{array}\right]$ be a block matrix, where A is a $p \times p$-matrix and D is a $q \times q$-matrix. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
0_{q \times p} & D
\end{array}\right]=\operatorname{det} A \cdot \operatorname{det} D
$$

Example 2.1.2. Let $p=2$ and $q=2$. Then, this theorem is saying

$$
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & d \\
a^{\prime} & b^{\prime} & c^{\prime} & d^{\prime} \\
0 & 0 & c^{\prime \prime} & d^{\prime \prime} \\
0 & 0 & c^{\prime \prime \prime} & d^{\prime \prime \prime}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
a & b \\
a^{\prime} & b^{\prime}
\end{array}\right) \cdot \operatorname{det}\left(\begin{array}{cc}
c^{\prime \prime} & d^{\prime \prime} \\
c^{\prime \prime \prime} & d^{\prime \prime \prime}
\end{array}\right)
$$

Remark 2.1.3. It is not true that if A is a $p \times p$-matrix and D is a $q \times q$-matrix, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \tag{5}\\
C & D
\end{array}\right]=\operatorname{det} A \cdot \operatorname{det} D-\operatorname{det} B \cdot \operatorname{det} C
$$

Indeed, if $p \neq q$, then $\operatorname{det} B$ and $\operatorname{det} C$ make no sense to begin with (since B and C are not square matrices). But even when $p=q$, you can find counterexamples to (5).

However, here is something that is true:
Theorem 2.1.4. (The Schur complement theorem for determinants.)
Let $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ be a block matrix, where A is an invertible $p \times p$-matrix and D is a $q \times q$-matrix. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\operatorname{det} A \cdot \operatorname{det}\left(D-C A^{-1} B\right)
$$

There is also a way to compute the inverse of a block matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]^{-1}$ using its blocks. See Wikipedia: Schur complement.

2.2. An application of determinants

The following exercise is an example of how identifying a polynomial as a determinant can sometimes help us understand this polynomial better.

Exercise 2.2.1. Factor the polynomial

$$
a b^{2}+b c^{2}+c a^{2}-a c^{2}-b a^{2}-c b^{2}
$$

(in three indeterminates a, b, c).
Solution. The polynomial $a b^{2}+b c^{2}+c a^{2}-a c^{2}-b a^{2}-c b^{2}$ looks very much like the determinant of a 3×3-matrix (it is a sum of 6 terms, 3 of which have negative signs). A bit of experimentation confirms that it is indeed the determinant of a very simple 3×3-matrix:

$$
a b^{2}+b c^{2}+c a^{2}-a c^{2}-b a^{2}-c b^{2}=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right) .
$$

We shall now compute this determinant in a different way: Rather than expanding it, we will use row operations to gradually simplify it $]_{2}^{2}$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
\left.\begin{array}{|ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right) \\
=\operatorname{det}\left(\begin{array}{ccc}
\boxed{1} & 1 & 1 \\
0 & \boxed{b-a} & c-a \\
a^{2} & b^{2} & c^{2}
\end{array}\right)
\end{array} .\right.
\end{aligned}
$$

(here, we have subtracted $a \cdot$ row 1 from row 2)

$$
=\operatorname{det}\left(\begin{array}{ccc}
\boxed{1} & 1 & 1 \\
0 & \boxed{b-a} & c-a \\
0 & b^{2}-a^{2} & c^{2}-a^{2}
\end{array}\right)
$$

(here, we have subtracted a^{2}. row 1 from row 3)

$$
=\operatorname{det}\left(\begin{array}{ccc}
\boxed{1} & 1 & 1 \\
0 & b-a & c-a \\
0 & 0 & c^{2}-a^{2}-(b+a)(c-a)
\end{array}\right)
$$

(here, we have subtracted $(b+a)$ row 2 from row 3)

$$
=1(b-a) \underbrace{\left(c^{2}-a^{2}-(b+a)(c-a)\right)}_{\begin{array}{c}
=c^{2}-a^{2}-c b-c a+a b+a^{2} \\
=c^{2}-c b-c a+a b=(c-a)(c-b)
\end{array}}
$$

$\binom{$ since the determinant of an upper-triangular matrix }{ is the product of its diagonal entries }

[^1]$$
=(b-a)(c-a)(c-b) .
$$

Thus,

$$
a b^{2}+b c^{2}+c a^{2}-a c^{2}-b a^{2}-c b^{2}=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right)=(b-a)(c-a)(c-b) .
$$

References

[Strickland] Neil Strickland, MAS201 Linear Mathematics for Applications, lecture notes, 28 September 2013.
http://neil-strickland.staff.shef.ac.uk/courses/MAS201/

[^0]: ${ }^{1}$ Angles are always measured counterclockwise in mathematics. For example, the point obtained by rotating P_{1} through the angle $\pi / 2=90^{\circ}$ around the origin is the point $P_{i}=(0,1)$.

[^1]: ${ }^{2}$ As we have already done many times, we draw boxes around pivot entries.

