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1. Eigenvalues and eigenvectors (“eigenstuff”)

1.1. Complex numbers

1.1.1. Some definitions done last time

Recall the definition of complex numbers:

Definition 1.1.1. (a) A complex number is defined as a pair (a, b) of two real
numbers.

(b) We let C be the set of all complex numbers.
(c) For each real number r, we denote the complex number (r, 0) as rC (and

we will later equate it with r).
(d) We let i be the complex number (0, 1).
(e) We define three binary operations +, − and · on C by setting

(a, b) + (c, d) = (a + c, b + d) , (1)
(a, b)− (c, d) = (a− c, b− d) , (2)
(a, b) · (c, d) = (ac− bd, ad + bc) . (3)

(Thus, the operations + and − are just entrywise addition and subtraction, just
as for row vectors. The operation · is more complicated, and we will soon see
why we have defined it in this particular way.)

(f) As usual, we write αβ for α · β if α and β are complex numbers.
As usual, we write −α for 0C − α if α is a complex number.

We equated each real number r with the complex number rC = (r, 0).
The complex number i = (0, 1) satisfies i2 = −1.
We represent complex numbers on the Argand diagram: To each complex num-

ber a + bi = (a, b) corresponds the point (a, b).

1
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Definition 1.1.2. Let z be a complex number. Write z in the form z = (a, b) =
a + bi for two real numbers a, b.

Let Pz be the point corresponding to the complex number z on the Argand
diagram. (As you remember, this is the point with coordinates (a, b).)

(a) The real numbers a and b are called the real part and the imaginary part
of z. They are the Cartesian coordinates of the point Pz.

(b) The absolute value of z is defined to be the real number
√

a2 + b2. This is
the distance between the origin and Pz. This is the first (radial) polar coordinate
of Pz. It is denoted by |z|.

(c) Assume that z 6= 0. Then, consider the angle ϕ (with −π < ϕ ≤ π) at
which the ray from 0 to Pz stands to the ray from 0 to 1 (i.e., the positive half-
axis). This is the second (angular) polar coordinate of Pz. It is denoted by arg z,
and is called the argument of z.

1.1.2. More about angles

Remark 1.1.3. Let z = a + bi (with a, b ∈ R and z 6= 0) be a complex number.
How to compute arg z through a and b ?
Let Pz be the point (a, b) as in the previous definition. Recall that arg z is the

angle at which the ray from 0 to Pz stands to the ray from 0 to 1. The slope of
the former ray is b/a (since Pz = (a, b)). Thus, the classical relation between the
slope of a line and its angle against the x-axis shows that

tan (arg z) =
b
a

.

Thus, it makes sense to expect arg z = arctan
b
a

. But this is not quite the case,

since
b
a

only determines the line from 0 to Pz, whereas arg z depends on the ray
from 0 to Pz; thus, arg z depends on “what side of the origin” z lies on. So the
correct way to determine arg z is the following:

• We have tan (arg z) =
b
a

. (If a = 0, then this must be interpreted as

tan (arg z) =
b
0
= ∞, which means that arg z is either

π

2
or
−π

2
.)

• We have arg z ≥ 0 if and only if b ≥ 0.

If you know the “two-variable arctangent function” atan2, then you can rewrite
this as follows:

arg z = atan2 (b, a) .

https://en.wikipedia.org/wiki/Atan2


Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-13 page 3

Definition 1.1.4. For any angle ϕ, we define a complex number cis ϕ by

cis ϕ = cos ϕ + i sin ϕ = (cos ϕ, sin ϕ) .

Geometrically (i.e., on the Argand diagram), the point Pcis ϕ corresponding to
this complex number cis ϕ is the point obtained by rotating P1 = (1, 0) through
the angle1ϕ around the origin. (Indeed, the latter point clearly has abscissa cos ϕ
and ordinate sin ϕ, because of how cosine and sine are defined; but so does the
point Pcis ϕ.) Thus, in particular, the point Pcis ϕ lies on the unit circle (i.e., the
circle with center at the origin and radius 1).

Note that every angle ϕ satisfies cis (ϕ + 2π) = cis ϕ (since cos (ϕ + 2π) = cos ϕ
and sin (ϕ + 2π) = sin ϕ). More general, two angles α and β satisfy cis α = cis β if
and only if α− β is a multiple of 2π. This is often restated as follows: The complex
number cis ϕ uniquely determines the angle ϕ up to a multiple of 2π.

Proposition 1.1.5. For any two angles α and β, we have

cis (α + β) = cis α · cis β.

Proof. This follows by comparing

cis (α + β) = cos (α + β)︸ ︷︷ ︸
=cos α cos β−sin α sin β

+i sin (α + β)︸ ︷︷ ︸
=sin α cos β+cos α sin β

= cos α cos β− sin α sin β + i (sin α cos β + cos α sin β)

with

cis α︸︷︷︸
=cos α+i sin α

· cis β︸︷︷︸
=cos β+i sin β

= (cos α + i sin α) · (cos β + i sin β)

= cos α cos β + cos α · i sin β + i sin α cos β + i2︸︷︷︸
=−1

sin α sin β

= cos α cos β− sin α sin β + i (sin α cos β + cos α sin β) .

Note that Proposition 1.1.5 “packages” both formulas

cos (α + β) = cos α cos β− sin α sin β and
sin (α + β) = sin α cos β + cos α sin β.

1Angles are always measured counterclockwise in mathematics. For example, the point obtained
by rotating P1 through the angle π/2 = 90◦ around the origin is the point Pi = (0, 1).
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Proposition 1.1.6. Let z be a nonzero complex number. Then,

z = |z| · cis (arg z) .

Proof sketch. Geometrically, this can be seen as follows: The complex numbers
cis (arg z) and z have the same argument (namely, arg z); thus, the points corre-
sponding to them lie on the same ray from the origin. Hence, z = r · cis (arg z) for
some nonnegative real r. To find this r, we just compare |z| with |cis (arg z)| = 1.
Thus, we get r = |z|.

Corollary 1.1.7. When we multiply two complex numbers, their absolute values
get multiplied, while their arguments get added (modulo 2π).

Proof sketch. We are claiming that any complex numbers z and w satisfy

|zw| = |z| · |w| and arg (zw) ≡ arg z + arg w mod 2π,

where “α ≡ β mod 2π” means “α− β is an integer multiple of 2π”.
How do we prove this?
To prove |zw| = |z| · |w|, it suffices to recall the definition of absolute value and

compute both sides. (This is Exercise 10 on MT2 preparation.)
It remains to prove that

arg (zw) ≡ arg z + arg w mod 2π.

In other words, it remains to prove that

cis (arg (zw)) = cis (arg z + arg (w)) ,

because cis ϕ uniquely determines ϕ up to a multiple of 2π.
Proposition 1.1.6 yields z = |z| · cis (arg z), thus

cis (arg z) =
z
|z| .

Similarly,

cis (arg w) =
w
|w| and cis (arg (zw)) =

zw
|zw| .

Hence,

cis (arg (zw)) =
zw
|zw| =

zw
|z| · |w| (since |zw| = |z| · |w|)

=
z
|z|︸︷︷︸

=cis(arg z)

· w
|w|︸︷︷︸

=cis(arg w)

= cis (arg z) · cis (arg w)

= cis (arg z + arg w)

(since Proposition 1.1.5 yields cis (arg z + arg w) = cis (arg z) · cis (arg w)).

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt2t.pdf
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Thus, for a fixed complex number z, the map

C→ C,
w 7→ zw

is a rotation (around the origin, with angle arg z) composed with a homothety
(around the origin, with scaling factor |z|).

Remark 1.1.8. Here is a digression for those who know a bit of complex analysis
(or at least the complex exponential function).

The complex exponential function exp : C→ C is defined by

exp t = 1 +
t
1!

+
t2

2!
+

t3

3!
+

t4

4!
+ · · · . (4)

The infinite sum on the right hand side of this equation converges (once you
have appropriately defined convergence of sums of complex numbers), so this
function exp is well-defined. If t is a real number, then exp t = et (where e ≈ 2.
718 3 is the famous “number e”); thus, it is common to write et for exp t even
when t is a complex number (although there is no general well-defined concept
of ab for complex numbers a and b).

Now, Euler’s formula says that cis ϕ = exp (iϕ) for any angle ϕ. Restated in
explicit language, this is saying that if you plug iϕ for t in the power series (4),
then you get a power series that converges to cis ϕ. In other words,

1 +
iϕ
1!

+
(iϕ)2

2!
+

(iϕ)3

3!
+

(iϕ)4

4!
+ · · · = cis ϕ = cos ϕ + i sin ϕ.

Since the powers of i are

i0 = 1, i1 = i, i2 = −1, i3 = −i,

i4 = 1, i5 = i, i6 = −1, i7 = −i,

i8 = 1, . . . (so in+4 = in for each n),

you can rewrite this as

1 +
iϕ
1!
− ϕ2

2!
− iϕ3

3!
+

ϕ4

4!
+

iϕ5

5!
− ϕ6

6!
− iϕ7

7!
+ · · · = cos ϕ + i sin ϕ.

Splitting this equality into its real and imaginary parts, we obtain

1− ϕ2

2!
+

ϕ4

4!
− ϕ6

6!
+ · · · = cos ϕ and

ϕ

1!
− ϕ3

3!
+

ϕ5

5!
− ϕ7

7!
+ · · · = sin ϕ.

These are the classical Maclaurin power series for cos and sin.
Also, eiϕ = exp (iϕ) = cis ϕ yields eiπ = cis π = −1, the famous Euler identity.

https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Euler's_formula


Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-13 page 6

1.2. Application of diagonalization to ODEs

Let us talk a bit about an application of diagonalization of matrices.
This section follows [Strickland, §15].
Recall one of the simplest forms of an ODE (ordinary differential equation): We

are looking for a function x in a single variable t that satisfies x′ = ax, where a is a
real constant, and where x′ denotes the derivative of x in t. (People often write ẋ
for x′.)

The solutions of this ODE are all functions of the form ceat for constants c ∈ R.
Now, imagine we want to solve a system of two ODEs for two functions x and y.

For example, let us solve {
x′ = x + y
y′ = x + y

.

Rewrite this system as(
x′

y′

)
= A

(
x
y

)
, where A =

(
1 1
1 1

)
.

Note that the column vectors now have functions as entries (rather than numbers),
but this doesn’t change anything.

Now, let us diagonalize A:

A = UDU−1, U =

(
1 1
1 −1

)
, D = diag (2, 0) =

(
2 0
0 0

)
.

Note that

U−1 =


1
2

1
2

1
2
−1

2

 .

Thus, our system rewrites as(
x′

y′

)
= UDU−1

(
x
y

)
.

Rewrite this further by multiplying both sides by U−1:

U−1
(

x′

y′

)
= DU−1

(
x
y

)
.

Note that

U−1
(

x
y

)
=


1
2

1
2

1
2
−1

2

( x
y

)
=

 x + y
2

x− y
2


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and

U−1
(

x′

y′

)
=


1
2

1
2

1
2
−1

2

( x′

y′

)
=


x′ + y′

2
x′ − y′

2

 =


(

x + y
2

)′
(

x− y
2

)′
 .

Setting

z =
x + y

2
and w =

x− y
2

,

we can rewrite these as

U−1
(

x
y

)
=

(
z
w

)
and U−1

(
x′

y′

)
=

(
z′

w′

)
.

So our system becomes (
z′

w′

)
= D

(
z
w

)
.

But

D = diag (2, 0) , so D
(

z
w

)
=

(
2z
0w

)
.

So our system becomes (
z′

w′

)
=

(
2z
0w

)
.

This is tantamount to z′ = 2z and w′ = 0w. The first of these equations involves
z only, while the second involves w only. Solving them, we obtain z = ce2t and
w = d e0t︸︷︷︸

=1

= d (for two real constants c and d).

So we know that
x + y

2
= z = ce2t and

x− y
2

= w = d.

We can recover x and y from these by treating these equations as a system of linear
equations and solving them by Gaussian elimination. We get

x = ce2t + d; y = ce2t − d.

See [Strickland, §15] for further examples.
See also [Strickland, §16] for another application of diagonalization: the study of

Markov chains. See [Strickland, §17] for an application to ranking websites for web
search (Google’s PageRank algorithm).

2. More about determinants

Let us state (without proof) a few more facts about determinants.



Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-13 page 8

2.1. Determinants of block matrices

Theorem 2.1.1. Let
[

A B
0q×p D

]
be a block matrix, where A is a p × p-matrix

and D is a q× q-matrix. Then,

det
[

A B
0q×p D

]
= det A · det D.

Example 2.1.2. Let p = 2 and q = 2. Then, this theorem is saying

det


a b c d
a′ b′ c′ d′

0 0 c′′ d′′

0 0 c′′′ d′′′

 = det
(

a b
a′ b′

)
· det

(
c′′ d′′

c′′′ d′′′

)
.

Remark 2.1.3. It is not true that if A is a p× p-matrix and D is a q× q-matrix,
then

det
[

A B
C D

]
= det A · det D− det B · det C. (5)

Indeed, if p 6= q, then det B and det C make no sense to begin with (since B and
C are not square matrices). But even when p = q, you can find counterexamples
to (5).

However, here is something that is true:

Theorem 2.1.4. (The Schur complement theorem for determinants.)

Let
[

A B
C D

]
be a block matrix, where A is an invertible p× p-matrix and D

is a q× q-matrix. Then,

det
[

A B
C D

]
= det A · det

(
D− CA−1B

)
.

There is also a way to compute the inverse of a block matrix
[

A B
C D

]−1

using

its blocks. See Wikipedia: Schur complement.

2.2. An application of determinants

The following exercise is an example of how identifying a polynomial as a deter-
minant can sometimes help us understand this polynomial better.

https://en.wikipedia.org/wiki/Schur_complement
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Exercise 2.2.1. Factor the polynomial

ab2 + bc2 + ca2 − ac2 − ba2 − cb2

(in three indeterminates a, b, c).

Solution. The polynomial ab2 + bc2 + ca2− ac2− ba2− cb2 looks very much like the
determinant of a 3 × 3-matrix (it is a sum of 6 terms, 3 of which have negative
signs). A bit of experimentation confirms that it is indeed the determinant of a
very simple 3× 3-matrix:

ab2 + bc2 + ca2 − ac2 − ba2 − cb2 = det

 1 1 1
a b c
a2 b2 c2

 .

We shall now compute this determinant in a different way: Rather than expanding
it, we will use row operations to gradually simplify it:2

det

 1 1 1
a b c
a2 b2 c2


= det

 1 1 1

0 b− a c− a
a2 b2 c2


(here, we have subtracted a · row 1 from row 2)

= det

 1 1 1

0 b− a c− a
0 b2 − a2 c2 − a2


(

here, we have subtracted a2 · row 1 from row 3
)

= det

 1 1 1

0 b− a c− a
0 0 c2 − a2 − (b + a) (c− a)


(here, we have subtracted (b + a) · row 2 from row 3)

= 1 (b− a)
(

c2 − a2 − (b + a) (c− a)
)

︸ ︷︷ ︸
=c2−a2−cb−ca+ab+a2

=c2−cb−ca+ab=(c−a)(c−b)(
since the determinant of an upper-triangular matrix

is the product of its diagonal entries

)
2As we have already done many times, we draw boxes around pivot entries.
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= (b− a) (c− a) (c− b) .

Thus,

ab2 + bc2 + ca2 − ac2 − ba2 − cb2 = det

 1 1 1
a b c
a2 b2 c2

 = (b− a) (c− a) (c− b) .
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