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1. Eigenvalues and eigenvectors (“eigenstuff”)

1.1. Complex numbers
1.1.1. Some definitions done last time

Recall the definition of complex numbers:

Definition 1.1.1. (a) A complex number is defined as a pair (a,b) of two real
numbers.

(b) We let C be the set of all complex numbers.

(c) For each real number r, we denote the complex number (r,0) as r¢ (and
we will later equate it with 7).

(d) We let i be the complex number (0, 1).

(e) We define three binary operations +, — and - on C by setting

(a,b) + (¢, d) = (a+c,b+d), (1)
(a,b) — (c,d)=(a—c,b—4d), (2)
(a,b) - (c,d) = (ac — bd,ad + bc) . (3)

(Thus, the operations + and — are just entrywise addition and subtraction, just
as for row vectors. The operation - is more complicated, and we will soon see
why we have defined it in this particular way.)

(f) As usual, we write aff for « - B if & and B are complex numbers.

As usual, we write —a for Oc — « if & is a complex number.

We equated each real number r with the complex number r¢ = (7,0).

The complex number i = (0, 1) satisfies i? = —1.

We represent complex numbers on the Argand diagram: To each complex num-
ber a + bi = (a,b) corresponds the point (a,b).
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Definition 1.1.2. Let z be a complex number. Write z in the form z = (a,b) =
a + bi for two real numbers a, b.

Let P, be the point corresponding to the complex number z on the Argand
diagram. (As you remember, this is the point with coordinates (a,b).)

(a) The real numbers a and b are called the real part and the imaginary part
of z. They are the Cartesian coordinates of the point P;.

(b) The absolute value of z is defined to be the real number /a2 + b2. This is
the distance between the origin and P,. This is the first (radial) polar coordinate
of P;. It is denoted by |z|.

(c) Assume that z # 0. Then, consider the angle ¢ (with —7 < ¢ < ) at
which the ray from 0 to P, stands to the ray from 0 to 1 (i.e., the positive half-
axis). This is the second (angular) polar coordinate of P,. It is denoted by argz,
and is called the argument of z.

1.1.2. More about angles

Remark 1.1.3. Let z = a + bi (with a,b € R and z # 0) be a complex number.

How to compute argz through a and b ?

Let P; be the point (a,b) as in the previous definition. Recall that argz is the
angle at which the ray from 0 to P, stands to the ray from 0 to 1. The slope of
the former ray is b/a (since P; = (a,b)). Thus, the classical relation between the
slope of a line and its angle against the x-axis shows that

tan (argz) = -

: b . :
Thus, it makes sense to expect argz = arctan —. But this is not quite the case,
a

. b . .
since — only determines the line from 0 to P,, whereas argz depends on the ray

from 0 to P;; thus, argz depends on “what side of the origin” z lies on. So the
correct way to determine argz is the following:

b
e We have tan(argz) = —. (If a = 0, then this must be interpreted as
& P p

b _
tan (argz) = 0= which means that argz is either % or Tn.)

e We have argz > 0 if and only if b > 0.

If you know the “two-variable arctangent function” atan2, then you can rewrite
this as follows:

argz = atan2 (b, a).



https://en.wikipedia.org/wiki/Atan2
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Definition 1.1.4. For any angle ¢, we define a complex number cis ¢ by
Cis ¢ = cos ¢ +isinp = (cos @, sin@).

Geometrically (i.e., on the Argand diagram), the point Ps, corresponding to
this complex number cis ¢ is the point obtained by rotating P; = (1,0) through
the angle'lp around the origin. (Indeed, the latter point clearly has abscissa cos ¢
and ordinate sin ¢, because of how cosine and sine are defined; but so does the
point Pesy.) Thus, in particular, the point P lies on the unit circle (i.e., the
circle with center at the origin and radius 1).

Note that every angle ¢ satisfies cis (¢ +271) = cis ¢ (since cos (¢ + 277) = cos ¢
and sin (¢ + 271) = sin ¢). More general, two angles « and p satisfy cisa = cis 8 if
and only if & — B is a multiple of 27t. This is often restated as follows: The complex
number cis ¢ uniquely determines the angle ¢ up to a multiple of 2.

Proposition 1.1.5. For any two angles a« and 8, we have

cis (o + B) = cisa - cis B.

Proof. This follows by comparing

cis(a+p)= cos(a+pB) +i sin(a+p)
——— ——
=cos « cos B—sin a sin B =sin a cos B-+cos a sin

= cosw cos B — sinasin B + i (sina cos B + cos a sin B)
with

cisaw - cisf
=~ S~~~
=cosatisine  _ o B-+isin B
= (cosa +isinw) - (cos B+ isinfB)
— cosacos B+ cosa-isinB +isinacos B+ _i* sinasinp
=-1
= cosacos B —sinasin S+ i (sinacos f + cosasin f) .

Note that Proposition “packages” both formulas

cos (« + B) = cosacos f — sinasin B and
sin (¢ + B) = sina cos  + cos a sin B.

! Angles are always measured counterclockwise in mathematics. For example, the point obtained
by rotating P; through the angle 71/2 = 90° around the origin is the point P; = (0, 1).
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Proposition 1.1.6. Let z be a nonzero complex number. Then,

z = |z| - cis (arg z) .

Proof sketch. Geometrically, this can be seen as follows: The complex numbers
cis (argz) and z have the same argument (namely, argz); thus, the points corre-
sponding to them lie on the same ray from the origin. Hence, z = r - cis (arg z) for
some nonnegative real r. To find this r, we just compare |z| with |cis (argz)| = 1.
Thus, we get r = |z|. O

Corollary 1.1.7. When we multiply two complex numbers, their absolute values
get multiplied, while their arguments get added (modulo 27).

Proof sketch. We are claiming that any complex numbers z and w satisfy
|zw| = |z| - |w| and arg (zw) = argz + arg w mod 27,

where “a = fmod 27t” means “a — B is an integer multiple of 27r”.

How do we prove this?

To prove |zw| = |z| - |w]|, it suffices to recall the definition of absolute value and
compute both sides. (This is Exercise 10 on MT2 preparation.)

It remains to prove that

arg (zw) = arg z 4+ arg w mod 2.
In other words, it remains to prove that
cis (arg (zw)) = cis (argz + arg (w)),

because cis ¢ uniquely determines ¢ up to a multiple of 27.
Proposition yields z = |z| - cis (arg z), thus

cis (argz) = =k
Similarly,
cis (argw) = % and cis (arg (zw)) = %
Hence,
cis (arg (zw)) = EZ' = |Z|zu|7w| (since |zw| = |z| - |w])
= \é_/t : % = cis (argz) - cis (arg w)

=cis(argz) =cis(argw)

= cis (argz + argw)

(since Proposition yields cis (argz + argw) = cis (argz) - cis (argw)). O



http://www.cip.ifi.lmu.de/~grinberg/t/19fla/mt2t.pdf
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Thus, for a fixed complex number z, the map

C —>C,
w — ZW

is a rotation (around the origin, with angle argz) composed with a homothety
(around the origin, with scaling factor |z|).

Remark 1.1.8. Here is a digression for those who know a bit of complex analysis
(or at least the complex exponential function).

The complex exponential function exp : C — C is defined by

t 2 P
expt=1+ﬂ+5+§+a+---. 4)

The infinite sum on the right hand side of this equation converges (once you
have appropriately defined convergence of sums of complex numbers), so this
function exp is well-defined. If t is a real number, then exp t = ¢! (where e ~ 2.
718 3 is the famous “number e”); thus, it is common to write ¢f for expt even
when t is a complex number (although there is no general well-defined concept
of ab for complex numbers 4 and b).

Now, Euler’s formula says that cis ¢ = exp (ip) for any angle ¢. Restated in
explicit language, this is saying that if you plug i¢ for t in the power series (@),
then you get a power series that converges to cis ¢. In other words,

. . \2 . \3 . \4
ip (i9)”  (i9)”  (ip) , »
1+f+ o + 3l + 11 +---=cis¢ = cos@ +isin@.
Since the powers of i are
0=1, il =14 2=_1, =i,
i = 1, P = 1, i® = -1, i = —1,
=1, (so i"t* = i" for each n),

you can rewrite this as

1+i_¢_£2_£+£4+£ (P ﬂ
1! 2! 3! 4! 5! 6! 7!

Splitting this equality into its real and imaginary parts, we obtain

6

+ .-+ =cos g +ising.

2 4 6

@ @ @ _
1—E+I—a+'“—COS§0 and
9 ¢ 9 ¢

ﬁ_§+5! W+~~~:singo.

These are the classical Maclaurin power series for cos and sin.
Also, ¢'? = exp (i) = cis ¢ yields '™ = cis T = —1, the famous Euler identity.



https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Euler's_formula
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1.2. Application of diagonalization to ODEs

Let us talk a bit about an application of diagonalization of matrices.

This section follows [Strickland, §15].

Recall one of the simplest forms of an ODE (ordinary differential equation): We
are looking for a function x in a single variable ¢ that satisfies x’ = ax, where a is a
real constant, and where x’ denotes the derivative of x in t. (People often write %
for x’)

The solutions of this ODE are all functions of the form ce? for constants ¢ € R.

Now, imagine we want to solve a system of two ODEs for two functions x and y.
For example, let us solve

{ X' =x+y
y=x+y

Rewrite this system as

x! x 11
<y'>:A<y>' whereA=<11).

Note that the column vectors now have functions as entries (rather than numbers),
but this doesn’t change anything.
Now, let us diagonalize A:

B i (11 L (20
A=UDU ", U—<1 1) D = diag(2,0) = 00 )
Note that
1 1
-1 _ 2 2
iR
2 2

Thus, our system rewrites as

(1)-umn ()

Rewrite this further by multiplying both sides by U~ !:

()05

Note that

a
L
VR
< R
~_
I
NI RN =
N =
—_
VRS
< R
~~
I
=
| N
<
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and
11 X' +y <x+y)’
()1 3]0 2
y/ 1_1 y/ x/_y/ x_yl
2 2 2 2
Setting
_ Xty _ XYy
z = > and w = 5

we can rewrite these as

(5)-(3) e ()-(2)

So our system becomes

But

. z\ _ [ 2z
D = diag(2,0), SO D(w)_<0w)'

So our system becomes
7\ ([ 2z
w ) \ 0w )’

This is tantamount to z’ = 2z and w’ = Ow. The first of these equations involves
z only, while the second involves w only. Solving them, we obtain z = ce* and
w=d_e" =d (for two real constants ¢ and d).
1
So we know that

x+y=z=ce2t and

2 2

We can recover x and y from these by treating these equations as a system of linear
equations and solving them by Gaussian elimination. We get

x =ce* +d; y=ce* —d.

See [Strickland)| §15] for further examples.

See also [Strickland, §16] for another application of diagonalization: the study of
Markov chains. See [Strickland, §17] for an application to ranking websites for web
search (Google’s PageRank algorithm).

2. More about determinants

Let us state (without proof) a few more facts about determinants.
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2.1. Determinants of block matrices

A B
and D is a g X g-matrix. Then,

Theorem 2.1.1. Let { ] be a block matrix, where A is a p X p-matrix

A B

det {
Ogxp D

} = det A -detD.

Example 2.1.2. Let p = 2 and g = 2. Then, this theorem is saying

a b ¢ d

Jd v d i b AR
det 00 ¢ 4" = det( J v ) 'det( Mg > .

0 0 " 4"

Remark 2.1.3. It is not true that if A is a p X p-matrix and D is a q X g-matrix,
then

@{AB}QMA®W—MB®W. (5)

C D

Indeed, if p # g, then det B and det C make no sense to begin with (since B and
C are not square matrices). But even when p = g, you can find counterexamples
to (O).

However, here is something that is true:

Theorem 2.1.4. (The Schur complement theorem for determinants.)

A
Let[C D

is a g X g-matrix. Then,

] be a block matrix, where A is an invertible p x p-matrix and D

det[C D

A B ] = det A - det <D—CA_1B>.

-1
There is also a way to compute the inverse of a block matrix { él g 1 using

its blocks. See Wikipedia: Schur complement.

2.2. An application of determinants

The following exercise is an example of how identifying a polynomial as a deter-
minant can sometimes help us understand this polynomial better.



https://en.wikipedia.org/wiki/Schur_complement
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Exercise 2.2.1. Factor the polynomial
ab® + bc* + ca® — ac® — ba* — cb?

(in three indeterminates a, b, c).

Solution. The polynomial ab? + bc? + ca? — ac? — ba® — cb? looks very much like the

determinant of a 3 x 3-matrix (it is a sum of 6 terms, 3 of which have negative
signs). A bit of experimentation confirms that it is indeed the determinant of a
very simple 3 x 3-matrix:

1 1 1
ab®> + b +ca®> —ac*> —ba* —cb>=det| a b ¢
a2 b? 2

We shall now compute this determinant in a different way: Rather than expanding
it, we will use row operations to gradually simplify itﬂ

1] 1 1

det a b ¢

a? bv? 2

1 1
=det| 0 c—a
a? b? c?
(here, we have subtracted a - row 1 from row 2)
1 1
=det| 0 c—a
0 bv2—a%2 2—4a?

(here, we have subtracted 4 - row 1 from row 3>

1 1
~det | 0

0 0 c2—a®>—(b+a)(c—a)
(here, we have subtracted (b4 a) - row 2 from row 3)

=1(b—a) <cz—a2—(b—|—a)(c—a)>

(. J

=c2—a?—cb—ca+ab+a?
=c?>—cb—ca+ab=(c—a)(c—b)

since the determinant of an upper-triangular matrix
is the product of its diagonal entries

2As we have already done many times, we draw boxes around pivot entries.
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=(b—a)(c—a)(c—Db).
Thus,
1

1 1
ab2+bc2+ca2ac2ba2cb2det< b ¢ ) =(b—a)(c—a)(c—0).

N
oy
N

]
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