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1. Eigenvalues and eigenvectors (“eigenstuff”)

1.1. Definition and examples (recall)

Recall some material from last time and from the lecture before:

Definition 1.1.1. Let A be an n× n-matrix. Let λ be a scalar (i.e., a real number).
(a) A λ-eigenvector of A means a nonzero vector v ∈ Rn such that Av = λv.
(b) We say that λ is an eigenvalue of A if and only if there exists a λ-

eigenvector of A.

Definition 1.1.2. Let A be an n× n-matrix. We define

χA (t) = det (A− tIn) .

This is a polynomial in t, and is called the characteristic polynomial of A.

Proposition 1.1.3. Let A be an n× n-matrix. Then, the eigenvalues of A are the
roots of the characteristic polynomial χA (t).

Method for finding eigenvalues and eigenvectors of a matrix:
Given an n× n-matrix A, find all eigenvalues and eigenvectors of A as follows:

• Calculate the characteristic polynomial χA (t) = det (A− tIn) of A.

• Find all roots λ1, λ2, . . . , λk of χA (t). These are the eigenvalues of A.

• For each eigenvalue λi, compute the nonzero solutions to (A− λi In) v = 0
(for example, using Gaussian elimination). These are the λi-eigenvectors of
A.
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Proposition 1.1.4. Let A be a n× n-matrix. Let λ1, λ2, . . . , λk be k distinct eigen-
values of A. For each i ∈ {1, 2, . . . , k}, let vi,1, vi,2, . . . , vi,hi be some linearly inde-
pendent λi-eigenvectors of A. Then, the list

v1,1, v1,2, . . . , v1,h1︸ ︷︷ ︸
eigenvectors for λ1

,

v2,1, v2,2, . . . , v2,h2︸ ︷︷ ︸
eigenvectors for λ2

,

. . . ,
vk,1, vk,2, . . . , vk,hk︸ ︷︷ ︸

eigenvectors for λk

(obtained by throwing all our eigenvectors for different eigenvalues together) is
a list of linearly independent vectors.

Proposition 1.1.5. Let A be an n × n-matrix that has n distinct eigenvalues
λ1, λ2, . . . , λn. For each i ∈ {1, 2, . . . , n}, let vi be a λi-eigenvector of A. Then,
v1, v2, . . . , vn form a basis of Rn.

1.2. Diagonalization

1.2.1. Motivation (recall)

The Fibonacci numbers are a sequence ( f0, f1, f2, . . .) of nonnegative integers. They
are defined recursively by

f0 = 0, f1 = 1, fn = fn−1 + fn−2 for all n ≥ 2.

We have showed that(
fm

fm+1

)
= Am

(
f0
f1

)
for each m ≥ 0, (1)

where A =

(
0 1
1 1

)
. Thus, in order to compute fm, it suffices to compute Am.

Proposition 1.2.1. Let U be an invertible n× n-matrix, and let D be any n× n-
matrix. Then, (

UDU−1
)m

= UDmU−1.

Thus, in particular, when D = diag (d1, d2, . . . , dn), then Dm =
diag

(
dm

1 , dm
2 , . . . , dm

n
)
, so this becomes(
UDU−1

)m
= U diag (dm

1 , dm
2 , . . . , dm

n )U−1. (2)
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1.2.2. The method

Recall the following definition:

Definition 1.2.2. Let A be an n × n-matrix. A diagonalization of A means a
pair of an invertible n × n-matrix U and a diagonal n × n-matrix D such that
A = UDU−1.

We stated (but did not prove) the following proposition:

Proposition 1.2.3. Let A be an n× n-matrix.
(a) Suppose that u1, u2, . . . , un is a basis of Rn that consists of eigenvectors

of A. Let λ1, λ2, . . . , λn be the corresponding eigenvalues (so each ui is a λi-
eigenvector). Note that some λi may be equal.

Set U = [u1 | u2 | · · · | un] and D = diag (λ1, λ2, . . . , λn). Then, U, D is a
diagonalization of A (that is, U is invertible, D is diagonal, and A = UDU−1).

(b) Conversely, each diagonalization of A has this form. (In other words, if
U, D is a diagonalization of A, then the columns of U form a basis of Rn that
consists of eigenvectors of A, and the diagonal entries of D are the corresponding
eigenvalues.)

We still need to prove this. First, let us apply this to the Fibonacci sequence:

Example 1.2.4. Let A =

(
0 1
1 1

)
be the matrix that occurred in the computation

of the Fibonacci numbers. We want to obtain a diagonalization of A (because this
will help us compute Am and thus fm for all m ≥ 0). Following Proposition 1.2.3
(a), we try to achieve this by finding a basis of R2 consisting of eigenvectors of
A. So let us find eigenvectors of A.

The characteristic polynomial of A is χA (t) = det (A− tIn) =

det
(

0− t 1
1 1− t

)
= t2 − t − 1. So the eigenvalues of A are the roots of

t2 − t− 1, which are

1 +
√

5
2

≈ 1. 618 and
1−
√

5
2

≈ −0.618 .

The first of these two roots is called the golden ratio. It is often denoted φ; it has
the property that φ2 = φ + 1, that is, φ− 1 = 1/φ. Let me denote the second root
by ψ.

So

φ =
1 +
√

5
2

≈ 1. 618 and ψ =
1−
√

5
2

≈ −0.618

are the two eigenvalues of A. Now, let’s look for eigenvectors:



Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-11 page 4

• The φ-eigenvectors of A are the nonzero
(

x
y

)
∈ R2 such that A

(
x
y

)
=

φ

(
x
y

)
. They are the nonzero multiples of

(
−ψ
1

)
. (You can find this by

Gaussian elimination.)

• The ψ-eigenvectors of A are the nonzero
(

x
y

)
∈ R2 such that A

(
x
y

)
=

ψ

(
x
y

)
. They are the nonzero multiples of

(
−φ
1

)
. (You can find this by

Gaussian elimination.)

So we have found two linearly independent eigenvectors of A, namely(
−ψ
1

)
and

(
−φ
1

)
. Thus, they form a basis of R2 consisting of eigenvec-

tors of A.
Now, Proposition 1.2.3 (a) tells us that we can find a diagonalization (U, D) of

A by setting

U = [u1 | u2 | · · · | un] and D = diag (λ1, λ2, . . . , λn) ,

where the u1, u2, . . . , un are the eigenvectors of A (so u1 =

(
−ψ
1

)
and u2 =(

−φ
1

)
) and where the λ1, λ2, . . . , λn are the corresponding eigenvalues (so

λ1 = φ and λ2 = ψ). Thus,

U =

(
−ψ −φ
1 1

)
and D = diag (φ, ψ) =

(
φ 0
0 ψ

)
.

(You can easily double-check that these indeed satisfy A = UDU−1.)
Now, let m ≥ 0. Then, (2) (applied to n = 2, d1 = φ and d2 = ψ) yields(

UDU−1
)m

= U diag (φm, ψm)U−1 (since D = diag (φ, ψ)) .

In view of UDU−1 = A, this rewrites as

Am = U diag (φm, ψm)U−1 =

(
−ψ −φ
1 1

)
diag (φm, ψm)

(
−ψ −φ
1 1

)−1

(
since U =

(
−ψ −φ
1 1

)
and n = 2 and d1 = φ and d2 = ψ

)
=

(
−ψ −φ
1 1

)(
φm 0
0 ψm

) (
−ψ −φ
1 1

)−1

︸ ︷︷ ︸
=

1
(−ψ)− (−φ)

(
1 φ
−1 −ψ

)

(by the formula

(
a b
c d

)1

=
1

ad− bc

(
d −b
−c a

)
for the inverse of a 2×2-matrix)
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=
1

(−ψ)− (−φ)︸ ︷︷ ︸
=

1√
5

(since a quick computation
shows that (−ψ)−(−φ)=

√
5)

(
−ψ −φ
1 1

)(
φm 0
0 ψm

)(
1 φ
−1 −ψ

)

=
1√
5

(
−ψ −φ
1 1

)(
φm 0
0 ψm

)(
1 φ
−1 −ψ

)
.

We could multiply this out. But we want fm, not Am. There is a faster way to get
fm: From (1), we obtain(

fm
fm+1

)
= Am︸︷︷︸

=
1√
5

(
−ψ −φ
1 1

) φm 0
0 ψm

( 1 φ
−1 −ψ

)
(

f0
f1

)
︸ ︷︷ ︸
=

(
0
1

)
(since f0=0 and f1=1)

=
1√
5

(
−ψ −φ
1 1

)(
φm 0
0 ψm

)(
1 φ
−1 −ψ

)(
0
1

)
︸ ︷︷ ︸

=

(
φ
−ψ

)

=
1√
5

(
−ψ −φ
1 1

)(
φm 0
0 ψm

)(
φ
−ψ

)
︸ ︷︷ ︸

=

 φmφ

ψm (−ψ)


=

1√
5

(
−ψ −φ
1 1

)(
φmφ

ψm (−ψ)

)
︸ ︷︷ ︸

=

 (−ψ) φmφ + (−φ)ψm (−ψ)
∗


(where the asterisk “∗” stands for

an entry that we are not interested in)

=
1√
5

(
(−ψ) φmφ + (−φ)ψm (−ψ)

∗

)

=

 1√
5
((−ψ) φmφ + (−φ)ψm (−ψ))

∗

 .

Thus, by comparing the (1, 1)-entries on both sides, we obtain

fm =
1√
5
((−ψ) φmφ + (−φ)ψm (−ψ)) =

−1√
5

 φψ︸︷︷︸
=−1

φm − φψ︸︷︷︸
=−1

ψm


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=
1√
5
(φm − ψm) =

1√
5

((
1 +
√

5
2

)m

−
(

1−
√

5
2

)m)
.

This is an explicit formula for the Fibonacci number fm. It is known as the
Binet formula. It shows that fm grows exponentially with m, with growth rate
φ ≈ 1.618 . . ..

In order to prove Proposition 1.2.3, we will need a lemma that follows quickly
from the definition of matrix multiplication:

Lemma 1.2.5. Let n ∈ N. Let u1, u2, . . . , un be n vectors in Rn. Let U =
[u1 | u2 | · · · | un] (this is an n× n-matrix).

(a) If A is any n× n-matrix, then

AU = [Au1 | Au2 | · · · | Aun] .

(b) If D = diag (λ1, λ2, . . . , λn) is a diagonal n× n-matrix, then

UD = [λ1u1 | λ2u2 | · · · | λnun] .

Proof of Lemma 1.2.5. (a) Recall that any two n × n-matrices A and B and any j ∈
{1, 2, . . . , n} satisfy

colj (AB) = A · colj B. (3)

(This is a particular case of Proposition 2.6.2 (d) in the notes from 2019-09-23.)
Now, let A be any n× n-matrix. Then, for each j ∈ {1, 2, . . . , n}, we have

colj (AU) = A · colj U︸ ︷︷ ︸
=uj

(since U=[u1|u2|···|un])

(by (3), applied to B = U)

= Auj.

Thus, the n columns of the matrix AU are Au1, Au2, . . . , Aun. In other words,
AU = [Au1 | Au2 | · · · | Aun]. This proves Lemma 1.2.5 (a).

(b) Let D = diag (λ1, λ2, . . . , λn) be a diagonal n× n-matrix.
We already know what happens to a matrix when we multiply it on the right by a

diagonal matrix: Namely, in the solution of Exercise 1 on homework set #2 (applied
to A = U and di = λi), we have observed that the matrix U · diag (λ1, λ2, . . . , λn)
is obtained from U by scaling the j-th column by λj for each j ∈ {1, 2, . . . , n}.
Thus, the columns of the matrix U · diag (λ1, λ2, . . . , λn) are the columns of U,
scaled by λ1, λ2, . . . , λn, respectively. In other words, the columns of the ma-
trix U · diag (λ1, λ2, . . . , λn) are λ1u1, λ2u2, . . . , λnun (since the columns of U are
u1, u2, . . . , un). In other words,

U · diag (λ1, λ2, . . . , λn) = [λ1u1 | λ2u2 | · · · | λnun] .

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-09-23.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw2s.pdf
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In view of D = diag (λ1, λ2, . . . , λn), this rewrites as UD = [λ1u1 | λ2u2 | · · · | λnun].
This proves Lemma 1.2.5 (b).

Let us now prove Proposition 1.2.3:

Proof of Proposition 1.2.3. (a) The Inverse Matrix Theorem (more precisely, the im-
plication (d) =⇒ (k) from Theorem 1.2.1 in the notes from 2019-10-16) shows that
the matrix U is invertible (since its n columns u1, u2, . . . , un form a basis of Rn). The
matrix D is diagonal. It remains to prove that A = UDU−1. Equivalently, we need
to prove that AU = UD.

Lemma 1.2.5 (a) yields

AU = [Au1 | Au2 | · · · | Aun] = [λ1u1 | λ2u2 | · · · | λnun]

(since Aui = λiui for each i (because each ui is a λi-eigenvector)) .

On the other hand, Lemma 1.2.5 (b) yields

UD = [λ1u1 | λ2u2 | · · · | λnun] .

So we got the same expression for AU as for UD. Thus, AU = UD. Multiplying
both sides of this equality by U−1 on the right, we obtain A = UDU−1. This proves
Proposition 1.2.3 (a).

(b) The same argument, done in reverse, proves part (b). (See [Strickland, proof
of Proposition 14.4] for details.)

Some more examples of diagonalization of matrices:

Example 1.2.6. Let A =

 1 1 1
0 2 2
0 0 3

. In Example 1.3.4 in the notes from 2019-

11-06, we showed that the eigenvectors 1
0
0

 ,

 1
1
0

 ,

 3
4
2


of A (for eigenvalues 1, 2, 3) form a basis of R3. We can now use this basis to
diagonalize A: Namely, Proposition 1.2.3 (a) yields that

U =

 1 1 3
0 1 4
0 0 2

 and D = diag (1, 2, 3) =

 1 0 0
0 2 0
0 0 3


form a diagonalization of A.

Thus, (2) yields that

Am = U diag (1m, 2m, 3m)U−1 for each m ≥ 0.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
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Example 1.2.7. Let A =

 1 1 1
0 1 1
0 0 1

. Does this A have a diagonalization?

In Example 1.3.5 in the notes from 2019-11-06, we found that there is no basis
of R3 consisting of eigenvectors of A. Hence, Proposition 1.2.3 (b) shows that
there is no diagonalization of A.

So some matrices have a diagonalization (and usually many), while others don’t.

In the case of the matrix A =

(
0 1
1 1

)
(which was used to compute the Fi-

bonacci numbers), we were in luck, since our matrix A had a diagonalization.
What would have happened if it didn’t? Let’s see:

Example 1.2.8. Define a sequence (g0, g1, g2, . . .) of integers by

g0 = 0, g1 = 1, gn = 2gn−1 − gn−2.

This time, we get
(

gm
gm+1

)
= A

(
g0
g1

)
for A =

(
0 1
−1 2

)
.

The matrix A =

(
0 1
−1 2

)
has characteristic polynomial t2 − 2t + 1 =

(t− 1)2. Thus, its only eigenvalue is 1. The corresponding eigenvectors are

nonzero multiples of
(

1
1

)
. Thus, there is no basis of R2 consisting of eigenvec-

tors of A. Hence, there is no diagonalization of A. So we cannot compute gm by
the same method that we used to find fm.

However, there is a very simple formula for gm: namely,

gm = m for each m ≥ 0.

You can prove this by induction on m.

There is a more general concept than diagonalization – the so-called Jordan nor-
mal form – that exists for any n× n-matrix. (See [Hefferon, §Five.IV] or a typical
course on Linear Algebra 2 or Abstract Algebra 1 or 2.)

1.3. Complex numbers

1.3.1. Motivation

Now, let us return to an example of a matrix that we have not managed to find any
eigenvectors of:

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-06.pdf
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Example 1.3.1. Let A =

(
0 −1
1 0

)
. The eigenvalues of A in R don’t exist at

all (as we have seen in Example 2.1.13 in classwork from 2019-11-04), since the
characteristic polynomial χA (t) = t2 + 1 has no real roots (its plot stays strictly
above the x-axis). But let us pretend that there is a new “mythical number”
i, which is a square root of −1, in the sense that i2 = −1. Then, of course,
(−i)2 = −1 as well, since (−i)2 = i2. (Here we are assuming that this “mythical
number” i and its whole retinue of numbers derived from it satisfy the same
rules as the familiar real numbers, such as the identity (−x)2 = x2.) Thus, −i
and i are roots of the polynomial t2 + 1. Since a degree-2 polynomial should
have only 2 roots (at least if these “mythical numbers” behave as nicely as our
familiar real numbers), we thus have found all the roots of this polynomial.

Thus, the eigenvalues of A are the “mythical numbers” i and −i. We can find
the corresponding eigenvectors using Gaussian elimination:

• The i-eigenvectors are the nonzero scalar multiples of
(

i
1

)
.

• The (−i)-eigenvectors are the nonzero scalar multiples of
(
−i
1

)
.

Of course, these vectors
(

i
1

)
,
(
−i
1

)
don’t belong to R2, and thus cannot

form a basis of R2. But if we redo all the linear algebra that we did using our
new “mythical numbers” instead of real numbers as scalars, then they form a
basis of the analogue of R2.

This should give a diagonalization A = UDU−1 with

U =

(
i −i
1 1

)
and D = diag (i,−i) =

(
i 0
0 −i

)
.

This looks neat, but you should have a lingering doubt: Why can we just intro-
duce a new “number” i satisfying i2 = −1 ?

After all, this isn’t much different from introducing a new “number” ∞ satisfying
0 · ∞ = 1. But ∞ quickly leads to contradictions, at least if you pretend that it
behaves like a normal number (for example, 0 · (0 ·∞)︸ ︷︷ ︸

=1

= 0 · 1 = 0, but (0 · 0)︸ ︷︷ ︸
=0

·∞ =

0 ·∞ = 1, so the associative law no longer holds). Why does our mythical i not
lead to contradictions?

1.3.2. Informal introduction

Before we address this existential doubt, let us experiment a bit with our new toy,
leaving aside the question whether it has a rigorous meaning.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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We have introduced a new “number” i that satisfies i2 = −1. We call it the
imaginary unit1. Using familiar operations such as addition, subtraction and mul-
tiplication, we can combine this new “number” i with our familiar real numbers,
and obtain new “numbers” – which are called complex numbers (a formal def-
inition will be given below). For example, 2 + 3i − 7i3 is a complex number; so

is i5 − πi +
1
3

. Let us calculate a bit with complex numbers (assuming that they
satisfy the same laws as real numbers, such as associativity, commutativity and
distributivity):

(1 + i) (1− i) = 1 + i− i + i (−i) = 1 + i (−i) = 1− i2︸︷︷︸
=−1

= 1− (−1) = 2;

i4 =

 i2︸︷︷︸
=−1

2

= (−1)2 = 1;

i5 = i4︸︷︷︸
=1

i = i;

(−i)2 = (−i) (−i) = − (−ii) = ii = i2 = −1;

(1 + i) + (1− i) = 2;

1
1 + i

=
1− i

(1 + i) (1− i)
=

1− i
2

=
1
2
− 1

2
i.

The number i is often called
√
−1 because its square is −1; but it is only one of two

complex numbers whose square is −1 (namely, i and −i).
The above computations suggest that every complex number has the form a + bi

for some real numbers a and b. Let us see why: If we have two numbers of the
form a + bi, then their sum, difference, product and quotient is also of this form.
Namely,

(a + bi) + (c + di) = (a + c) + (b + d) i; (4)
(a + bi)− (c + di) = (a− c) + (b− d) i; (5)

(a + bi) (c + di) = ac + bic + adi + bidi

= ac + bci + adi + bd i2︸︷︷︸
=−1

= ac + bci + adi− bd
= (ac− bd) + (ad + bc) i; (6)

a + bi
c + di

=
(a + bi) (c− di)
(c + di) (c− di)

=
(ac + bd) + (bc− ad) i

c2 + d2 ,

1The name is probably referencing the fact that we just invented it. Arguably, all numbers are just
as imaginary to some extent...
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where the last equation requires (c, d) 6= (0, 0).
These formulas show that if we start with real numbers and the new “number”

i, then the standard operations (+, −, · and /) do not take us out of the set of
numbers of the form a + bi. Thus, all complex numbers have the form a + bi for
a, b ∈ R.

We have assumed that all the standard rules for real numbers (associativity, com-
mutativity, distributivity) still hold for these new numbers. What about inequali-
ties?

Here we are in for a disappointment. If inequalities (≥, >, ≤, <) would still make
sense for complex numbers (and behave anything like they do for real numbers),
then we would get the following contradiction:

• If i ≥ 0, then i2 ≥ 0, contradicting i2 = −1.

• If i < 0, then −i > 0 and thus i2 = (−i)2 > 0 (since −i > 0), contradicting
i2 = −1.

So i is neither ≥ 0 nor < 0. Thus, inequalities do not work for our new numbers.
So how can we be sure that the other things (addition, subtraction, multiplica-

tion) work and don’t lead to contradictions?

1.3.3. Rigorous definition of complex numbers

The trick is to define complex numbers rigorously (using existing objects such as
real numbers), instead of obtaining them by introducing a mythical “number” i
whose existence has to be taken for granted. How can we do this? We forget about
the mythical i, and instead define complex numbers as pairs of real numbers. Don’t
worry – we will gain our i back in a moment, and it will be a rigorously defined i
rather than some mythical object of unclear existence status.

Here is the promised rigorous definition of complex numbers and the most basic
operations (addition, subtraction and multiplication2) on them:3

Definition 1.3.2. (a) A complex number is defined as a pair (a, b) of two real
numbers.

(b) We let C be the set of all complex numbers.
(c) For each real number r, we denote the complex number (r, 0) as rC (and

we will later equate it with r).
(d) We let i be the complex number (0, 1).
(e) We define three binary operations +, − and · on C by setting

(a, b) + (c, d) = (a + c, b + d) , (7)
(a, b)− (c, d) = (a− c, b− d) , (8)

2We will define division and exponentiation (with integer exponents) later.
3See [19s, Section 4.1] for more details on this.
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(a, b) · (c, d) = (ac− bd, ad + bc) . (9)

(Thus, the operations + and − are just entrywise addition and subtraction, just
as for row vectors. The operation · is more complicated, and we will soon see
why we have defined it in this particular way.)

(f) As usual, we write αβ for α · β if α and β are complex numbers.
As usual, we write −α for 0C − α if α is a complex number.

For example, this definition yields

i︸︷︷︸
=(0,1)

i︸︷︷︸
=(0,1)

= (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) = (−1)C .

So we get i2 = −1, at least if we abbreviate ii as i2.
If you compare this rigorous definition of complex numbers with the informal

introduction we gave before it, you will now find that they lead to the same notion
of complex numbers: The pair (a, b) from the rigorous definition corresponds to
the a + bi from the informal introduction. The operations +, − and · on the former
pairs correspond precisely to the operations +, − and · on the latter “numbers”,
because the equalities (7), (8) and (9) are precisely the equalities (4), (5) and (6)
rewritten in terms of the rigorous definition. (This explains why we have chosen
these exact definitions of +, − and · and no others – we chose them in order to
recover the equalities (4), (5) and (6).)

So we know what complex numbers are and how to add, subtract and multiply
them. Do these operations behave well? Yes, as the following theorem shows:

Theorem 1.3.3. All standard rules for addition, subtraction and multiplication
(e.g., commutativity, associativity, distributivity) hold for complex numbers.

Proof. This is all straightforward. See [19s, Theorem 4.1.2].

The complex numbers include copies of our old real numbers, because of the
following theorem:

Theorem 1.3.4. The complex numbers rC (for r ∈ R) behave exactly as the real
numbers r: For example,

(r + s)C = rC + sC;
(r− s)C = rC − sC;

(rs)C = rCsC

for any two real numbers r and s.
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Thus, we can identify each real number r with the corresponding complex num-
ber rC = (r, 0). Let us do so; thus, the complex numbers become an extension of
the real numbers. 4

Now that we have agreed to identify each r ∈ R with rC, we have

(a, b) = a + bi for every (a, b) ∈ C.

This is because

a︸︷︷︸
=aC

=(a,0)

+ b︸︷︷︸
=bC

=(b,0)

i︸︷︷︸
=(0,1)

= (a, 0) + (b, 0) (0, 1) = (a, 0) + (b · 0− 0 · 1, b · 1 + 0 · 0)
= (a, 0) + (0, b) = (a + 0, 0 + b) = (a, b) .

We can define quotients of complex numbers (i.e., we can divide a complex
number by any other, as long as the latter is nonzero): Given two complex numbers
α and β 6= 0, we can define

α

β
to be the unique complex number γ such that α = βγ.

This exists, because

a + bi
c + di

=
(a + bi) (c− di)
(c + di) (c− di)

=
(ac + bd) + (bc− ad) i

c2 + d2 .

We can define integer powers of complex numbers: If n ∈ Z and α ∈ C, then

αn = αα · · · α︸ ︷︷ ︸
n times

if n > 0;

α0 = 1;

αn =

(
1
α

)−n
if n < 0.

The latter equality requires α to be nonzero. In particular, i2 = ii = −1.
The main disadvantage of complex numbers compared to real numbers is the

lack of inequalities. There is no reasonable way to define what it means for a
complex number to be ≤ to another complex number. (In fact, we have already
seen how that would lead to contradictions.)

Also, there is no good way to define non-integer powers of complex numbers
(for example, i

√
2 does not have a well-defined meaning). (Some people would give

you a definition, but it would depend on whom you ask, and it would probably
not satisfy standard rules like αβγ =

(
αβ
)γ.)

4Theorem 1.3.4 shows that this identification does not mess up our algebraic operations! If this
theorem was false, then equating r with rC would make expressions like r + s, r − s and rs
ambiguous, as their meaning would depend on whether we are adding/subtracting/multiplying
the real numbers r and s or the corresponding complex numbers rC and sC.
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1.3.4. The Argand diagram

There is a visual way to represent complex numbers. I will introduce it briefly; see
[19s, Subsection 4.1.8 and further] for more details (and pictures!).

As you know, the real numbers are typically viewed as points on a line. We
similarly represent complex numbers as points on the plane. Namely, the com-
plex number (a, b) = a + bi (with a, b ∈ R) will be represented by the point (a, b)
(in Cartesian coordinates). This way of representing complex numbers called the
Argand diagram.

Note that addition and subtraction of complex numbers (a, b) are defined in the
same way as for vectors: entrywise. Therefore, the sum of two complex numbers
can be found on the Argand diagram by the parallelogram rule, just as the sum of
two vectors. What about multiplication?

Multiplying a complex number by a real number is easy: If a, b, c ∈ R, then

a︸︷︷︸
=aC

=(a,0)

(b, c) = (a, 0) (b, c) = (ab− 0c, ac + 0b) = (ab, ac) .

Thus, multiplying a complex number by a real number a is simply multiplying its
both entries by a. On the Argand diagram, this corresponds to a homothety with
center at the origin (i.e., scaling).

How do we multiply two complex numbers?
To give a description, we introduce some notations:

Definition 1.3.5. Let z be a complex number. Write z in the form z = (a, b) =
a + bi for two real numbers a, b.

Let Pz be the point corresponding to the complex number z on the Argand
diagram. (As you remember, this is the point with coordinates (a, b).)

(a) The real numbers a and b are called the real part and the imaginary part
of z. They are the Cartesian coordinates of the point Pz.

(b) The absolute value of z is defined to be the real number
√

a2 + b2. This is
the distance between the origin and Pz. This is the first (radial) polar coordinate
of Pz. It is denoted by |z|.

(c) Assume that z 6= 0. Then, consider the angle ϕ (with −π < ϕ ≤ π) at
which the ray from 0 to Pz stands to the ray from 0 to 1 (i.e., the positive half-
axis). This is the second (angular) polar coordinate of Pz. It is denoted by arg z,
and is called the argument of z.

Example 1.3.6. We have

|1 + i| = |(1, 1)| =
√

12 + 12 =
√

2 and arg (1 + i) = π/4 = 45◦.

Similarly,

|1− i| = |(1,−1)| =
√

12 + (−1)2 =
√

2 and arg (1− i) = −π/4 = −45◦.
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