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1. Eigenvalues and eigenvectors (“eigenstuff”)

1.1. Definition and examples (recall)

Recall some material from last time:

Definition 1.1.1. Let A be an n× n-matrix. Let λ be a scalar (i.e., a real number).
(a) A λ-eigenvector of A means a nonzero vector v ∈ Rn such that Av = λv.
(b) We say that λ is an eigenvalue of A if and only if there exists a λ-

eigenvector of A.

Definition 1.1.2. Let A be an n× n-matrix. We define

χA (t) = det (A− tIn) .

This is a polynomial in t, and is called the characteristic polynomial of A.

Proposition 1.1.3. Let A be an n× n-matrix. Then, the eigenvalues of A are the
roots of the characteristic polynomial χA (t).

Proposition 1.1.4. If a matrix A is triangular, then its eigenvalues are its diagonal
entries.

Method for finding eigenvalues and eigenvectors of a matrix:
Given an n× n-matrix A, find all eigenvalues and eigenvectors of A as follows:

• Calculate the characteristic polynomial χA (t) = det (A− tIn) of A.

• Find all roots λ1, λ2, . . . , λk of χA (t). These are the eigenvalues of A.

• For each eigenvalue λi, compute the nonzero solutions to (A− λi In) v = 0
(for example, using Gaussian elimination). These are the λi-eigenvectors of
A.

1
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1.2. The characteristic polynomial, explicitly

The following theorem gives a more-or-less explicit formula for the coefficients of
the characteristic polynomial of a matrix. It is not a great way of computing them
(too much work), but it can help double-check them.

Theorem 1.2.1. Let A be an n × n-matrix. Then, its characteristic polynomial
χA (t) is a polynomial of degree n, and equals

χA (t) = c0 + c1t + c2t2 + · · ·+ cntn,

where

• c0 = det A.

• cn = (−1)n.

• cn−1 = (−1)n−1 Tr A. (Recall: Tr A is the trace of A, as defined on home-
work set #1.)

• For each k ∈ {0, 1, . . . , n}, we have

ck = (−1)k ·

 the sum of the determinants of all submatrices
of A obtained from A by removing k rows

and the corresponding k columns

 .

(Here, “corresponding k columns” means “the k columns with the same
indices as the removed k rows”. So, for example, if we remove rows 2 and
5, then we must remove columns 2 and 5.)

Instead of a formal proof, let us confirm this theorem on an example:

Proof of Theorem 1.2.1 for n = 3. Assume that n = 3. Write A as A =

 a b c
d e f
g h i

.

Then, the definition of χA (t) yields

χA (t) = det (A− tIn) = det

 a− t b c
d e− t f
g h i− t


= (a− t) (e− t) (i− t) + b f g + cdh− (a− t) f h− c (e− t) g− bd (i− t)

=
(

aei− (ae + ai + ei) t + (a + e + i) t2 − t3
)

+ b f g + cdh + (a f h− f ht)− (ceg− cgt)− (bdi− bdt)

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw1s.pdf


Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-06 page 3

= (aei + b f g + cdh− a f h− ceg− bdi)︸ ︷︷ ︸
=det


a b c
d e f
g h i


=det A

+ (ae + ai + ei− f h− cg− bd)︸ ︷︷ ︸
=(ae−bd)+(ai−cg)+(ei− f h)

=


the sum of the determinants of all

submatrices obtained from A by removing
one row and the corresponding column



t

+ (a + e + i)︸ ︷︷ ︸
=Tr A

t2 − t3.

This confirms the theorem for n = 3.

Remark 1.2.2. Many authors define χA (t) not as det (A− tIn) (as we did), but
instead as det (tIn − A). This does not change much (in particular, this does not
change the roots of χA (t)), because

det (tIn − A) = (−1)n · det (A− tIn) .

Proof. Recall the fact (Corollary 1.5.3 in classwork from 2019-10-30) that says that
if B is an n × n-matrix, and if λ is a scalar, then det (λB) = λn det B. Apply-
ing this to λ = −1 and B = A − tIn, we obtain det ((−1) (A− tIn)) = (−1)n ·
det (A− tIn). Since (−1) (A− tIn) = tIn − A, this rewrites as det (tIn − A) =
(−1)n · det (A− tIn).

1.3. Linear independence of eigenvectors

Eigenvectors become particularly useful when we have many of them and they are
linearly independent. Let us take this for a given for now (we will later see how
they are useful), and see some ways to quickly get lots of linearly independent
eigenvectors.

We begin with the following fact ([Strickland, Proposition 13.19]):

Proposition 1.3.1. Let A be a n× n-matrix. Let λ1, λ2, . . . , λk be k distinct eigen-
values of A. For each i ∈ {1, 2, . . . , k}, let vi be a λi-eigenvector of A. Then,
v1, v2, . . . , vk are linearly independent.

Proof. See [Strickland, Proposition 13.19].

Proposition 1.3.1 says that a list of eigenvectors of the same matrix is automati-
cally linearly independent if they belong to distinct eigenvalues. There is an even

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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stronger result ([Strickland, Remark 13.21], proved in his exercises), which shows
linear independence even if some of the eigenvectors belong to the same eigen-
value, as long as the eigenvectors to each eigenvalue are linearly independent
among themselves. Here is the precise statement:

Proposition 1.3.2. Let A be a n× n-matrix. Let λ1, λ2, . . . , λk be k distinct eigen-
values of A. For each i ∈ {1, 2, . . . , k}, let vi,1, vi,2, . . . , vi,hi be some linearly inde-
pendent λi-eigenvectors of A. Then, the list

v1,1, v1,2, . . . , v1,h1︸ ︷︷ ︸
eigenvectors for λ1

,

v2,1, v2,2, . . . , v2,h2︸ ︷︷ ︸
eigenvectors for λ2

,

. . . ,
vk,1, vk,2, . . . , vk,hk︸ ︷︷ ︸

eigenvectors for λk

(obtained by throwing all our eigenvectors for different eigenvalues together) is
a list of linearly independent vectors.

The next fact is [Strickland, Proposition 13.22]:

Proposition 1.3.3. Let A be an n × n-matrix that has n distinct eigenvalues
λ1, λ2, . . . , λn. For each i ∈ {1, 2, . . . , n}, let vi be a λi-eigenvector of A. Then,
v1, v2, . . . , vn form a basis of Rn.

Proof. Proposition 1.3.1 yields that v1, v2, . . . , vn are linearly independent. But they
are n vectors in Rn, so as we have learned, this means that they form a basis of
Rn.

How often is the assumption of the proposition satisfied? In other words, how
likely is it for an n × n-matrix A to have n distinct eigenvalues? Here are some
informal answers:

• If we content ourselves with complex eigenvalues, then “almost every” n× n-
matrix A has n distinct eigenvalues. In other words, a “randomly chosen”
n× n-matrix A has n distinct eigenvalues. This is not a rigorous statement at
this point.

• For a matrix A that comes from a mathematical problem (a matrix with
“meaning”), it may very well happen that A does not have n distinct eigen-
values. Some of the most “interesting” matrices do not have n distinct eigen-
values.
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• If we want real eigenvalues, it happens fairly often that an n× n-matrix has
less than n of them. It may even happen that it has none.

For example, here is a “randomly chosen” 3 × 3-matrix:

 5 1 3
9 7 6
2 −3 0

. Its

characteristic polynomial: −t3 + 12t2 − 38t − 21. Its roots (i.e., the eigenvalues
of the matrix) are (approximately) 6. 238 9− 2. 244 4i, 6. 238 9 + 2. 244 4i, −0.477 7.
The first two are non-real complex numbers; only the third is a real number. There
are no good exact formulas for these roots, because −t3 + 12t2 − 38t − 21 is an
unremarkable degree-3 polynomial. (There is a very messy formula that involves
both square and cube roots, but you really don’t want to use that one.)

Let us do a few examples where we compute the eigenvalues and eigenvectors
of a matrix A and attempt to form a basis out of the eigenvectors.

Example 1.3.4. Let A =

 1 1 1
0 2 2
0 0 3

. Then, the eigenvalues of A are 1, 2, 3 (by

Proposition 1.1.4). Thus, Proposition 1.3.3 says that if we pick one eigenvector
for each eigenvalue, we obtain a basis of R3. Let us do this:

• Let us find the 1-eigenvectors. These are the nonzero vectors

 x
y
z

 ∈
R3 such that A

 x
y
z

 = 1

 x
y
z

. Solving this, we find the eigenvector 1
0
0

.

• Let us find the 2-eigenvectors. These are the nonzero vectors

 x
y
z

 ∈
R3 such that A

 x
y
z

 = 2

 x
y
z

. Solving this, we find the eigenvector 1
1
0

.

• Let us find the 3-eigenvectors. These are the nonzero vectors

 x
y
z

 ∈

https://xkcd.com/221/
http://web.mst.edu/~lmhall/3-Cardano.pdf
http://web.mst.edu/~lmhall/3-Cardano.pdf
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R3 such that A

 x
y
z

 = 3

 x
y
z

. Solving this, we find the eigenvector 3
4
2

.

Now, we have found three eigenvectors: 1
0
0

 ,

 1
1
0

 ,

 3
4
2

 .

Since these are eigenvectors for distinct eigenvalues, Proposition 1.3.3 says that
they form a basis of R3.

Example 1.3.5. Let A =

 1 1 1
0 1 1
0 0 1

. Then, χA (t) = (1− t)3. Thus, the only

eigenvalue is 1. Thus, we cannot apply Proposition 1.3.3. But if we can find
3 linearly independent 1-eigenvectors, then we can apply Proposition 1.3.2 (or
simply recall that 3 linearly independent vectors in R3 must always form a basis
of R3). But can we find them?

The 1-eigenvectors of A are the nonzero vectors

 x
y
z

 such that A

 x
y
z

 =

1

 x
y
z

. These are the nonzero scalar multiples of

 1
0
0

. Thus, any two of

them are proportional. Hence, there are no 3 linearly independent 1-eigenvectors
of A (or even 2 such). Thus, there is no basis of R3 consisting of eigenvectors of
A.

Example 1.3.6. Let A =

 0 0 1
0 1 0
1 0 0

. Then,

χA (t) = det (A− tIn) = det

 0− t 0 1
0 1− t 0
1 0 0− t

 = (1− t)det
(

0− t 1
1 0− t

)
︸ ︷︷ ︸

=(0−t)2−12

=(t+1)(t−1)

(by Laplace expansion along the 2-nd row)

= (1− t) (t + 1) (t− 1) = − (t− 1)2 (t + 1) .



Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-06 page 7

So the eigenvalues of A are 1 and −1. So Proposition 1.3.3 does not give us a
basis of eigenvectors (since 1 and −1 are only 2 eigenvalues, not 3). However, we
still have a chance of finding such a basis, if we find enough linearly independent
eigenvectors.

• The 1-eigenvectors of A are the nonzero

 x
y
z

 ∈ R3 such that A

 x
y
z

 =

1

 x
y
z

. These are all nonzero vectors of the form

 z
y
z

. We can thus

find two linearly independent 1-eigenvectors: namely,

 0
1
0

 and

 1
0
1

.

• The (−1)-eigenvectors of A are the nonzero

 x
y
z

 ∈ R3 such that

A

 x
y
z

 = (−1)

 x
y
z

. These are all nonzero vectors of the form −z
0
z

. Thus, we can pick

 −1
0
1

 as one of them.

Altogether, we can now conclude from Proposition 1.3.2 that 0
1
0

 ,

 1
0
1


︸ ︷︷ ︸

independent 1-eigenvectors

,

 −1
0
1


︸ ︷︷ ︸

(−1)-eigenvector

form a basis of R3 consisting of eigenvectors. (Of course, you can easily check
this without invoking Proposition 1.3.2.)

Example 1.3.7. Let A =

(
0 −1
1 0

)
. The eigenvalues of A in R don’t exist at all

(as we have seen in Example 2.1.13 in classwork from 2019-11-04). Thus, there is
no basis of R2 that consists of eigenvectors of A. (But we can fix this by extending
our number system to the so-called complex numbers, which we will see next
time.)

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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Remark 1.3.8. Let n be odd. Then, every n × n-matrix with real entries has at
least one real eigenvalue.

Proof. Let A be an n× n-matrix. Then, its characteristic polynomial χA (t) has odd
degree (since it has degree n, which is odd). But any real polynomial of odd degree
has at least one real root. Thus, A has at least one real eigenvalue.

1.4. Diagonalization

1.4.1. Motivation

Example 1.4.1. The Fibonacci numbers are a sequence ( f0, f1, f2, . . .) of nonneg-
ative integers. They are defined recursively by

f0 = 0, f1 = 1, fn = fn−1 + fn−2 for all n ≥ 2.

Here is a table of the first 9 Fibonacci numbers:

m 0 1 2 3 4 5 6 7 8

fm 0 1 1 2 3 5 8 13 21
.

You might wonder: Is there an explicit formula for fm ? Is there a faster way to
compute fm than working one’s way up recursively? How fast does fm grow?

One way to approach this is using matrices: Instead of computing fm, let us

look at the vectors
(

fm
fm+1

)
for m ≥ 0. The nice thing about these vectors is

that each of them determines the next one:(
fm+1
fm+2

)
=

(
fm+1

fm+1 + fm

)
=

(
0 1
1 1

)(
fm

fm+1

)
= A

(
fm

fm+1

)
,

where A =

(
0 1
1 1

)
. Thus, for example,

(
f5
f6

)
= A

(
f4
f5

)
= AA

(
f3
f4

)
= AAA

(
f2
f3

)
= AAAA

(
f1
f2

)
= AAAAA

(
f0
f1

)
= A5

(
f0
f1

)
.

More generally, (
fm

fm+1

)
= Am

(
f0
f1

)
for each m ≥ 0.

(Formally speaking, you can prove this by induction on m.) Thus, in order to
compute fm, it suffices to compute Am.
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Now, how can we easily compute the m-th power of a matrix?
Let’s look at diagonal matrices first. The product of two diagonal matrices is

given by simply multiplying their diagonal entries:(
a 0
0 b

)(
c 0
0 d

)
=

(
ac 0
0 bd

)
.

Thus, by induction, we see that a similar rule holds for taking a diagonal matrix to
a power: (

a 0
0 b

)m

=

(
am 0
0 bm

)
for each m ≥ 0.

But our matrix A is not diagonal! So this doesn’t directly help us find Am.
But let’s extend this trick to matrices that are not diagonal in themselves, but

have the form

UDU−1 where D is diagonal and U is invertible.

For example:(
UDU−1

)2
= UD U−1U︸ ︷︷ ︸

=I

DU−1 = U DD︸︷︷︸
=D2

U−1 = UD2U−1;

(
UDU−1

)3
= UD U−1U︸ ︷︷ ︸

=I

D U−1U︸ ︷︷ ︸
=I

DU−1 = U DDD︸ ︷︷ ︸
=D3

U−1 = UD3U−1;

(
UDU−1

)4
= UD U−1U︸ ︷︷ ︸

=I

D U−1U︸ ︷︷ ︸
=I

D U−1U︸ ︷︷ ︸
=I

DU−1 = U DDDD︸ ︷︷ ︸
=D4

U−1 = UD4U−1.

You can probably see how this sequence of equalities goes on; the result is the
following:1

Proposition 1.4.2. Let U be an invertible n× n-matrix, and let D be any n× n-
matrix. Then, (

UDU−1
)m

= UDmU−1.

Thus, in particular, when D = diag (d1, d2, . . . , dn), then Dm =
diag

(
dm

1 , dm
2 , . . . , dm

n
)
, so this becomes(

UDU−1
)m

= U diag (dm
1 , dm

2 , . . . , dm
n )U−1.

Proof. The first equality is easily proved by induction on m.

1The notation diag (p1, p2, . . . , pn) stands for the diagonal n× n-matrix whose diagonal entries are

p1, p2, . . . , pn (from top-left to bottom-right). For example, diag (2, 9, 4) =

 2 0 0
0 9 0
0 0 4

.
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Therefore, if we can write our matrix A in the form A = UDU−1 for an invertible
U and a diagonal D, then we can easily compute any power of A. In particular, if

we can do this for A =

(
0 1
1 1

)
, then we can find an explicit formula for Am and

thus for the Fibonacci number fm.

1.4.2. The method

So how do we write a square matrix A as UDU−1 ? Is it possible at all?
This is known as diagonalization:

Definition 1.4.3. Let A be an n × n-matrix. A diagonalization of A means a
pair of an invertible n × n-matrix U and a diagonal n × n-matrix D such that
A = UDU−1.

Note that A = UDU−1 can be rewritten equivalently as U−1AU = D.
Later, we will see what diagonalizing a matrix “really means”: A diagonalization

of A is an “alternative coordinate system” in which A “becomes a diagonal matrix”.
For now, think of this as a vague idea.

How do we find a diagonalization of a matrix A ? The following fact ([Strickland,
Proposition 14.4]) is crucial:

Proposition 1.4.4. Let A be an n× n-matrix.
(a) Suppose that u1, u2, . . . , un is a basis of Rn that consists of eigenvectors

of A. Let λ1, λ2, . . . , λn be the corresponding eigenvalues (so each ui is a λi-
eigenvector). Note that some λi may be equal.

Set U = [u1 | u2 | · · · | un] and D = diag (λ1, λ2, . . . , λn). Then, U, D is a
diagonalization of A (that is, U is invertible, D is diagonal, and A = UDU−1).

(b) Conversely, each diagonalization of A has this form. (In other words, if
U, D is a diagonalization of A, then the columns of U form a basis of Rn that
consists of eigenvectors of A, and the diagonal entries of D are the corresponding
eigenvalues.)

We will prove and apply this next time.
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