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1. Eigenvalues and eigenvectors (“eigenstuff”)

1.1. Definition and examples (recall)
Recall some material from last time:

Definition 1.1.1. Let A be an n x n-matrix. Let A be a scalar (i.e., a real number).
(a) A A-eigenvector of A means a nonzero vector v € R” such that Av = Av.
(b) We say that A is an eigenvalue of A if and only if there exists a A-

eigenvector of A.

Definition 1.1.2. Let A be an n X n-matrix. We define

Xxa (t) =det(A—tl,).

This is a polynomial in ¢, and is called the characteristic polynomial of A.

Proposition 1.1.3. Let A be an n X n-matrix. Then, the eigenvalues of A are the
roots of the characteristic polynomial x 4 (f).

I Proposition 1.1.4. If a matrix A is triangular, then its eigenvalues are its diagonal
entries.

Method for finding eigenvalues and eigenvectors of a matrix:
Given an n X n-matrix A, find all eigenvalues and eigenvectors of A as follows:

e Calculate the characteristic polynomial x4 (t) = det (A — tI,) of A.
e Find all roots A1, Ay, ..., Ag of x4 (t). These are the eigenvalues of A.

e For each eigenvalue A;, compute the nonzero solutions to (A —A;I;)v = 0
(for example, using Gaussian elimination). These are the A;-eigenvectors of
A.
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1.2. The characteristic polynomial, explicitly

The following theorem gives a more-or-less explicit formula for the coefficients of
the characteristic polynomial of a matrix. It is not a great way of computing them
(too much work), but it can help double-check them.

Theorem 1.2.1. Let A be an n X n-matrix. Then, its characteristic polynomial
Xa (t) is a polynomial of degree n, and equals

xa(t) =co+cit +oot? + -+t

where
e cp = det A.
[ ] Cn — (_1)7/[.

®eC, 1 = (—1)”_1 Tr A. (Recall: Tr A is the trace of A, as defined on home-
work set #1.)

e Foreachk € {0,1,...,n}, we have

of A obtained from A by removing k rows

the sum of the determinants of all submatrices
= (—1)F
and the corresponding k columns

(Here, “corresponding k columns” means “the k columns with the same
indices as the removed k rows”. So, for example, if we remove rows 2 and
5, then we must remove columns 2 and 5.)

Instead of a formal proof, let us confirm this theorem on an example:

N.\Hﬁ

a b
Proof of Theorem for n = 3. Assume that n = 3. Write A as A = ( d e
g h

Then, the definition of x 4 () yields

a—t b c
Xa (f) = det (A —tI,) = det d e—t f
g h i—t

=(a—t)(e—t)(i—t)+bfg+cdh—(a—1t)fh—c(e—t)g—bd(i—1t)
= (aei—(ae+ai+ei)t—|—(a+e—|—i)t2—t3>
+bfg+cdh+ (afh — fht) — (ceg — cgt) — (bdi — bdt)



http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw1s.pdf

Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-06 page 3

= (aei +bfg+ cdh —afh — ceg — bdi)

[ J
-~

a b c
=det| d e f
g h i

=det A

+ (ae +ai+ei — fh —cg — bd) t

=(ae—bd)+(ai—cg)+(ei—fh)
( the sum of the determinants of all

submatrices obtained from A by removing
one row and the corresponding column
+(ate+i)t?—1F.

———
=TrA

This confirms the theorem for n = 3. O

Remark 1.2.2. Many authors define x4 (f) not as det (A —tI,) (as we did), but
instead as det (tI, — A). This does not change much (in particular, this does not
change the roots of x4 (1)), because

det (tI, — A) = (=1)" - det (A — tI) .

Proof. Recall the fact (Corollary 1.5.3 in classwork from 2019-10-30) that says that
if B is an n x n-matrix, and if A is a scalar, then det(AB) = A"detB. Apply-
ing this to A = —1 and B = A — tI,,, we obtain det((—1) (A —tI,)) = (-1)"-
det (A —tI,). Since (—1)(A —tl,) = tI, — A, this rewrites as det (tI, — A)
(—1)" - det (A — t1,).

Ol

1.3. Linear independence of eigenvectors

Eigenvectors become particularly useful when we have many of them and they are
linearly independent. Let us take this for a given for now (we will later see how
they are useful), and see some ways to quickly get lots of linearly independent
eigenvectors.

We begin with the following fact ([Strickland, Proposition 13.19]):

Proposition 1.3.1. Let A be a n x n-matrix. Let A, Ay,..., Ay be k distinct eigen-
values of A. For each i € {1,2,...,k}, let v; be a Aj-eigenvector of A. Then,
v1,02,...,0 are linearly independent.

Proof. See [Strickland, Proposition 13.19]. O

Proposition says that a list of eigenvectors of the same matrix is automati-
cally linearly independent if they belong to distinct eigenvalues. There is an even



http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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stronger result ([Strickland, Remark 13.21], proved in his exercises), which shows
linear independence even if some of the eigenvectors belong to the same eigen-
value, as long as the eigenvectors to each eigenvalue are linearly independent
among themselves. Here is the precise statement:

Proposition 1.3.2. Let A be a n x n-matrix. Let A, Ay, ..., Ay be k distinct eigen-
values of A. For eachi € {1,2,...,k}, letv;1,02,..., v; , be some linearly inde-
pendent Aj-eigenvectors of A. Then, the list

01,1,91,2,++ -7 01, 1ys

eigenvectors for Aq

021,022, +-,02 11y,

~
eigenvectors for A,

.« ey

vk,lr Uk,Zr- cey vk,hk

-

eigenvectors for Ay

(obtained by throwing all our eigenvectors for different eigenvalues together) is
a list of linearly independent vectors.

The next fact is [Strickland, Proposition 13.22]:

Proposition 1.3.3. Let A be an n x n-matrix that has n distinct eigenvalues
A1, A, ..., Ay, Foreachi € {1,2,...,n}, let v; be a Aj-eigenvector of A. Then,
v1,02,...,0, form a basis of R".

Proof. Proposition yields that vy, vy, ..., v, are linearly independent. But they
are n vectors in IR”, so as we have learned, this means that they form a basis of
R". O

How often is the assumption of the proposition satisfied? In other words, how
likely is it for an n X n-matrix A to have n distinct eigenvalues? Here are some
informal answers:

e If we content ourselves with complex eigenvalues, then “almost every” n x n-
matrix A has n distinct eigenvalues. In other words, a “randomly chosen”
n x n-matrix A has n distinct eigenvalues. This is not a rigorous statement at
this point.

e For a matrix A that comes from a mathematical problem (a matrix with
“meaning”), it may very well happen that A does not have n distinct eigen-
values. Some of the most “interesting” matrices do not have n distinct eigen-
values.
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o If we want real eigenvalues, it happens fairly often that an n x n-matrix has
less than n of them. It may even happen that it has none.

5 1 3
For example, here is a “randomly chosen” 3 x 3-matrix: 9 7 6 |. Its
2 =30

characteristic polynomial: —#3 4+ 1242 — 38t — 21. Tts roots (i.e., the eigenvalues
of the matrix) are (approximately) 6.2389 — 2.2444i, 6.2389 + 2.2444i, —0.4777.
The first two are non-real complex numbers; only the third is a real number. There
are no good exact formulas for these roots, because —#> + 12#> — 38t — 21 is an
unremarkable degree-3 polynomial. (There is a very messy formula that involves
both square and cube roots, but you really don’t want to use that one.)

Let us do a few examples where we compute the eigenvalues and eigenvectors
of a matrix A and attempt to form a basis out of the eigenvectors.

111
Example 1.34. Let A= [ 0 2 2 |. Then, the eigenvalues of A are 1,2,3 (by
003
Proposition [1.1.4). Thus, Proposition says that if we pick one eigenvector
for each eigenvalue, we obtain a basis of R3. Let us do this:
x
e Let us find the 1-eigenvectors. These are the nonzero vectors | y | €
z
x X
R3suchthat A| ¥y | =1 y |. Solving this, we find the eigenvector
z z
1
0
0
x
e Let us find the 2-eigenvectors. These are the nonzero vectors | v | €
z
x x
R3suchthat A| ¥ | =2 y |. Solving this, we find the eigenvector
z z
1
1
0
x
e Let us find the 3-eigenvectors. These are the nonzero vectors | y | €
z



https://xkcd.com/221/
http://web.mst.edu/~lmhall/3-Cardano.pdf
http://web.mst.edu/~lmhall/3-Cardano.pdf
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x x
R3suchthat A| ¥ | =3 y |. Solving this, we find the eigenvector
z z

3

4

2

Now, we have found three eigenvectors:

() G @)

Since these are eigenvectors for distinct eigenvalues, Proposition says that
they form a basis of R3.
111
Example 1.3.5. Let A= [ 0 1 1 |. Then, x4 (t) = (1—1t)°. Thus, the only
001
eigenvalue is 1. Thus, we cannot apply Proposition But if we can find
3 linearly independent 1-eigenvectors, then we can apply Proposition [I.3.2] (or
simply recall that 3 linearly independent vectors in R®> must always form a basis
of R3). But can we find them?

X X
The 1-eigenvectors of A are the nonzero vectors ( y ) such that A ( y ) =

z z
X 1

11 y |. These are the nonzero scalar multiples of 0 |. Thus, any two of
z 0

them are proportional. Hence, there are no 3 linearly independent 1-eigenvectors
of A (or even 2 such). Thus, there is no basis of IR® consisting of eigenvectors of

A.
) . Then,

0—t 0 1 0t 1
Xa (t) =det (A —tl,) = det 0 1—-t O :(1—t)det( 1 O—t>
t

—_ O O

0
1
0

SO

Example 1.3.6. Let A = (

1 0 0-

J

(01212
(t+1)(t-1)

(by Laplace expansion along the 2-nd row)
=(1-t)(t+1)(t—1)=—(t—1)"(t+1).
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So the eigenvalues of A are 1 and —1. So Proposition does not give us a
basis of eigenvectors (since 1 and —1 are only 2 eigenvalues, not 3). However, we
still have a chance of finding such a basis, if we find enough linearly independent
eigenvectors.

X X
e The 1-eigenvectors of A are thenonzero [ y | € R¥suchthat A | y | =
z z
x z
1| v |. These are all nonzero vectors of the form | y |. We can thus
z z
0 1
find two linearly independent 1-eigenvectors: namely, | 1 | and | 0
0 1
x
e The (—1)-eigenvectors of A are the nonzero | y € R3 such that
z
x X
Al vy = (=1)| vy |. These are all nonzero vectors of the form
z z
-z -1
0 |. Thus, we can pick 0 as one of them.
b4 1

Altogether, we can now conclude from Proposition that

0 1 -1

11, 0 , 0

0 1 1
independentteigenvectors (—1)-eigenvector

form a basis of R? consisting of eigenvectors. (Of course, you can easily check
this without invoking Proposition )

0 -1
1 0
(as we have seen in Example 2.1.13 in classwork from 2019-11-04). Thus, there is
no basis of IR? that consists of eigenvectors of A. (But we can fix this by extending
our number system to the so-called complex numbers, which we will see next
time.)

Example 1.3.7. Let A = . The eigenvalues of A in R don't exist at all



http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-11-04.pdf
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Remark 1.3.8. Let n be odd. Then, every n X n-matrix with real entries has at
least one real eigenvalue.

Proof. Let A be an n x n-matrix. Then, its characteristic polynomial x 4 (¢) has odd
degree (since it has degree 1, which is odd). But any real polynomial of odd degree
has at least one real root. Thus, A has at least one real eigenvalue. ]

1.4. Diagonalization
1.4.1. Motivation

Example 1.4.1. The Fibonacci numbers are a sequence (fo, f1, f2,-..) of nonneg-
ative integers. They are defined recursively by

fo=0, fi=1, fn=fu1+ fno2 for all n > 2.

Here is a table of the first 9 Fibonacci numbers:

m ||0]1[2]3]|4|5]6|7 |8
fm|O]1)11]2]3]5[8]13|21

You might wonder: Is there an explicit formula for f,;, ? Is there a faster way to
compute f,; than working one’s way up recursively? How fast does f,, grow?
One way to approach this is using matrices: Instead of computing f,, let us

look at the vectors ( fm ) for m > 0. The nice thing about these vectors is

fm+1

that each of them determines the next one:

(F)=Calmre )= (1) (L )=l ),
01
11

(£)=a(f)=aa(h)=ma(})=naaa(})

:AAAAA(;?):AS(;?).

where A = ( ) Thus, for example,

More generally,

(fﬁil):Am<§(l)) for each m > 0.

(Formally speaking, you can prove this by induction on m.) Thus, in order to
compute fy,, it suffices to compute A™.
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Now, how can we easily compute the m-th power of a matrix?
Let’s look at diagonal matrices first. The product of two diagonal matrices is
given by simply multiplying their diagonal entries:

(03)(0a)=(5w)

Thus, by induction, we see that a similar rule holds for taking a diagonal matrix to

a power:
a 0\" a® 0
(0 b) —( 0 b”") for each m > 0.

But our matrix A is not diagonal! So this doesn’t directly help us find A™.
But let’s extend this trick to matrices that are not diagonal in themselves, but
have the form

upu-1 where D is diagonal and U is invertible.

For example:

2
(UDu—l) —upu-'upu'=uppu-!=upul
—— <~

=] =D2
1 3 1 1 1 1 3 1
(UDu— ) —upu-'upu-'ubpu-'=upppbu-'=up3u-l
4
(UDu—l) —upu-ubpuupu-ubpu!=ubpppDpu-!=up*u-l.

You can probably see how this sequence of equalities goes on; the result is the
followingﬂ

Proposition 1.4.2. Let U be an invertible n x n-matrix, and let D be any n X n-
matrix. Then,

<UDU_1>m — up"u-'.

Thus, in particular, when D = diag(dy,dy,...,dy), then D™ =
diag (d',dy, ..., d}"), so this becomes

-1\"™ _ . m gm my 717—1
(ubu=)" = u diag (@', a5, .., dy) U,

Proof. The first equality is easily proved by induction on m. O

IThe notation diag (p1, pa, - - -, pn) stands for the diagonal # x n-matrix whose diagonal entries are

2 00
P1, P2, - -, Pn (from top-left to bottom-right). For example, diag (2,9,4) = ( 090 ) .
0 0 4
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Therefore, if we can write our matrix A in the form A = UDU ! for an invertible
U and a diagonal D, then we can easily compute any power of A. In particular, if

we can do this for A = ( (1) 1 ), then we can find an explicit formula for A" and

thus for the Fibonacci number f,.

1.4.2. The method

So how do we write a square matrix A as UDU ! ? Is it possible at all?
This is known as diagonalization:

Definition 1.4.3. Let A be an n X n-matrix. A diagonalization of A means a

pair of an invertible n x n-matrix U and a diagonal n x n-matrix D such that
A=UuDu-'.

Note that A = UDU ! can be rewritten equivalently as U~ 'AU = D.

Later, we will see what diagonalizing a matrix “really means”: A diagonalization
of A is an “alternative coordinate system” in which A “becomes a diagonal matrix”.
For now, think of this as a vague idea.

How do we find a diagonalization of a matrix A ? The following fact ([Strickland,
Proposition 14.4]) is crucial:

Proposition 1.4.4. Let A be an n X n-matrix.

(a) Suppose that uy,u,...,u, is a basis of R" that consists of eigenvectors
of A. Let A1, Ay, ..., A, be the corresponding eigenvalues (so each u; is a A;-
eigenvector). Note that some A; may be equal.

Set U = [uy |up| -+ |uy and D = diag (A1, Ap,...,Ay). Then, U,D is a
diagonalization of A (that is, U is invertible, D is diagonal, and A = upu-"h.

(b) Conversely, each diagonalization of A has this form. (In other words, if
U, D is a diagonalization of A, then the columns of U form a basis of IR"” that
consists of eigenvectors of A, and the diagonal entries of D are the corresponding
eigenvalues.)

We will prove and apply this next time.
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