Fall 2019 Math 201-003 at Drexel: blackboard notes of 2019-11-04

Darij Grinberg

December 7, 2019

1. Determinants

1.1. Laplace expansion (recall)

Recall from last time
Theorem 1.1.1 (Laplace expansion along the p-th row). Let A be an $n \times n$-matrix. For each $p, q \in[n]$, we let $M_{p, q}$ be the $(n-1) \times(n-1)$-matrix obtained from A by removing row p and column q. Then, for each $p \in[n]$, we have

$$
\operatorname{det} A=\sum_{q=1}^{n}(-1)^{p+q} A_{p, q} \operatorname{det}\left(M_{p, q}\right)
$$

Recall also a basic fact from 2019-10-23.
| Theorem 1.1.2. If an $n \times n$-matrix A has two equal rows, then $\operatorname{det} A=0$.

1.2. Laplace expansion in a column

Here is the analogue of Theorem 1.1.1 for columns instead of rows:
Theorem 1.2.1 (Laplace expansion along the q-th column). Let A be an $n \times n$ matrix. For each $p, q \in[n]$, we let $M_{p, q}$ be the $(n-1) \times(n-1)$-matrix obtained from A by removing row p and column q. Then, for each $q \in[n]$, we have

$$
\operatorname{det} A=\sum_{p=1}^{n}(-1)^{p+q} A_{p, q} \operatorname{det}\left(M_{p, q}\right)
$$

Example 1.2.2. Let's compute $\operatorname{det} A$ for $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & 0 \\ 3 & 0 & 4\end{array}\right)$. Theorem 1.2.1 (for $q=2$) yields
$\operatorname{det} A$
$=-A_{1,2} \operatorname{det}\left(\begin{array}{cc}A_{2,1} & A_{2,3} \\ A_{3,1} & A_{3,3}\end{array}\right)+A_{2,2} \operatorname{det}\left(\begin{array}{cc}A_{1,1} & A_{1,3} \\ A_{3,1} & A_{3,3}\end{array}\right)-A_{3,2} \operatorname{det}\left(\begin{array}{ll}A_{1,1} & A_{1,3} \\ A_{2,1} & A_{2,3}\end{array}\right)$
$=\underbrace{-0 \operatorname{det}\left(\begin{array}{ll}0 & 0 \\ 3 & 4\end{array}\right)}_{=0}+1 \operatorname{det}\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)-\underbrace{0\left(\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right)}_{=0}$
$=\operatorname{det}\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=1 \cdot 4-2 \cdot 3=-2$.

Theorem 1.2.1 is [Strickland, Proposition B.25].

1.3. The adjugate matrix

Let me define a rather weird matrix:
Definition 1.3.1. Let A be an $n \times n$-matrix. Let $M_{p, q}$ be as in Theorem 1.1.1. Then, we define the adjugate matrix $\operatorname{adj} A$ of A to be the $n \times n$-matrix

$$
\left((-1)^{p+q} \operatorname{det}\left(M_{q, p}\right)\right)_{1 \leq p \leq n, 1 \leq q \leq n}
$$

(Sic! This is really saying $M_{q, p}$, not $M_{p, q}$.)
In other words,
$\operatorname{adj} A=\left(\begin{array}{cccc}\operatorname{det}\left(M_{1,1}\right) & -\operatorname{det}\left(M_{2,1}\right) & \cdots & (-1)^{n+1} \operatorname{det}\left(M_{n, 1}\right) \\ -\operatorname{det}\left(M_{1,2}\right) & \operatorname{det}\left(M_{2,2}\right) & \cdots & (-1)^{n+2} \operatorname{det}\left(M_{n, 2}\right) \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^{1+n} \operatorname{det}\left(M_{1, n}\right) & (-1)^{2+n} \operatorname{det}\left(M_{2, n}\right) & \cdots & \operatorname{det}\left(M_{n, n}\right)\end{array}\right)$.
The signs in this matrix follow the "chessboard pattern": The top-left cell has a + sign; any two adjacent cells (with a common edge, not just a common corner) always have opposite signs. (Of course, we are talking about the $(-1)^{p+q}$ signs here; the $\operatorname{det}\left(M_{q, p}\right)$ factors may include their own signs.)

Example 1.3.2. Let $n=2$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then,

$$
\begin{aligned}
\operatorname{adj} A & =\left(\begin{array}{cc}
\operatorname{det}\left(M_{1,1}\right) & -\operatorname{det}\left(M_{2,1}\right) \\
-\operatorname{det}\left(M_{1,2}\right) & \operatorname{det}\left(M_{2,2}\right)
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{det}(d) & -\operatorname{det}(b) \\
-\operatorname{det}(c) & \operatorname{det}(a)
\end{array}\right) \\
& =\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
\end{aligned}
$$

(since the determinant of a 1×1-matrix is just its unique entry).
Example 1.3.3. Let $n=3$ and $A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$. Then,

$$
\begin{aligned}
\operatorname{adj} A & =\left(\begin{array}{ccc}
\operatorname{det}\left(M_{1,1}\right) & -\operatorname{det}\left(M_{2,1}\right) & \operatorname{det}\left(M_{3,1}\right) \\
-\operatorname{det}\left(M_{1,2}\right) & \operatorname{det}\left(M_{2,2}\right) & -\operatorname{det}\left(M_{3,2}\right) \\
\operatorname{det}\left(M_{1,3}\right) & -\operatorname{det}\left(M_{2,3}\right) & \operatorname{det}\left(M_{3,3}\right)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\operatorname{det}\left(\begin{array}{ll}
e & f \\
h & i
\end{array}\right) & -\operatorname{det}\left(\begin{array}{ll}
b & c \\
h & i
\end{array}\right) & \operatorname{det}\left(\begin{array}{ll}
b & c \\
e & f
\end{array}\right) \\
-\operatorname{det}\left(\begin{array}{ll}
d & f \\
g & i
\end{array}\right) & \operatorname{det}\left(\begin{array}{cc}
a & c \\
g & i
\end{array}\right) & -\operatorname{det}\left(\begin{array}{ll}
a & c \\
d & f
\end{array}\right) \\
\operatorname{det}\left(\begin{array}{cc}
d & e \\
g & h
\end{array}\right) & -\operatorname{det}\left(\begin{array}{ll}
a & b \\
g & h
\end{array}\right) & \operatorname{det}\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
i e-f h & c h-i b & b f-c e \\
f g-i d & i a-c g & c d-a f \\
d h-g e & b g-a h & a e-b d
\end{array}\right) .
\end{aligned}
$$

Any entry of the matrix adj A is a degree- $(n-1)$ polynomial in the entries of A.
Theorem 1.3.4. Let A be an $n \times n$-matrix. Then,

$$
A \cdot \operatorname{adj} A=\operatorname{adj} A \cdot A=\operatorname{det} A \cdot I_{n} .
$$

Example 1.3.5. Let $n=2$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then, $\operatorname{adj} A=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$. Thus,

$$
\begin{aligned}
A \cdot \operatorname{adj} A & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right) \\
& =\underbrace{(a d-b c)}_{=\operatorname{det} A} I_{2}=\operatorname{det} A \cdot I_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{adj} A \cdot A & =\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \cdot\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right) \\
& =\underbrace{(a d-b c)}_{=\operatorname{det} A} I_{2}=\operatorname{det} A \cdot I_{2} .
\end{aligned}
$$

Example 1.3.6. Let $n=3$ and $A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$, so

$$
\operatorname{adj} A=\left(\begin{array}{ccc}
i e-f h & c h-i b & b f-c e \\
f g-i d & i a-c g & c d-a f \\
d h-g e & b g-a h & a e-b d
\end{array}\right) .
$$

Then,

$$
A \cdot \operatorname{adj} A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \cdot\left(\begin{array}{ccc}
i e-f h & c h-i b & b f-c e \\
f g-i d & i a-c g & c d-a f \\
d h-g e & b g-a h & a e-b d
\end{array}\right)
$$

Let us compute this product by hand. The (1,1)-entry is
$\left(\begin{array}{lll}a & b & c\end{array}\right)\left(\begin{array}{l}i e-f h \\ f g-i d \\ d h-g e\end{array}\right)$
$=a(i e-f h)+b(f g-i d)+c(d h-g e)$
$=\sum_{q=1}^{n}(-1)^{1+q} A_{1, q} \operatorname{det}\left(M_{1, q}\right)=\operatorname{det} A \quad$ (by Laplace expansion along 1-st row).
Similarly, all other diagonal entries of $A \cdot \operatorname{adj} A$ are $\operatorname{det} A$.
The (1,2)-entry of $A \cdot \operatorname{adj} A$ is

$$
\begin{aligned}
& \left(\begin{array}{lll}
a & b & c
\end{array}\right) \cdot\left(\begin{array}{c}
c h-i b \\
i a-c g \\
b g-a h
\end{array}\right) \\
& =a(c h-i b)+b(i a-c g)+c(b g-a h) \\
& =\underbrace{\operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
a & b & c \\
g & h & i
\end{array}\right)}_{\text {(since this matrix has two equal rows) }}
\end{aligned}
$$

$$
\left(\begin{array}{c}
\text { because if we compute } \operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
a & b & c \\
g & h & i
\end{array}\right) \\
\text { by Laplace expansion along the 2-nd row, } \\
\text { then we get precisely } a(c h-i b)+b(i a-c g)+c(b g-a h)
\end{array}\right)
$$

$$
=0
$$

Similarly, all off-diagonal entries of $A \cdot \operatorname{adj} A$ are 0 .
Thus, $A \cdot \operatorname{adj} A=\operatorname{det} A \cdot I_{3}$.
A similar argument using columns instead of rows shows that adj $A \cdot A=$ $\operatorname{det} A \cdot I_{3}$. This uses Laplace expansion along a column (i.e., Theorem 1.2.1). Thus, $A \cdot \operatorname{adj} A=\operatorname{adj} A \cdot A=\operatorname{det} A \cdot I_{3}$.

In the last example, we have seen why Theorem 1.3 .4 holds for $n=3$. The general case can be proved along the same lines. See [Strickland, Proposition B.28] for the general proof written out rigorously.

Corollary 1.3.7. If an $n \times n$-matrix A is invertible, then $A^{-1}=\frac{1}{\operatorname{det} A} \cdot \operatorname{adj} A$.
Example 1.3.8. For $n=2$, this leads to

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right)
$$

We've seen this before.
Proof of Corollary 1.3.7. Assume that A is invertible. Then, $\operatorname{det} A \neq 0$ (by Theorem 1.4.1 in the classwork from 2019-10-30). But Theorem 1.3 .4 yields $A \cdot \operatorname{adj} A=\operatorname{adj} A$. $A=\operatorname{det} A \cdot I_{n}$. We can divide all sides of this equality by $\operatorname{det} A$ (since $\operatorname{det} A \neq 0$), and thus obtain

$$
\frac{1}{\operatorname{det} A} \cdot A \cdot \operatorname{adj} A=\frac{1}{\operatorname{det} A} \cdot \operatorname{adj} A \cdot A=I_{n}
$$

This rewrites as

$$
A \cdot\left(\frac{1}{\operatorname{det} A} \operatorname{adj} A\right)=\left(\frac{1}{\operatorname{det} A} \operatorname{adj} A\right) \cdot A=I_{n}
$$

(since $\frac{1}{\operatorname{det} A}$ is just a number, and thus can be moved around the products freely). But this shows that $\frac{1}{\operatorname{det} A} \operatorname{adj} A$ is an inverse of A. Hence, $A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A$. This proves Corollary 1.3.7.

Remark 1.3.9. The adjugate of a matrix is also called its classical adjoint or sometimes just adjoint. But beware of the latter word, as it can mean many different things. I suggest you use "adjugate" simply because it only has one meaning.

Corollary 1.3 .7 is known as Cramer's rule. However, there is something else also called Cramer's rule (see, e.g., the eponymous Wikipedia page), so beware of confusion.

In order to compute adj A according to the definition, you have to define n^{2} determinants of $(n-1) \times(n-1)$-matrices. Thus, I do not recommend using Corollary 1.3.7 for finding A^{-1} (unless n is small), let alone for solving systems of linear equations (as it only applies when A is invertible).

2. Eigenvalues and eigenvectors ("eigenstuff")

We shall now study eigenvalues and eigenvectors of (square) matrices. This subject, at first, will look like an intellectual game; but soon, we will see what it is good for, and later will (if time allows...) even see what it "really means".

We follow [Strickland, §13] at first.

2.1. Definition and examples

Definition 2.1.1. Let A be an $n \times n$-matrix. Let λ be a scalar (i.e., a real number).
(a) A λ-eigenvector of A means a nonzero vector $v \in \mathbb{R}^{n}$ such that $A v=\lambda v$.
(b) We say that λ is an eigenvalue of A if and only if there exists a λ eigenvector of A.

Caution: Many authors drop the "nonzero" in the definition of " λ-eigenvector of $A^{\prime \prime}$. Then, of course, 0 (the zero vector) is always a λ-eigenvector of A, since $A \cdot 0=$ $0=\lambda \cdot 0$. Thus, if you do so, you need to modify the definition of "eigenvalue" so that it requires the existence of a nonzero λ-eigenvector.

Remark: This all only makes sense for square matrices A. If A is not square, then $A v$ and λv will have different sizes, thus never equal.

Example 2.1.2. Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Can we find the eigenvalues of A ? Can we find the corresponding eigenvectors?

Let λ be a scalar. We want to find the λ-eigenvectors of A. These are the nonzero vectors $\binom{x}{y} \in \mathbb{R}^{2}$ such that $A\binom{x}{y}=\lambda\binom{x}{y}$ (by definition). Now, let us rewrite this condition:

$$
\begin{aligned}
& \left(A\binom{x}{y}=\lambda\binom{x}{y}\right) \\
& \Longleftrightarrow\left(\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{\lambda x}{\lambda y}\right) \\
& \Longleftrightarrow\left(\binom{x+y}{x+y}=\binom{\lambda x}{\lambda y}\right)
\end{aligned}
$$

$$
\Longleftrightarrow(x+y=\lambda x \text { and } x+y=\lambda y)
$$

If we regard λ as fixed, this is a system of linear equations in x, y, and its augmented matrix is $\left(\begin{array}{ccc}1-\lambda & 1 & 0 \\ 1 & 1-\lambda & 0\end{array}\right)$. We can solve it by Gaussian elimination, for example:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1-\lambda & 1 & 0 \\
1 & 1-\lambda & 0
\end{array}\right) \stackrel{\text { swap row } 1 \text { with row } 2}{\longrightarrow}\left(\begin{array}{ccc}
1 & 1-\lambda & 0 \\
1-\lambda & 1 & 0
\end{array}\right) \\
& \underset{ }{\text { add }(\lambda-1) \text { row } 1 \text { to row } 2}\left(\begin{array}{ccc}
1 & 1-\lambda & 0 \\
0 & 2 \lambda-\lambda^{2} & 0
\end{array}\right) .
\end{aligned}
$$

Thus, we see that:

- If $2 \lambda-\lambda^{2} \neq 0$, then there is a pivot in each of the first two columns; thus, the linear system has a unique solution, which of course must be the zero vector 0 (because 0 is surely a solution), and this means that A has no λ-eigenvector (since a λ-eigenvector must be nonzero).
- If $2 \lambda-\lambda^{2}=0$, then the second column has no pivot; thus, the linear system has a free variable, and therefore there exists a nonzero solution; this means that A has a λ-eigenvector.

Thus, A has a λ-eigenvector if and only if $2 \lambda-\lambda^{2}=0$. But $2 \lambda-\lambda^{2}=0$ is equivalent to $\lambda \in\{0,2\}$. Therefore, 0 -eigenvectors and 2 -eigenvectors exist (for our A), and no other eigenvectors do (i.e., if $\lambda \notin\{0,2\}$, then λ-eigenvectors don't exist). In other words, the eigenvalues of A are 0 and 2 .

How do we find the eigenvectors? By solving the respective systems of linear equations:

- The 0-eigenvectors of A are the nonzero solutions of $A\binom{x}{y}=0\binom{x}{y}$; they are all of the form $\binom{-y}{y}$. Picking y nonzero gives a 0 -eigenvector.
- The 2-eigenvectors of A are the nonzero solutions of $A\binom{x}{y}=2\binom{x}{y}$; they are all of the form $\binom{y}{y}$. Picking y nonzero gives a 2-eigenvector.

This was rather haphazard: We cannot hope that Gaussian elimination will always proceed this nicely. If A is more complicated, then the choice of pivot might eventually depend on the value of λ. Thus, we have the following problem: How do we compute the eigenvalues and the corresponding eigenvectors of an $n \times n$ -
matrix in general?
We will see this soon enough; for now, let us recall the Inverse Matrix Theorem (Theorem 1.2.1 in the classwork from 2019-10-16), but smuggle two more equivalent statements into it:

Theorem 2.1.3. (The Inverse Matrix Theorem, updated.)
Let A be an $n \times n$-matrix.
Then, the following statements are equivalent (i.e., if any of them holds, then so do all the others):

- (a) The matrix A can be row-reduced to I_{n}.
- (b) The columns of A are linearly independent.
- (c) The columns of A span \mathbb{R}^{n}.
- (d) The columns of A form a basis of \mathbb{R}^{n}.
- (e) The matrix A^{T} can be row-reduced to I_{n}.
- (f) The columns of A^{T} are linearly independent.
- (g) The columns of A^{T} span \mathbb{R}^{n}.
- (h) The columns of A^{T} form a basis of \mathbb{R}^{n}.
- (i) The matrix A has a left inverse.
- (j) The matrix A has a right inverse.
- (k) The matrix A has an inverse (i.e., A is invertible).
- (l) We have $\operatorname{det} A \neq 0$.
- (m) The only column vector $v \in \mathbb{R}^{n}$ satisfying $A v=0$ is the zero vector 0 .

Proof of Theorem 2.1.3 The Inverse Matrix Theorem (Theorem 1.2.1 in the classwork from 2019-10-16) shows that the 11 statements (a), (b), ..., (k) are equivalent. Thus, we only need to link (1) and (m) to these 11 statements.

The equivalence $\mathbf{(k)} \Longleftrightarrow \mathbf{(\mathbf { l }}$) is precisely Theorem 1.4.1 in the classwork from 2019-10-30. Thus, statement (1) is added to our list of 11 equivalent statements. It remains to link (m).

It is easy to see that $\mathbf{(k)} \Longrightarrow \mathbf{(m)}$: Indeed, if $\mathbf{(k)}$ holds, then the matrix A has an inverse A^{-1}, and therefore every column vector $v \in \mathbb{R}^{n}$ satisfying $A v=0$ must be the zero vector 0 (because comparing $\underbrace{A^{-1} A}_{=I_{n}} v=I_{n} v=v$ with $A^{-1} \underbrace{A v}_{=0}=A^{-1} 0=0$, we find $v=0$); but this means that (\mathbf{m}) holds.

Let us now prove that $(\mathbf{m}) \Longrightarrow \mathbf{(k)}$. Indeed, assume that (\mathbf{m}) holds. We need to prove that (\mathbf{k}) holds. Equivalently, we need to prove that (b) holds (since we already know that (b) is equivalent to (k)). Let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of A (so that $A=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right]$). Let $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}=0$ be any relation between these columns. We shall prove that this relation is trivial. Indeed, let v denote the
column vector $\left(\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n}\end{array}\right)$. Thus, from $A=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right]$ and $v=\left(\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n}\end{array}\right)$, we obtain

$$
\begin{aligned}
A v & =\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right]\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{n}
\end{array}\right) \\
& =\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n} \quad \text { (by Lemma 1.1.6 in the classwork from 2019-10-07) } \\
& =0 .
\end{aligned}
$$

Hence, according to statement (k), the vector v must be the zero vector 0 . Thus, its entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are all 0 . Hence, the relation $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}=0$ must be trivial. Thus, we have proved that every relation between the columns of A is trivial. In other words, the columns of A are linearly independent. In other words, statement (b) holds. As explained above, this proves that $(\mathbf{m}) \Longrightarrow(\mathbf{k})$.

Combining $\mathbf{(k)} \Longrightarrow \mathbf{(m)}$ with $(\mathbf{m}) \Longrightarrow(\mathbf{k})$, we obtain the equivalence $\mathbf{(k)} \Longleftrightarrow \mathbf{(m)}$. Thus, statement (m) is added to our list of equivalent statements. Theorem 2.1.3 is thus proved.

Let us state the contrapositive of Theorem 2.1.3
Theorem 2.1.4. (The Non-Inverse Matrix Theorem, updated.)
Let A be an $n \times n$-matrix.
Then, the following statements are equivalent (i.e., if any of them holds, then so do all the others):

- (\mathbf{a}^{\prime}) The matrix A cannot be row-reduced to I_{n}.
- (\mathbf{b}^{\prime}) The columns of A are linearly dependent.
- (\mathbf{c}^{\prime}) The columns of A do not span \mathbb{R}^{n}.
- (d') The columns of A do not form a basis of \mathbb{R}^{n}.
- (\mathbf{e}^{\prime}) The matrix A^{T} cannot be row-reduced to I_{n}.
- (\mathbf{f}^{\prime}) The columns of A^{T} are linearly dependent.
- (\mathbf{g}^{\prime}) The columns of A^{T} do not span \mathbb{R}^{n}.
- (\mathbf{h}^{\prime}) The columns of A^{T} do not form a basis of \mathbb{R}^{n}.
- (\mathbf{i}^{\prime}) The matrix A has no left inverse.
- (\mathbf{j}^{\prime}) The matrix A has no right inverse.
- (\mathbf{k}^{\prime}) The matrix A has no inverse (i.e., A is not invertible).
- ($\mathbf{1}^{\prime}$) We have $\operatorname{det} A=0$.
- (\mathbf{m}^{\prime}) There exists a nonzero column vector $v \in \mathbb{R}^{n}$ satisfying $A v=0$.

Proof of Theorem 2.1.4 Each of the statements in Theorem 2.1.4 is the negation of the corresponding statement in Theorem 2.1.3. (For example, statement (\mathbf{a}^{\prime}) in Theorem 2.1.4 is the negation of statement (a) in Theorem 2.1.3) Thus, Theorem 2.1.4 follows from Theorem 2.1.3 (because if two statements are equivalent, then so are their negations).

We now revisit Example 2.1.2
Example 2.1.5. Let us return to Example 2.1.2. so $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, but now let us try a different approach (instead of Gaussian elimination):

For any scalar λ, we have the following equivalence:
(λ is an eigenvalue of A)
$\Longleftrightarrow($ there exists a λ-eigenvector of $A)$
(by the definition of "eigenvalue")
\Longleftrightarrow (there exists a nonzero column vector $v \in \mathbb{R}^{n}$ satisfying $A v=\lambda v$)
$\binom{$ since a λ-eigenvector of A is defined to be }{ a nonzero column vector $v \in \mathbb{R}^{n}$ satisfying $A v=\lambda v}$
\Longleftrightarrow (there exists a nonzero column vector $v \in \mathbb{R}^{n}$ satisfying $\left.\left(A-\lambda I_{n}\right) v=0\right)$
$\binom{$ since $A v=\lambda v$ is equivalent to $\left(A-\lambda I_{n}\right) v=0}{$ (because $\left(A-\lambda I_{n}\right) v=A v-\lambda \underbrace{I_{n} v}_{=v}=A v-\lambda v)}$
$\Longleftrightarrow\left(\operatorname{det}\left(A-\lambda I_{n}\right)=0\right)$
$\binom{$ by the equivalence $\left(\mathbf{m}^{\prime}\right) \Longleftrightarrow\left(\mathbf{l}^{\prime}\right)$ in Theorem 2.1 .4}{ applied to the matrix $A-\lambda I_{n}$ instead of $A}$.
Thus, in order to find the eigenvalues of A, you just compute $\operatorname{det}\left(A-\lambda I_{n}\right)$ for general λ, and find out what values of λ make it 0 .

In our case, $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and $n=2$, so

$$
A-\lambda I_{n}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right)
$$

Thus,

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right)=(1-\lambda)(1-\lambda)-1 \cdot 1=-2 \lambda+\lambda^{2} .
$$

So $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ if and only if $-2 \lambda+\lambda^{2}=0$, which is equivalent to $\lambda \in$ $\{0,2\}$. Thus, the eigenvalues of A are 0 and 2 .

The method we just showed works in general: For any $n \times n$-matrix A, the eigenvalues of A are the scalars λ for which $\operatorname{det}\left(A-\lambda I_{n}\right)=0$. Let's give this determinant a name:

Definition 2.1.6. Let A be an $n \times n$-matrix. We define

$$
\chi_{A}(t)=\operatorname{det}\left(A-t I_{n}\right) .
$$

This is a polynomial in t, and is called the characteristic polynomial of A.
Proposition 2.1.7. Let A be an $n \times n$-matrix. Then, the eigenvalues of A are the roots of the characteristic polynomial $\chi_{A}(t)$.

Proof. For any scalar λ, we have the equivalence
(λ is an eigenvalue of A)
$\Longleftrightarrow\left(\operatorname{det}\left(A-\lambda I_{n}\right)=0\right) \quad$ (as we have seen in Example 2.1.5)
$\Longleftrightarrow\left(\operatorname{det}\left(A-t I_{n}\right)\right.$ becomes 0 if we substitute λ for $\left.t\right)$
$\Longleftrightarrow\left(\lambda\right.$ is a root of the polynomial $\left.\operatorname{det}\left(A-t I_{n}\right)\right)$
$\Longleftrightarrow\left(\lambda\right.$ is a root of the polynomial $\left.\chi_{A}(t)\right) \quad\left(\right.$ since $\left.\operatorname{det}\left(A-t I_{n}\right)=\chi_{A}(t)\right)$.
Thus, the eigenvalues of A are the roots of the characteristic polynomial $\chi_{A}(t)$.
Example 2.1.8. Let $n=2$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then, the characteristic polynomial $\chi_{A}(t)$ of A is

$$
\begin{aligned}
\chi_{A}(t) & =\operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)-t\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
a-t & b \\
c & d-t
\end{array}\right)=(a-t)(d-t)-b c
\end{aligned}
$$

$$
=t^{2}-\underbrace{(a+d)}_{\substack{=\operatorname{Tr} A \\ \text { (the trace of } A \text {) }}} t+\underbrace{(a d-b c)}_{=\operatorname{det} A} .
$$

Thus, the eigenvalues of A are the roots of this polynomial; they are

$$
\frac{a+d \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}=\frac{a+d \pm \sqrt{(a-d)^{2}+4 b c}}{2}
$$

For example, if $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, then the eigenvalues of A are

$$
\frac{1+4 \pm \sqrt{(1-4)^{2}+4 \cdot 2 \cdot 3}}{2}=\frac{5 \pm \sqrt{33}}{2}
$$

Example 2.1.9. We can try to play the same game with $n=3$: Let $n=3$ and $A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$. Then,

$$
\begin{aligned}
& \chi_{A}(t)= \operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left(\begin{array}{ccc}
a-t & b & c \\
d & e-t & f \\
g & h & i-t
\end{array}\right) \\
&=-t^{3}+\underbrace{(a+e+i)}_{=\operatorname{Tr} A} t^{2}-\underbrace{(i a+i e+a e-b d-c g-f h)}_{=\operatorname{det}\left(M_{1,1}\right)+\operatorname{det}\left(M_{2,2}\right)+\operatorname{det}\left(M_{3,3}\right)} t \\
&+\underbrace{(i a e-i b d-c g e-a f h+b f g+c d h)}_{=\operatorname{det} A} .
\end{aligned}
$$

Unfortunately, this is a polynomial of degree 3, and there is no good way to compute the roots of such a polynomial explicitly.

However, if A is "nice" (e.g., strategically chosen for a homework problem), then the polynomial may have neat rational or integer roots.
Example 2.1.10. Let $n=3$ and $A=\left(\begin{array}{ccc}a & 0 & 0 \\ b & c & 0 \\ d & e & f\end{array}\right)$ (an arbitrary lower-triangular matrix). Then,

$$
\chi_{A}(t)=\operatorname{det}\left(\begin{array}{ccc}
a-t & 0 & 0 \\
b & c-t & 0 \\
d & e & f-t
\end{array}\right)=(a-t)(c-t)(f-t) .
$$

The roots of $\chi_{A}(t)$ clearly are a, c, f, which are of course the diagonal entries of

I A.

This holds more generally:
Proposition 2.1.11. If a matrix A is triangular, then its eigenvalues are its diagonal entries.

Proof. Let A be triangular. Then, the matrix $A-t I_{n}$ is triangular as well, and thus its determinant $\operatorname{det}\left(A-t I_{n}\right)$ equals the product of its diagonal entries $A_{1,1}-$ $t, A_{2,2}-t, \ldots, A_{n, n}-t$. Hence,

$$
\chi_{A}(t)=\operatorname{det}\left(A-t I_{n}\right)=\left(A_{1,1}-t\right)\left(A_{2,2}-t\right) \cdots\left(A_{n, n}-t\right) .
$$

Thus, the roots of $\chi_{A}(t)$ are $A_{1,1}, A_{2,2}, \ldots, A_{n, n}$. But these roots are the eigenvalues of A (by Proposition 2.1.7). Hence, the eigenvalues of A are $A_{1,1}, A_{2,2}, \ldots, A_{n, n}$. That is, they are the diagonal entries of A. This proves the proposition.

Now, assuming you have found all eigenvalues of a matrix A, how do you find the eigenvectors?

Method for finding eigenvalues and eigenvectors of a matrix:

Given an $n \times n$-matrix A, we can find all eigenvalues and eigenvectors of A as follows:

- Calculate the characteristic polynomial $\chi_{A}(t)=\operatorname{det}\left(A-t I_{n}\right)$ of A.
- Find all roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ of $\chi_{A}(t)$. These are the eigenvalues of A.
- For each eigenvalue λ_{i}, compute the nonzero solutions v to $\left(A-\lambda_{i} I_{n}\right) v=0$ (for example, using Gaussian elimination). These are the λ_{i}-eigenvectors of A.

Example 2.1.12. Let

$$
A=\left(\begin{array}{cccc}
16 & 2 & 1 & 1 \\
2 & 16 & 1 & 1 \\
1 & 1 & 16 & 2 \\
1 & 1 & 2 & 16
\end{array}\right)
$$

What are the eigenvalues and eigenvectors of A ?
The characteristic polynomial of A is

$$
\begin{aligned}
\chi_{A}(t) & =\operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left(\begin{array}{cccc}
16-t & 2 & 1 & 1 \\
2 & 16-t & 1 & 1 \\
1 & 1 & 16-t & 2 \\
1 & 1 & 2 & 16-t
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
16-t & 2 & 1 & 1 \\
-14+t & 14-t & 0 & 0 \\
1 & 1 & 16-t & 2 \\
1 & 1 & 2 & 16-t
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}\left(\begin{array}{cccc}
16-t & 2 & 1 & 1 \\
-14+t & 14-t & 0 & 0 \\
1 & 1 & 16-t & 2 \\
0 & 0 & -14+t & 14-t
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
16-t & 2 & 2 & 1 \\
-14+t & 14-t & 0 & 0 \\
1 & 1 & 18-t & 2 \\
0 & 0 & 0 & 14-t
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
18-t & 2 & 2 & 1 \\
0 & 14-t & 0 & 0 \\
2 & 1 & 18-t & 2 \\
0 & 0 & 0 & 14-t
\end{array}\right) \\
& =(14-t) \operatorname{det}\left(\begin{array}{ccc}
18-t & 2 & 2 \\
0 & 14-t & 0 \\
2 & 1 & 18-t
\end{array}\right) \\
& =\underbrace{(14-t)(14-t)}_{=(14-t)^{2}} \underbrace{\operatorname{det}\left(\begin{array}{cc}
18-t & 2 \\
2 & 18-t
\end{array}\right)}_{\begin{array}{c}
=(18-t)(18-t)-2 \cdot 2 \\
=t^{2}-36 t+320 \\
=(t-16)(t-20)
\end{array}} \\
& =(14-t)^{2}(t-16)(t-20) \text {. }
\end{aligned}
$$

So the roots of $\chi_{A}(t)$ (thus the eigenvalues of A) are 14,16 and 20.
What about the eigenvectors?
The 14 -eigenvectors of A are the nonzero vectors v such that $\left(A-14 I_{4}\right) v=0$. Since

$$
\begin{aligned}
A-14 I_{4} & =\left(\begin{array}{ccccc}
16-14 & 2 & 1 & 1 \\
2 & 16-14 & 1 & 1 \\
1 & 1 & 16-14 & 2 \\
1 & 1 & 2 & 16-14
\end{array}\right) \\
& =\left(\begin{array}{llll}
2 & 2 & 1 & 1 \\
2 & 2 & 1 & 1 \\
1 & 1 & 2 & 2 \\
1 & 1 & 2 & 2
\end{array}\right),
\end{aligned}
$$

this boils down to solving

$$
\left(\begin{array}{llll}
2 & 2 & 1 & 1 \\
2 & 2 & 1 & 1 \\
1 & 1 & 2 & 2 \\
1 & 1 & 2 & 2
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

You can do this by Gaussian elimination, and obtain

$$
\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
-y \\
y \\
-w \\
w
\end{array}\right)
$$

So the 14-eigenvectors of A are the nonzero vectors of the form $\left(\begin{array}{c}-y \\ y \\ -w \\ w\end{array}\right)$.
We can compute the 16 -eigenvectors and the 20 -eigenvectors as well; we get

$$
\begin{align*}
A-16 I_{4} & =\left(\begin{array}{cccc}
16-16 & 2 & 1 & 1 \\
2 & 16-16 & 1 & 1 \\
1 & 1 & 16-16 & 2 \\
1 & 1 & 2 & 16-16
\end{array}\right) \\
& =\left(\begin{array}{llll}
0 & 2 & 1 & 1 \\
2 & 0 & 1 & 1 \\
1 & 1 & 0 & 2 \\
1 & 1 & 2 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right) \tag{RREF}
\end{align*}
$$

so the 16 -eigenvectors are

$$
\left(\begin{array}{c}
-w \\
-w \\
w \\
w
\end{array}\right) \quad \text { with } w \neq 0
$$

You can find the 20-eigenvectors in the same way.
Let me comment on what can go "wrong" in the process:
Example 2.1.13. Let

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Does it have eigenvalues? Its eigenvalues are the roots of $\chi_{A}(t)$. But

$$
\chi_{A}(t)=\operatorname{det}\left(\begin{array}{cc}
0-t & 1 \\
-1 & 0-t
\end{array}\right)=(0-t)(0-t)-1(-1)=t^{2}+1
$$

What are the roots of this polynomial?
If we stick to real numbers, then this polynomial has no roots, since $x^{2}+1>0$ for every real x. Thus, if we stick to real numbers, then A has no eigenvalues and thus no eigenvectors. However, there is a way to force A to have eigenvalues:

Just extend the "field of scalars" to the complex numbers, in which case i and $-i$ become eigenvalues. Linear algebra using complex numbers as scalars is analogous to linear algebra using real numbers as scalars, but with the nice feature that each non-constant polynomial has at least one root (and, in fact, can be factored into linear factors), so every $n \times n$-matrix A (with $n>0$) has at least one eigenvalue.

References

[Strickland] Neil Strickland, MAS201 Linear Mathematics for Applications, lecture notes, 28 September 2013.
http://neil-strickland.staff.shef.ac.uk/courses/MAS201/

