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1. Determinants

1.1. Laplace expansion (recall)

Recall from last time:

Theorem 1.1.1 (Laplace expansion along the p-th row). Let A be an n× n-matrix.
For each p, q ∈ [n], we let Mp,q be the (n− 1)× (n− 1)-matrix obtained from A
by removing row p and column q. Then, for each p ∈ [n], we have

det A =
n

∑
q=1

(−1)p+q Ap,q det
(

Mp,q
)

.

Recall also a basic fact from 2019-10-23:

Theorem 1.1.2. If an n× n-matrix A has two equal rows, then det A = 0.

1.2. Laplace expansion in a column

Here is the analogue of Theorem 1.1.1 for columns instead of rows:

Theorem 1.2.1 (Laplace expansion along the q-th column). Let A be an n × n-
matrix. For each p, q ∈ [n], we let Mp,q be the (n− 1)× (n− 1)-matrix obtained
from A by removing row p and column q. Then, for each q ∈ [n], we have

det A =
n

∑
p=1

(−1)p+q Ap,q det
(

Mp,q
)

.

1

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-23.pdf
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Example 1.2.2. Let’s compute det A for A =

 1 0 2
0 1 0
3 0 4

. Theorem 1.2.1 (for

q = 2) yields

det A

= −A1,2 det
(

A2,1 A2,3
A3,1 A3,3

)
+ A2,2 det

(
A1,1 A1,3
A3,1 A3,3

)
− A3,2 det

(
A1,1 A1,3
A2,1 A2,3

)
= −0 det

(
0 0
3 4

)
︸ ︷︷ ︸

=0

+1 det
(

1 2
3 4

)
− 0

(
1 2
0 0

)
︸ ︷︷ ︸

=0

= det
(

1 2
3 4

)
= 1 · 4− 2 · 3 = −2.

Theorem 1.2.1 is [Strickland, Proposition B.25].

1.3. The adjugate matrix

Let me define a rather weird matrix:

Definition 1.3.1. Let A be an n × n-matrix. Let Mp,q be as in Theorem 1.1.1.
Then, we define the adjugate matrix adj A of A to be the n× n-matrix(

(−1)p+q det
(

Mq,p
))

1≤p≤n, 1≤q≤n
.

(Sic! This is really saying Mq,p, not Mp,q.)
In other words,

adj A =


det (M1,1) −det (M2,1) · · · (−1)n+1 det (Mn,1)

−det (M1,2) det (M2,2) · · · (−1)n+2 det (Mn,2)
...

... . . . ...
(−1)1+n det (M1,n) (−1)2+n det (M2,n) · · · det (Mn,n)

 .

The signs in this matrix follow the “chessboard pattern”: The top-left cell has a
+ sign; any two adjacent cells (with a common edge, not just a common corner)
always have opposite signs. (Of course, we are talking about the (−1)p+q signs
here; the det

(
Mq,p

)
factors may include their own signs.)
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Example 1.3.2. Let n = 2 and A =

(
a b
c d

)
. Then,

adj A =

(
det (M1,1) −det (M2,1)

−det (M1,2) det (M2,2)

)
=

(
det ( d ) −det ( b )

−det ( c ) det ( a )

)

=

(
d −b
−c a

)
(since the determinant of a 1× 1-matrix is just its unique entry).

Example 1.3.3. Let n = 3 and A =

 a b c
d e f
g h i

. Then,

adj A =

 det (M1,1) −det (M2,1) det (M3,1)

−det (M1,2) det (M2,2) −det (M3,2)

det (M1,3) −det (M2,3) det (M3,3)



=


det

(
e f
h i

)
−det

(
b c
h i

)
det

(
b c
e f

)
−det

(
d f
g i

)
det

(
a c
g i

)
−det

(
a c
d f

)
det

(
d e
g h

)
−det

(
a b
g h

)
det

(
a b
d e

)


=

 ie− f h ch− ib b f − ce
f g− id ia− cg cd− a f
dh− ge bg− ah ae− bd

 .

Any entry of the matrix adj A is a degree-(n− 1) polynomial in the entries of A.

Theorem 1.3.4. Let A be an n× n-matrix. Then,

A · adj A = adj A · A = det A · In.

Example 1.3.5. Let n = 2 and A =

(
a b
c d

)
. Then, adj A =

(
d −b
−c a

)
. Thus,

A · adj A =

(
a b
c d

)
·
(

d −b
−c a

)
=

(
ad− bc 0

0 ad− bc

)
= (ad− bc)︸ ︷︷ ︸

=det A

I2 = det A · I2
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and

adj A · A =

(
d −b
−c a

)
·
(

a b
c d

)
=

(
ad− bc 0

0 ad− bc

)
= (ad− bc)︸ ︷︷ ︸

=det A

I2 = det A · I2.

Example 1.3.6. Let n = 3 and A =

 a b c
d e f
g h i

, so

adj A =

 ie− f h ch− ib b f − ce
f g− id ia− cg cd− a f
dh− ge bg− ah ae− bd

 .

Then,

A · adj A =

 a b c
d e f
g h i

 ·
 ie− f h ch− ib b f − ce

f g− id ia− cg cd− a f
dh− ge bg− ah ae− bd

 .

Let us compute this product by hand. The (1, 1)-entry is

(
a b c

) ie− f h
f g− id
dh− ge


= a (ie− f h) + b ( f g− id) + c (dh− ge)

=
n

∑
q=1

(−1)1+q A1,q det
(

M1,q
)
= det A (by Laplace expansion along 1-st row) .

Similarly, all other diagonal entries of A · adj A are det A.
The (1, 2)-entry of A · adj A is

(
a b c

)
·

 ch− ib
ia− cg
bg− ah


= a (ch− ib) + b (ia− cg) + c (bg− ah)

= det

 a b c
a b c
g h i


︸ ︷︷ ︸

=0
(since this matrix has two equal rows)

because if we compute det

 a b c
a b c
g h i


by Laplace expansion along the 2-nd row,

then we get precisely a (ch− ib) + b (ia− cg) + c (bg− ah)


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= 0.

Similarly, all off-diagonal entries of A · adj A are 0.
Thus, A · adj A = det A · I3.
A similar argument using columns instead of rows shows that adj A · A =

det A · I3. This uses Laplace expansion along a column (i.e., Theorem 1.2.1).
Thus, A · adj A = adj A · A = det A · I3.

In the last example, we have seen why Theorem 1.3.4 holds for n = 3. The
general case can be proved along the same lines. See [Strickland, Proposition B.28]
for the general proof written out rigorously.

Corollary 1.3.7. If an n× n-matrix A is invertible, then A−1 =
1

det A
· adj A.

Example 1.3.8. For n = 2, this leads to

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
=


d

ad− bc
−b

ad− bc
−c

ad− bc
a

ad− bc

 .

We’ve seen this before.

Proof of Corollary 1.3.7. Assume that A is invertible. Then, det A 6= 0 (by Theorem
1.4.1 in the classwork from 2019-10-30). But Theorem 1.3.4 yields A · adj A = adj A ·
A = det A · In. We can divide all sides of this equality by det A (since det A 6= 0),
and thus obtain

1
det A

· A · adj A =
1

det A
· adj A · A = In.

This rewrites as

A ·
(

1
det A

adj A
)
=

(
1

det A
adj A

)
· A = In

(since
1

det A
is just a number, and thus can be moved around the products freely).

But this shows that
1

det A
adj A is an inverse of A. Hence, A−1 =

1
det A

adj A. This
proves Corollary 1.3.7.

Remark 1.3.9. The adjugate of a matrix is also called its classical adjoint or
sometimes just adjoint. But beware of the latter word, as it can mean many
different things. I suggest you use “adjugate” simply because it only has one
meaning.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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Corollary 1.3.7 is known as Cramer’s rule. However, there is something else
also called Cramer’s rule (see, e.g., the eponymous Wikipedia page), so beware of
confusion.

In order to compute adj A according to the definition, you have to define n2 deter-
minants of (n− 1)× (n− 1)-matrices. Thus, I do not recommend using Corollary
1.3.7 for finding A−1 (unless n is small), let alone for solving systems of linear
equations (as it only applies when A is invertible).

2. Eigenvalues and eigenvectors (“eigenstuff”)

We shall now study eigenvalues and eigenvectors of (square) matrices. This sub-
ject, at first, will look like an intellectual game; but soon, we will see what it is good
for, and later will (if time allows...) even see what it “really means”.

We follow [Strickland, §13] at first.

2.1. Definition and examples

Definition 2.1.1. Let A be an n× n-matrix. Let λ be a scalar (i.e., a real number).
(a) A λ-eigenvector of A means a nonzero vector v ∈ Rn such that Av = λv.
(b) We say that λ is an eigenvalue of A if and only if there exists a λ-

eigenvector of A.

Caution: Many authors drop the “nonzero” in the definition of “λ-eigenvector of
A”. Then, of course, 0 (the zero vector) is always a λ-eigenvector of A, since A · 0 =
0 = λ · 0. Thus, if you do so, you need to modify the definition of “eigenvalue” so
that it requires the existence of a nonzero λ-eigenvector.

Remark: This all only makes sense for square matrices A. If A is not square,
then Av and λv will have different sizes, thus never equal.

Example 2.1.2. Let A =

(
1 1
1 1

)
. Can we find the eigenvalues of A ? Can we

find the corresponding eigenvectors?
Let λ be a scalar. We want to find the λ-eigenvectors of A. These are the

nonzero vectors
(

x
y

)
∈ R2 such that A

(
x
y

)
= λ

(
x
y

)
(by definition). Now,

let us rewrite this condition:(
A
(

x
y

)
= λ

(
x
y

))
⇐⇒

((
1 1
1 1

)(
x
y

)
=

(
λx
λy

))
⇐⇒

((
x + y
x + y

)
=

(
λx
λy

))

http://en.wikipedia.org/wiki/Cramer's_rule
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⇐⇒ (x + y = λx and x + y = λy) .

If we regard λ as fixed, this is a system of linear equations in x, y, and its aug-

mented matrix is
(

1− λ 1 0
1 1− λ 0

)
. We can solve it by Gaussian elimination,

for example:(
1− λ 1 0

1 1− λ 0

)
swap row 1 with row 2−→

(
1 1− λ 0

1− λ 1 0

)
add (λ−1)·row 1 to row 2−→

(
1 1− λ 0
0 2λ− λ2 0

)
.

Thus, we see that:

• If 2λ− λ2 6= 0, then there is a pivot in each of the first two columns; thus,
the linear system has a unique solution, which of course must be the zero
vector 0 (because 0 is surely a solution), and this means that A has no
λ-eigenvector (since a λ-eigenvector must be nonzero).

• If 2λ−λ2 = 0, then the second column has no pivot; thus, the linear system
has a free variable, and therefore there exists a nonzero solution; this means
that A has a λ-eigenvector.

Thus, A has a λ-eigenvector if and only if 2λ − λ2 = 0. But 2λ − λ2 = 0 is
equivalent to λ ∈ {0, 2}. Therefore, 0-eigenvectors and 2-eigenvectors exist (for
our A), and no other eigenvectors do (i.e., if λ /∈ {0, 2}, then λ-eigenvectors don’t
exist). In other words, the eigenvalues of A are 0 and 2.

How do we find the eigenvectors? By solving the respective systems of linear
equations:

• The 0-eigenvectors of A are the nonzero solutions of A
(

x
y

)
= 0

(
x
y

)
;

they are all of the form
(
−y
y

)
. Picking y nonzero gives a 0-eigenvector.

• The 2-eigenvectors of A are the nonzero solutions of A
(

x
y

)
= 2

(
x
y

)
;

they are all of the form
(

y
y

)
. Picking y nonzero gives a 2-eigenvector.

This was rather haphazard: We cannot hope that Gaussian elimination will al-
ways proceed this nicely. If A is more complicated, then the choice of pivot might
eventually depend on the value of λ. Thus, we have the following problem: How
do we compute the eigenvalues and the corresponding eigenvectors of an n × n-
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matrix in general?
We will see this soon enough; for now, let us recall the Inverse Matrix Theorem

(Theorem 1.2.1 in the classwork from 2019-10-16), but smuggle two more equivalent
statements into it:

Theorem 2.1.3. (The Inverse Matrix Theorem, updated.)
Let A be an n× n-matrix.
Then, the following statements are equivalent (i.e., if any of them holds, then

so do all the others):

• (a) The matrix A can be row-reduced to In.

• (b) The columns of A are linearly independent.

• (c) The columns of A span Rn.

• (d) The columns of A form a basis of Rn.

• (e) The matrix AT can be row-reduced to In.

• (f) The columns of AT are linearly independent.

• (g) The columns of AT span Rn.

• (h) The columns of AT form a basis of Rn.

• (i) The matrix A has a left inverse.

• (j) The matrix A has a right inverse.

• (k) The matrix A has an inverse (i.e., A is invertible).

• (l) We have det A 6= 0.

• (m) The only column vector v ∈ Rn satisfying Av = 0 is the zero vector 0.

Proof of Theorem 2.1.3. The Inverse Matrix Theorem (Theorem 1.2.1 in the classwork
from 2019-10-16) shows that the 11 statements (a), (b), . . ., (k) are equivalent. Thus,
we only need to link (l) and (m) to these 11 statements.

The equivalence (k) ⇐⇒ (l) is precisely Theorem 1.4.1 in the classwork from
2019-10-30. Thus, statement (l) is added to our list of 11 equivalent statements. It
remains to link (m).

It is easy to see that (k) =⇒ (m): Indeed, if (k) holds, then the matrix A has an
inverse A−1, and therefore every column vector v ∈ Rn satisfying Av = 0 must be
the zero vector 0 (because comparing A−1A︸ ︷︷ ︸

=In

v = Inv = v with A−1 Av︸︷︷︸
=0

= A−10 = 0,

we find v = 0); but this means that (m) holds.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-30.pdf
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Let us now prove that (m) =⇒ (k). Indeed, assume that (m) holds. We need to
prove that (k) holds. Equivalently, we need to prove that (b) holds (since we already
know that (b) is equivalent to (k)). Let v1, v2, . . . , vn be the columns of A (so that
A = [v1 | v2 | · · · | vn]). Let λ1v1 + λ2v2 + · · ·+ λnvn = 0 be any relation between
these columns. We shall prove that this relation is trivial. Indeed, let v denote the

column vector


λ1
λ2
...

λn

. Thus, from A = [v1 | v2 | · · · | vn] and v =


λ1
λ2
...

λn

, we

obtain

Av = [v1 | v2 | · · · | vn]


λ1
λ2
...

λn


= λ1v1 + λ2v2 + · · ·+ λnvn (by Lemma 1.1.6 in the classwork from 2019-10-07)
= 0.

Hence, according to statement (k), the vector v must be the zero vector 0. Thus,
its entries λ1, λ2, . . . , λn are all 0. Hence, the relation λ1v1 + λ2v2 + · · ·+ λnvn = 0
must be trivial. Thus, we have proved that every relation between the columns of
A is trivial. In other words, the columns of A are linearly independent. In other
words, statement (b) holds. As explained above, this proves that (m) =⇒ (k).

Combining (k) =⇒ (m) with (m) =⇒ (k), we obtain the equivalence (k)⇐⇒ (m).
Thus, statement (m) is added to our list of equivalent statements. Theorem 2.1.3 is
thus proved.

Let us state the contrapositive of Theorem 2.1.3:

Theorem 2.1.4. (The Non-Inverse Matrix Theorem, updated.)
Let A be an n× n-matrix.
Then, the following statements are equivalent (i.e., if any of them holds, then

so do all the others):

• (a’) The matrix A cannot be row-reduced to In.

• (b’) The columns of A are linearly dependent.

• (c’) The columns of A do not span Rn.

• (d’) The columns of A do not form a basis of Rn.

• (e’) The matrix AT cannot be row-reduced to In.

• (f’) The columns of AT are linearly dependent.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-07.pdf
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• (g’) The columns of AT do not span Rn.

• (h’) The columns of AT do not form a basis of Rn.

• (i’) The matrix A has no left inverse.

• (j’) The matrix A has no right inverse.

• (k’) The matrix A has no inverse (i.e., A is not invertible).

• (l’) We have det A = 0.

• (m’) There exists a nonzero column vector v ∈ Rn satisfying Av = 0.

Proof of Theorem 2.1.4. Each of the statements in Theorem 2.1.4 is the negation of
the corresponding statement in Theorem 2.1.3. (For example, statement (a’) in
Theorem 2.1.4 is the negation of statement (a) in Theorem 2.1.3.) Thus, Theorem
2.1.4 follows from Theorem 2.1.3 (because if two statements are equivalent, then so
are their negations).

We now revisit Example 2.1.2:

Example 2.1.5. Let us return to Example 2.1.2, so A =

(
1 1
1 1

)
, but now let us

try a different approach (instead of Gaussian elimination):
For any scalar λ, we have the following equivalence:

(λ is an eigenvalue of A)

⇐⇒ (there exists a λ-eigenvector of A)

(by the definition of “eigenvalue”)
⇐⇒ (there exists a nonzero column vector v ∈ Rn satisfying Av = λv)(

since a λ-eigenvector of A is defined to be
a nonzero column vector v ∈ Rn satisfying Av = λv

)
⇐⇒ (there exists a nonzero column vector v ∈ Rn satisfying (A− λIn) v = 0) since Av = λv is equivalent to (A− λIn) v = 0

(because (A− λIn) v = Av− λ Inv︸︷︷︸
=v

= Av− λv)


⇐⇒ (det (A− λIn) = 0)(

by the equivalence (m’) ⇐⇒ (l’) in Theorem 2.1.4,
applied to the matrix A− λIn instead of A

)
.

Thus, in order to find the eigenvalues of A, you just compute det (A− λIn) for
general λ, and find out what values of λ make it 0.
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In our case, A =

(
1 1
1 1

)
and n = 2, so

A− λIn =

(
1 1
1 1

)
− λ

(
1 0
0 1

)
=

(
1− λ 1

1 1− λ

)
.

Thus,

det (A− λIn) = det
(

1− λ 1
1 1− λ

)
= (1− λ) (1− λ)− 1 · 1 = −2λ + λ2.

So det (A− λIn) = 0 if and only if −2λ + λ2 = 0, which is equivalent to λ ∈
{0, 2}. Thus, the eigenvalues of A are 0 and 2.

The method we just showed works in general: For any n× n-matrix A, the eigen-
values of A are the scalars λ for which det (A− λIn) = 0. Let’s give this determi-
nant a name:

Definition 2.1.6. Let A be an n× n-matrix. We define

χA (t) = det (A− tIn) .

This is a polynomial in t, and is called the characteristic polynomial of A.

Proposition 2.1.7. Let A be an n× n-matrix. Then, the eigenvalues of A are the
roots of the characteristic polynomial χA (t).

Proof. For any scalar λ, we have the equivalence

(λ is an eigenvalue of A)

⇐⇒ (det (A− λIn) = 0) (as we have seen in Example 2.1.5)
⇐⇒ (det (A− tIn) becomes 0 if we substitute λ for t)
⇐⇒ (λ is a root of the polynomial det (A− tIn))

⇐⇒ (λ is a root of the polynomial χA (t)) (since det (A− tIn) = χA (t)) .

Thus, the eigenvalues of A are the roots of the characteristic polynomial χA (t).

Example 2.1.8. Let n = 2 and A =

(
a b
c d

)
. Then, the characteristic polynomial

χA (t) of A is

χA (t) = det (A− tIn) = det
((

a b
c d

)
− t
(

1 0
0 1

))
= det

(
a− t b

c d− t

)
= (a− t) (d− t)− bc
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= t2 − (a + d)︸ ︷︷ ︸
=Tr A

(the trace of A)

t + (ad− bc)︸ ︷︷ ︸
=det A

.

Thus, the eigenvalues of A are the roots of this polynomial; they are

a + d±
√
(a + d)2 − 4 (ad− bc)

2
=

a + d±
√
(a− d)2 + 4bc

2
.

For example, if A =

(
1 2
3 4

)
, then the eigenvalues of A are

1 + 4±
√
(1− 4)2 + 4 · 2 · 3

2
=

5±
√

33
2

.

Example 2.1.9. We can try to play the same game with n = 3: Let n = 3 and

A =

 a b c
d e f
g h i

. Then,

χA (t) = det (A− tIn) = det

 a− t b c
d e− t f
g h i− t


= −t3 + (a + e + i)︸ ︷︷ ︸

=Tr A

t2 − (ia + ie + ae− bd− cg− f h)︸ ︷︷ ︸
=det(M1,1)+det(M2,2)+det(M3,3)

t

+ (iae− ibd− cge− a f h + b f g + cdh)︸ ︷︷ ︸
=det A

.

Unfortunately, this is a polynomial of degree 3, and there is no good way to
compute the roots of such a polynomial explicitly.

However, if A is “nice” (e.g., strategically chosen for a homework problem),
then the polynomial may have neat rational or integer roots.

Example 2.1.10. Let n = 3 and A =

 a 0 0
b c 0
d e f

 (an arbitrary lower-triangular

matrix). Then,

χA (t) = det

 a− t 0 0
b c− t 0
d e f − t

 = (a− t) (c− t) ( f − t) .

The roots of χA (t) clearly are a, c, f , which are of course the diagonal entries of
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A.

This holds more generally:

Proposition 2.1.11. If a matrix A is triangular, then its eigenvalues are its diago-
nal entries.

Proof. Let A be triangular. Then, the matrix A − tIn is triangular as well, and
thus its determinant det (A− tIn) equals the product of its diagonal entries A1,1 −
t, A2,2 − t, . . . , An,n − t. Hence,

χA (t) = det (A− tIn) = (A1,1 − t) (A2,2 − t) · · · (An,n − t) .

Thus, the roots of χA (t) are A1,1, A2,2, . . . , An,n. But these roots are the eigenvalues
of A (by Proposition 2.1.7). Hence, the eigenvalues of A are A1,1, A2,2, . . . , An,n.
That is, they are the diagonal entries of A. This proves the proposition.

Now, assuming you have found all eigenvalues of a matrix A, how do you find
the eigenvectors?

Method for finding eigenvalues and eigenvectors of a matrix:
Given an n× n-matrix A, we can find all eigenvalues and eigenvectors of A as

follows:

• Calculate the characteristic polynomial χA (t) = det (A− tIn) of A.

• Find all roots λ1, λ2, . . . , λk of χA (t). These are the eigenvalues of A.

• For each eigenvalue λi, compute the nonzero solutions v to (A− λi In) v = 0
(for example, using Gaussian elimination). These are the λi-eigenvectors of
A.

Example 2.1.12. Let

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16

 .

What are the eigenvalues and eigenvectors of A ?
The characteristic polynomial of A is

χA (t) = det (A− tIn) = det


16− t 2 1 1

2 16− t 1 1
1 1 16− t 2
1 1 2 16− t



= det


16− t 2 1 1
−14 + t 14− t 0 0

1 1 16− t 2
1 1 2 16− t


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= det


16− t 2 1 1
−14 + t 14− t 0 0

1 1 16− t 2
0 0 −14 + t 14− t



= det


16− t 2 2 1
−14 + t 14− t 0 0

1 1 18− t 2
0 0 0 14− t



= det


18− t 2 2 1

0 14− t 0 0
2 1 18− t 2
0 0 0 14− t


= (14− t)det

 18− t 2 2
0 14− t 0
2 1 18− t


= (14− t) (14− t)︸ ︷︷ ︸

=(14−t)2

det
(

18− t 2
2 18− t

)
︸ ︷︷ ︸

=(18−t)(18−t)−2·2
=t2−36t+320
=(t−16)(t−20)

= (14− t)2 (t− 16) (t− 20) .

So the roots of χA (t) (thus the eigenvalues of A) are 14, 16 and 20.
What about the eigenvectors?
The 14-eigenvectors of A are the nonzero vectors v such that (A− 14I4) v = 0.

Since

A− 14I4 =


16− 14 2 1 1

2 16− 14 1 1
1 1 16− 14 2
1 1 2 16− 14



=


2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 ,

this boils down to solving
2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2




x
y
z
w

 =


0
0
0
0

 .
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You can do this by Gaussian elimination, and obtain
x
y
z
w

 =


−y
y
−w
w

 .

So the 14-eigenvectors of A are the nonzero vectors of the form


−y
y
−w
w

.

We can compute the 16-eigenvectors and the 20-eigenvectors as well; we get

A− 16I4 =


16− 16 2 1 1

2 16− 16 1 1
1 1 16− 16 2
1 1 2 16− 16



=


0 2 1 1
2 0 1 1
1 1 0 2
1 1 2 0

 −→


1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0

 (RREF) ,

so the 16-eigenvectors are
−w
−w
w
w

 with w 6= 0.

You can find the 20-eigenvectors in the same way.

Let me comment on what can go “wrong” in the process:

Example 2.1.13. Let

A =

(
0 1
−1 0

)
.

Does it have eigenvalues? Its eigenvalues are the roots of χA (t). But

χA (t) = det
(

0− t 1
−1 0− t

)
= (0− t) (0− t)− 1 (−1) = t2 + 1.

What are the roots of this polynomial?
If we stick to real numbers, then this polynomial has no roots, since x2 + 1 > 0

for every real x. Thus, if we stick to real numbers, then A has no eigenvalues and
thus no eigenvectors. However, there is a way to force A to have eigenvalues:
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Just extend the “field of scalars” to the complex numbers, in which case i and
−i become eigenvalues. Linear algebra using complex numbers as scalars is
analogous to linear algebra using real numbers as scalars, but with the nice
feature that each non-constant polynomial has at least one root (and, in fact, can
be factored into linear factors), so every n× n-matrix A (with n > 0) has at least
one eigenvalue.
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