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1. Determinants

1.1. Some determinant identities (recall)

Recall how we defined determinants:

Definition 1.1.1. Let A be an n× n-matrix. Then, the determinant det A of A is
defined to be the sum

∑
σ is a permutation of [n]

sign (σ) · A1,σ(1)A2,σ(2) · · · An,σ(n).

Last time we proved the following properties of determinants:

Theorem 1.1.2. If an n× n-matrix A is triangular (i.e., upper-triangular or lower-
triangular), then its determinant is the product of its diagonal elements:

det A = A1,1A2,2 · · · An,n.

Theorem 1.1.3. If A is any n× n-matrix, then det
(

AT) = det A.

Theorem 1.1.4. If an n× n-matrix A has two equal rows, then det A = 0.

Theorem 1.1.5. If we scale a row of an n× n-matrix A by a number λ, then det A
gets multiplied by λ.

1
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1.2. More determinant identities

Corollary 1.2.1. If an n× n-matrix A has a zero row (i.e., a row full of zeroes),
then det A = 0.

Proof. Assume that the n× n-matrix A has a zero row. Then, scaling this row by 0
does not change A, but (by Theorem 1.1.5) it multiplies det A by 0. Hence,

det A = 0 · det A = 0.

Example 1.2.2. Here is how this argument works if n = 3 and if the second row
of A is zero:

det

 a b c
0 0 0
g h i

 = 0 · det

 a b c
0 0 0
g h i

 = 0.

The next theorem goes under the name “multilinearity of the determinant with
respect to the rows” or “the determinant is linear in each row”.

Theorem 1.2.3. Let n be a nonnegative integer and k ∈ [n]. (Recall that [n] stands
for the set {1, 2, . . . , n}.)

Let A, B and C be three n× n-matrices that differ from each other only in their
k-th rows: i.e., that satisfy

rowi A = rowi B = rowi C for all i 6= k.

Further assume that
rowk C = rowk A + rowk B.

Then,
det C = det A + det B.

Example 1.2.4. (a) If n = 3 and k = 2, then three n × n-matrices A, B, C that
differ from each other only in their k-th rows look as follows:

A =

 a b c
d e f
g h i

 , B =

 a b c
d′ e′ f ′

g h i

 , C =

 a b c
d′′ e′′ f ′′

g h i


for some reals a, b, c, d, e, f , d′, e′, f ′, d′′, e′′, f ′′, g, h, i. If they furthermore satisfy
rowk C = rowk A + rowk B, then we must have d′′ = d + d′ and e′′ = e + e′ and
f ′′ = f + f ′.

Hence, if n = 3 and k = 2, then Theorem 1.2.3 is saying that

det

 a b c
d + d′ e + e′ f + f ′

g h i


︸ ︷︷ ︸

this is C

= det

 a b c
d e f
g h i


︸ ︷︷ ︸

this is A

+det

 a b c
d′ e′ f ′

g h i


︸ ︷︷ ︸

this is B

.
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(b) If n = 3 and k = 1, then Theorem 1.2.3 is saying that

det

 a + a′ b + b′ c + c′

d e f
g h i

 = det

 a b c
d e f
g h i

+ det

 a′ b′ c′

d e f
g h i

 .

Warning: Theorem 1.2.3 does not say that det (A + B) = det A+det B. Indeed, if
A and B are two n× n-matrices with n > 1, then det A and det B do not determine

det (A + B). For example, for n = 2, if A =

(
a b
c d

)
and B =

(
a′ b′

c′ d′

)
, then

det (A + B) = det
(

a + a′ b + b′

c + c′ d + d′

)
= det

(
a b

c + c′ d + d′

)
+ det

(
a′ b′

c + c′ d + d′

)
(by Theorem 1.2.3, applied to n = 2 and k = 2)

= det
(

a b
c d

)
︸ ︷︷ ︸

=A

+det
(

a b
c′ d′

)
+ det

(
a′ b′

c d

)
+ det

(
a′ b′

c′ d′

)
︸ ︷︷ ︸

=B

(by Theorem 1.2.3, applied to n = 2 and k = 1)
6= det A + det B (in general) .

Proof of Theorem 1.2.3. Let us first prove Theorem 1.2.3 on an example: Set n = 3
and k = 2. Then, the definition of a determinant of a 3× 3-matrix yields

det

 a b c
d + d′ e + e′ f + f ′

g h i


= a

(
e + e′

)
i + b

(
f + f ′

)
g + c

(
d + d′

)
h− a

(
f + f ′

)
h− b

(
d + d′

)
i− c

(
e + e′

)
g

= aei + ae′i + b f g + b f ′g + cdh + cd′h− a f h− a f ′h− bdi− bd′i− ceg− ce′g
= (aei + b f g + cdh− a f h− bdi− ceg)︸ ︷︷ ︸

=det


a b c
d e f
g h i


+
(
ae′i + b f ′g + cd′h− a f ′h− bd′i− ce′g

)︸ ︷︷ ︸
=det


a b c
d′ e′ f ′

g h i


 here, we have sorted all products that involve one of d, e, f

into one pair of parentheses, and all products that involve
one of d′, e′, f ′ into another


= det

 a b c
d e f
g h i

+ det

 a b c
d′ e′ f ′

g h i

 .
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This proves Theorem 1.2.3 when n = 3 and k = 2.
A similar argument applies in general (but of course, much more bookkeeping

is required in the general case): The definition of a determinant yields

det A = ∑
σ is a permutation of [n]

sign (σ) · A1,σ(1)A2,σ(2) · · · An,σ(n)︸ ︷︷ ︸
let me call this product Aσ

= ∑
σ is a permutation of [n]

sign (σ) · Aσ, (1)

where we set Aσ := A1,σ(1)A2,σ(2) · · · An,σ(n) for any permutation σ. Similarly,

det B = ∑
σ is a permutation of [n]

sign (σ) · Bσ, (2)

where we set Bσ = B1,σ(1)B2,σ(2) · · · Bn,σ(n). Similarly,

det C = ∑
σ is a permutation of [n]

sign (σ) · Cσ, (3)

where we set Cσ = C1,σ(1)C2,σ(2) · · ·Cn,σ(n).
Now, fix a permutation σ of [n]. Consider the product Aσ = A1,σ(1)A2,σ(2) · · · An,σ(n).

One of its factors is Ak,σ(k), which is an entry of the k-th row of A. All its other fac-
tors come from the other n− 1 rows of A. Thus, we can write it as Aσ = Ak,σ(k) Ãσ,
where

Ãσ = A1,σ(1)A2,σ(2) · · · Ak−1,σ(k−1)Ak+1,σ(k+1) · · · An,σ(n) (4)

is the product of all factors of A1,σ(1)A2,σ(2) · · · An,σ(n) other than Ak,σ(k). Similarly,
we can write Bσ as Bσ = Bk,σ(k)B̃σ, where

B̃σ = B1,σ(1)B2,σ(2) · · · Bk−1,σ(k−1)Bk+1,σ(k+1) · · · Bn,σ(n) (5)

is a product similar to Ãσ but using the entries of B instead of A. Similarly, we can
write Cσ as Cσ = Ck,σ(k)C̃σ, where

C̃σ = C1,σ(1)C2,σ(2) · · ·Ck−1,σ(k−1)Ck+1,σ(k+1) · · ·Cn,σ(n) (6)

is a product similar to Ãσ but using the entries of C instead of A.
But we assumed that the matrices A, B and C differ from each other only in their

k-th rows. Thus, the entries Ai,σ(i) that appear on the right hand side of (4) are the
same as the entries Bi,σ(i) that appear on the right hand side of (5) and also the same
as the entries Ci,σ(i) that appear on the right hand side of (6) (since no entries from
the k-th row of any matrix appear on any of these right hand sides). Therefore, the
right hand sides of the three equalities (4), (5) and (6) are equal. Thus, the left hand
sides are equal as well. In other words,

Ãσ = B̃σ = C̃σ. (7)
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Moreover, we assumed that rowk C = rowk A + rowk B. Thus, Ck,σ(k) = Ak,σ(k) +
Bk,σ(k) (since Ak,σ(k), Bk,σ(k) and Ck,σ(k) are corresponding entries in rowk A, rowk B
and rowk C). Hence,

Cσ = Ck,σ(k)︸ ︷︷ ︸
=Ak,σ(k)+Bk,σ(k)

C̃σ =
(

Ak,σ(k) + Bk,σ(k)

)
C̃σ = Ak,σ(k) C̃σ︸︷︷︸

=Ãσ
(by (7))

+Bk,σ(k) C̃σ︸︷︷︸
=B̃σ

(by (7))

= Ak,σ(k) Ãσ︸ ︷︷ ︸
=Aσ

+ Bk,σ(k)B̃σ︸ ︷︷ ︸
=Bσ

= Aσ + Bσ.

Now, forget that we fixed σ. We thus have proved that Cσ = Aσ + Bσ for every
permutation σ. Hence, (3) becomes

det C = ∑
σ is a permutation of [n]

sign (σ) · Cσ︸︷︷︸
=Aσ+Bσ

= ∑
σ is a permutation of [n]

sign (σ) · (Aσ + Bσ)

= ∑
σ is a permutation of [n]

sign (σ) · Aσ︸ ︷︷ ︸
=det A
(by (1))

+ ∑
σ is a permutation of [n]

sign (σ) · Bσ︸ ︷︷ ︸
=det B
(by (2))

= det A + det B.

This proves Theorem 1.2.3.

Corollary 1.2.5. Let A be an n×n-matrix, and let p and q be two distinct elements
of [n]. If we add λ · rowp A to the q-th row of A, then det A does not change.

Proof of Corollary 1.2.5. This is another “proof by example”: We only consider the

case when n = 3, p = 3 and q = 2, and we write our 3× 3-matrix A as

 a b c
d e f
g h i

.

Then, we need to prove

det

 a b c
d + λg e + λh f + λi

g h i

 = det

 a b c
d e f
g h i


(because the matrix on the left hand side is what we obtain if we add λ · rowp A to
the q-th row of A).

By Theorem 1.2.3 (applied to n = 3 and k = 2), we have

det

 a b c
d + λg e + λh f + λi

g h i
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= det

 a b c
d e f
g h i

+ det

 a b c
λg λh λi
g h i


︸ ︷︷ ︸
=λ det


a b c
g h i
g h i


(by Theorem 1.1.5,

because the matrix has had its second row
scaled by λ)

= det

 a b c
d e f
g h i

+ λ det

 a b c
g h i
g h i


︸ ︷︷ ︸

=0
(by Theorem 1.1.4,

since the matrix here has two equal rows)

= det

 a b c
d e f
g h i

 ,

which is exactly what we need to prove.
The general case (with n, p and q arbitrary) is proved in the same way.

Theorem 1.2.6. If we swap two rows of an n × n-matrix, then its determinant
gets multiplied by −1 (that is, it flips its sign but preserves its magnitude).

Proof of Theorem 1.2.6. You can swap rows i and j of a matrix by performing the
following sequence of row operations:1

• add row i to row j;

• then subtract row j from row i;

• then add row i to row j;

• then scale row i by −1.

(You can easily convince yourself of this claim by tracking what happens to the
entries in rows i and j when these four row operations are performed.2)

What happens to the determinant when we perform these four row operations?
The first three operations do not change the determinant, because they all have

1This is a version of what is known as the “XOR swapping technique”.
2Proof by example: Let us assume that n = 1 and i = 1 and j = 2. Thus, we want to swap rows 1

and 2 of the 2× 2-matrix
(

a b
c d

)
. Our sequence of row operations then does the following:

(
a b
c d

)
add row 1 to row 2−→

(
a b

a + c b + d

)
subtract row 2 from row 1−→

(
−c −d

a + c b + d

)
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the form “add λ · rowp A to the q-th row” for some values of p, q and λ (and as
we know from Corollary 1.2.5, the determinant does not change when we perform
such operations). The fourth operation multiplies the determinant by −1, because
of Theorem 1.1.5. Thus, altogether, the determinant gets multiplied by −1.

1.3. Computing determinants by row operations

We recall our old definition of row operations (from the 2019-09-30 classwork):

Definition 1.3.1. The following operations on a matrix A are called elementary
row operations (short EROs):

• ERO1: Exchange two rows.

• ERO2: Scale a row by a nonzero constant.

• ERO3: Add a multiple of one row to another row. (That is, add λ rowi A to
rowj A for λ ∈ R and i 6= j.)

Let us give these operations some more descriptive names:

• ERO1 will be called a row swap.

• ERO2 will be called a row scaling with scaling factor λ, where λ is the
nonzero constant by which the row is being scaled.

• ERO3 will be called a row addition.

We can now tell what happens to the determinant of an n× n-matrix when the
matrix undergoes any of these row operations:

• If the matrix undergoes a row swap (i.e., ERO1), then its determinant gets
multiplied by −1 (by Theorem 1.2.6).).

• If the matrix undergoes a row scaling (i.e., ERO2) with scaling factor λ, then
its determinant gets multiplied by λ (by Theorem 1.1.5).

• If the matrix undergoes a row addition (i.e., ERO3), then its determinant does
not change (by Corollary 1.2.5).

add row 1 to row 2−→
(
−c −d
a b

)
scale row 1 by −1−→

(
c d
a b

)
.

And indeed, the result is what you would get from the original matrix by swapping rows 1 and
2.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-09-30.pdf
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Corollary 1.3.2. Let A be an n× n-matrix, and let B be a matrix obtained from A
by a sequence of EROs. Assume that this sequence contains exactly k row swaps
and exactly ` row scalings with scaling factors λ1, λ2, . . . , λ`. (We don’t care how
many row additions it contains.) Then,

det B = (−1)k λ1λ2 · · · λ`︸ ︷︷ ︸
this is understood
to mean 1 if `=0

det A.

Proof. The previous results show how each row operation affects the determinant:

• A row addition doesn’t change it at all.

• A row swap multiplies it by −1.

• A row scaling with scaling factor λ multiplies it by λ.

Thus, our sequence of EROs that took A to B multiplies the determinant by
−1,−1, . . . ,−1︸ ︷︷ ︸

k times

, λ1, λ2, . . . , λ`. Thus, in total, it multiplies the determinant by

(−1)k λ1λ2 · · · λ`. This proves Corollary 1.3.2.

Corollary 1.3.2 gives us a quick way of computing a determinant of a square
matrix A: We perform row-reduction to bring A into RREF. The resulting RREF
matrix is upper-triangular (indeed, you can easily check that any square matrix in
RREF is upper-triangular3), so we can compute its determinant easily (by Theorem
1.1.2). Then, by Corollary 1.3.2, we get det A. (We don’t even need to go all the way
to an RREF; usually we will obtain an upper-triangular matrix in the row-reduction
process long before we obtain a RREF matrix.)

Example 1.3.3. Let us compute det A for A =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

. Indeed, we row-

reduce A as follows:

A =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4


add −1·row 1 to row 2−→


1 1 1 1
0 1 1 1
1 2 3 3
1 2 3 4

 add −1·row 1 to row 3−→


1 1 1 1
0 1 1 1
0 1 2 2
1 2 3 4


3Actually, any square matrix in RREF is diagonal, which is better than upper-triangular.
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add −1·row 1 to row 4−→


1 1 1 1
0 1 1 1
0 1 2 2
0 1 2 3

 add −1·row 2 to row 3−→


1 1 1 1
0 1 1 1
0 0 1 1
0 1 2 3


add −1·row 2 to row 4−→


1 1 1 1
0 1 1 1
0 0 1 1
0 0 1 2

 add −1·row 3 to row 4−→


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 .

We have obtained a triangular matrix with 1, 1, 1, 1 on the diagonal and thus
determinant = 1. Since our row operations have included no row scalings and
no row swaps, we thus conclude that det A = 1.

Example 1.3.4. Let us compute det A, where A =

 0 0 1
0 1 2
1 2 3

. We row-reduce

A as follows:

A =

 0 0 1
0 1 2
1 2 3

 swap rows 1 and 3−→

 1 2 3
0 1 2
0 0 1

 .

The matrix we have obtained is upper-triangular with diagonal 1, 1, 1, so it has
determinant 1. Thus,

1 = (−1)1 · det A,

where the (−1)1 comes from the fact that we have used 1 row swap operation.
Thus, solving this for det A, we obtain det A = −1.

Example 1.3.5. Let us compute det A, where A =

(
0 2
3 6

)
. Assume that you

have forgotten the formula det
(

a b
c d

)
= ad− bc. We row-reduce A as follows:

A =

(
0 2
3 6

)
swap rows 1 and 2−→

(
3 6
0 2

)
scale row 1 by 1/3−→

(
1 2
0 2

)
scale row 2 by 1/2−→

(
1 2
0 1

)
.

We have obtained an upper-triangular matrix with diagonal 1, 1, which therefore
has determinant 1. Thus, Corollary 1.3.2 yields

1 = (−1)1 · 1
3
· 1

2
· det A.

Solving this for det A, we obtain

det A = −6.
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1.4. The determinant determines invertibility

As a consequence of this method for computing determinants using RREF, we can
get a new criterion for invertibility of a square matrix (which we can add to our
Inverse Matrix Theorem):

Theorem 1.4.1. Let A be an n × n-matrix. Then, A is invertible if and only if
det A 6= 0.

Proof. =⇒: Assume that A is invertible. We must prove that det A 6= 0.
We have assumed that A is invertible. Hence, the Invertible Matrix Theorem

(more precisely, the implication (k) =⇒ (a) from Theorem 1.2.1 in the notes from
2019-10-16) shows that A can be row-reduced to In. In other words, we can obtain
In from A by a sequence of row operations. As we have seen in the previous section,
each row operation multiplies the determinant by a nonzero number (either 1 in
the case of a row addition, or −1 in the case of a row swap, or λ if you are scaling
a row by λ). Hence, det (In) is obtained from det A by multiplying with a bunch
of nonzero numbers. Therefore, det (In) 6= 0 if and only if det A 6= 0. But In is an
upper-triangular matrix with diagonal entries 1, 1, . . . , 1; therefore, Theorem 1.1.2
shows that det (In) = 1 6= 0. Hence, det A 6= 0 (since det (In) 6= 0 if and only if
det A 6= 0). This completes the proof of the “=⇒” direction of Theorem 1.4.1.
⇐=: Assume that det A 6= 0. We must prove that A is invertible.
Let B be the RREF of A. Then, we can obtain B from A by a sequence of row

operations. As we have seen in the previous section, each row operation multiplies
the determinant by a nonzero number (either 1 in the case of a row addition, or
−1 in the case of a row swap, or λ if you are scaling a row by λ). Hence, det B is
obtained from det A by multiplying with a bunch of nonzero numbers. Therefore,
det B 6= 0 (since det A 6= 0). From this, we can easily see that the RREF matrix B
has a pivot in each column4. Hence, B = In (by Lemma 1.1.14 (b) in the notes from
2019-10-07), since B is a square matrix. But A row-reduces to B; in other words,
A row-reduces to In (since B = In). Therefore, the Invertible Matrix Theorem
(more precisely, the implication (a) =⇒ (k) from Theorem 1.2.1 in the notes from
2019-10-16) shows that A is invertible. This proves the “⇐=” direction of Theorem
1.4.1.

Example 1.4.2. Given any numbers a, b, c, d, e, f , g, we claim that the matrix
0 0 0 g
0 0 0 f
0 0 0 e
a b c d

 is not invertible.

4Proof. Assume the contrary. Thus, the matrix B has a column without pivot. Hence, B has < n
pivots (since B has n columns, and at most one pivot per column). Therefore, the matrix B has
a row without pivot (since B has n rows). This row must be a zero row (since any nonzero row
contains a pivot). But Corollary 1.2.1 shows that any matrix with a zero row has determinant 0.
Thus, det B = 0. This contradicts det B 6= 0. This contradiction shows that our assumption was
false, qed.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-07.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-07.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-16.pdf
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To prove this, it suffices (by Theorem 1.4.1) to show that its determinant is 0.
Why is its determinant 0 ?

One way to see this is the following: If we swap row 1 and row 4, then we ob-

tain the matrix


a b c d
0 0 0 f
0 0 0 e
0 0 0 g

, which is upper-triangular with diagonal a, 0, 0, g

and thus (by Theorem 1.1.2) has determinant a · 0 · 0 · g = 0. Thus, our original
matrix must also have determinant 0 (because the row swap only multiplied the
determinant by −1).

Another way to see this is the following: By the definition of the determinant,

det


0 0 0 g
0 0 0 f
0 0 0 e
a b c d

 = (a sum of 24 products) .

Each product has 4 factors, using 1 entry from each row and 1 from each column.
Thus, at least two of its 4 factors must be 0 (because only 1 of the 4 factors can
come from row 4, and only one can come from column 4, but this means that
the remaining 2 or more factors come neither from row 4 nor from column 4 and
thus are 0). Hence, the product is 0. Thus,

det


0 0 0 g
0 0 0 f
0 0 0 e
a b c d

 = (a sum of 24 products, each of which is 0) = 0.

This shows that the matrix is not invertible.

1.5. The determinant of AB

The following theorem is one of the most important properties of determinants:

Theorem 1.5.1. We have det (AB) = det A · det B for any two n× n-matrices A
and B.

See [Strickland, Theorem B.17] and [Lay, §3.2, Theorem 6] for two different
proofs of this theorem.

Example 1.5.2. Let C =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

 again. Here is another way to find det C.
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Recall (from midterm 1 Exercise 1) that

C =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 .

Hence, by Theorem 1.5.1, we have

det C = det


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1


︸ ︷︷ ︸

=1
(since this is a lower-triangular matrix

with diagonal entries 1,1,...,1)

· det


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


︸ ︷︷ ︸

=1
(since this is a upper-triangular matrix

with diagonal entries 1,1,...,1)

= 1.

Another application of Theorem 1.5.1 is the following fact:

Corollary 1.5.3. Let B be an n× n-matrix. Let λ be a scalar. Then,

det (λB) = λn det B.

Example 1.5.4. For n = 3, this is saying

det

 λa λb λc
λd λe λ f
λg λh λi

 = λ3 det

 a b c
d e f
g h i

 .

First proof of Corollary 1.5.3. We have

det (λB) = det (λIn · B)
= det (λIn) · det B (by Theorem 1.5.1, applied to A = λIn) .

But λIn =


λ 0 · · · 0
0 λ · · · 0
...

... . . . ...
0 0 · · · λ

 is an upper-triangular (and lower-triangular, too)

matrix with diagonal entries λ, λ, . . . , λ. Hence, Theorem 1.1.2 says that det (λIn) =
λλ · · · λ︸ ︷︷ ︸

n times

= λn. Thus, det (λB) = det (λIn)︸ ︷︷ ︸
=λn

·det B = λn det B. This proves Corollary

1.5.3.
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Alternatively, we can prove Corollary 1.5.3 without using Theorem 1.5.1:

Second proof of Corollary 1.5.3. The matrix λB is obtained from the n× n-matrix B by
successively scaling each row by λ. Each time a row is scaled by λ, the determinant
gets multiplied by λ (by Theorem 1.1.5). Hence, when going from B to λB, the
determinant gets multiplied by λn (since there are n rows). This proves Corollary
1.5.3 as well.

1.6. Determinants and columns

Theorem 1.6.1. Theorem 1.1.4, Theorem 1.1.5, Corollary 1.2.1, Theorem 1.2.3,
Corollary 1.2.5 and Theorem 1.2.6 remain valid if we replace “row” by “column”
throughout them.

Roughly speaking, this means that everything we said above about determinants
and rows holds all the same for determinants and columns. (For example: If you
scale a column of an n× n-matrix by a number λ, then the determinant gets mul-
tiplied by λ.)

Proof of Theorem 1.6.1 (rough idea). Let us prove the analogue of Theorem 1.1.5 for
columns instead of rows:

Let A be an n× n-matrix, and let λ be a number. Let B be the matrix if we scale
a column of A (say, the i-th column) by λ. We must prove that det B = λ · det A.

Theorem 1.1.3 yields det A = det
(

AT) and det B = det
(

BT). Recall that the
matrix B is obtained from the matrix A by scaling a column by λ. Hence, its
transpose BT is obtained from AT by scaling a row by λ (because the columns of
a transpose of a matrix are the transposes of the rows of the matrix). Therefore,
Theorem 1.1.5 yields det

(
BT) = λ · det

(
AT). In view of det A = det

(
AT) and

det B = det
(

BT), this rewrites as det B = λ · det A. This proves the analogue of
Theorem 1.1.5 for columns instead of rows.

Similar arguments can be used to derive the column analogues of all other theo-
rems from their original (row) versions.

Example 1.6.2. Here is an instance of the analogue of Theorem 1.2.3 for columns
(with n = 3 and k = 2):

det

 a b + b′ c
d e + e′ f
g h + h′ i

 = det

 a b c
d e f
g h i

+ det

 a b′ c
d e′ f
g h′ i

 .

1.7. Laplace expansion

The following fact reduces the computation of the determinant of an n× n-matrix
to the computation of several smaller determinants:
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Theorem 1.7.1 (Laplace expansion along the p-th row). Let A be an n× n-matrix.
For each p, q ∈ [n], we let Mp,q be the (n− 1)× (n− 1)-matrix obtained from A
by removing row p and column q. Then, for each p ∈ [n], we have

det A =
n

∑
q=1

(−1)p+q Ap,q det
(

Mp,q
)

.

Example 1.7.2. Let n = 3. Then,

A =

 A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 .

Thus, the Mp,q in Theorem 1.7.1 are

M1,1 =

(
A2,2 A2,3
A3,2 A3,3

)
, M1,2 =

(
A2,1 A2,3
A3,1 A3,3

)
, M1,3 =

(
A2,1 A2,2
A3,1 A3,2

)
,

M2,1 =

(
A1,2 A1,3
A3,2 A3,3

)
, M2,2 =

(
A1,1 A1,3
A3,1 A3,3

)
, M2,3 =

(
A1,1 A1,2
A3,1 A3,2

)
,

M3,1 =

(
A1,2 A1,3
A2,2 A2,3

)
, M3,2 =

(
A1,1 A1,3
A2,1 A2,3

)
, M3,3 =

(
A1,1 A1,2
A2,1 A2,2

)
.

Thus, Theorem 1.7.1 (applied to p = 1) yields

det A

=
3

∑
q=1

(−1)1+q A1,q det
(

M1,q
)

= (−1)1+1︸ ︷︷ ︸
=1

A1,1 det (M1,1) + (−1)1+2︸ ︷︷ ︸
=−1

A1,2 det (M1,2) + (−1)1+3︸ ︷︷ ︸
=1

A1,3 det (M1,3)

= A1,1 det (M1,1)− A1,2 det (M1,2) + A1,3 det (M1,3)

= A1,1 det
(

A2,2 A2,3
A3,2 A3,3

)
− A1,2 det

(
A2,1 A2,3
A3,1 A3,3

)
+ A1,3 det

(
A2,1 A2,2
A3,1 A3,2

)
.

Likewise, Theorem 1.7.1 (applied to p = 2) yields

det A

= −A2,1 det
(

A1,2 A1,3
A3,2 A3,3

)
+ A2,2 det

(
A1,1 A1,3
A3,1 A3,3

)
− A2,3 det

(
A1,1 A1,2
A3,1 A3,2

)
.
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For a proof of Theorem 1.7.1, see [Strickland, Proposition B.24].

Example 1.7.3. Let’s compute det A for A =

 1 0 2
0 1 0
3 0 4

. Theorem 1.7.1 (for

p = 2) yields

det A

= −A2,1 det
(

A1,2 A1,3
A3,2 A3,3

)
+ A2,2 det

(
A1,1 A1,3
A3,1 A3,3

)
− A2,3 det

(
A1,1 A1,2
A3,1 A3,2

)
= −0 det

(
0 2
0 4

)
︸ ︷︷ ︸

=0

+1 det
(

1 2
3 4

)
− 0 det

(
1 0
3 0

)
︸ ︷︷ ︸

=0

= det
(

1 2
3 4

)
= 1 · 4− 2 · 3 = −2.

Applying Theorem 1.7.1 to some value of p is called “Laplace expansion with
respect to the p-th row” or simply “expanding (the determinant) with respect to
the p-th row”. Generally, a good strategy when computing determinants is the
following: If your matrix A has a row with many zeroes, you can try computing
det A by Laplace expansion with respect to this row.

Example 1.7.4. Let us compute det A, where A =


1 0 1 0
0 1 1 1
1 1 1 0
1 1 1 1

. Theorem

1.7.1 (for p = 1) yields

det A = 1 det

 1 1 1
1 1 0
1 1 1

− 0 det

 0 1 1
1 1 0
1 1 1


︸ ︷︷ ︸

=0

+ 1 det

 0 1 1
1 1 0
1 1 1

− 0 det

 0 1 1
1 1 1
1 1 1


︸ ︷︷ ︸

=0

= det

 1 1 1
1 1 0
1 1 1


︸ ︷︷ ︸

=0
(since this matrix has two equal rows)

+det

 0 1 1
1 1 0
1 1 1



= det

 0 1 1
1 1 0
1 1 1
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= 0 det
(

1 0
1 1

)
︸ ︷︷ ︸

=0

−1 det
(

1 0
1 1

)
︸ ︷︷ ︸

=1

+1 det
(

1 1
1 1

)
︸ ︷︷ ︸

=0
(due to two equal rows)

(by Theorem 1.7.1 for p = 1)
= −1.

Exercise 1.7.1. Compute

det
(
(i + j)1≤i≤n, 1≤j≤n

)
= det


1 + 1 1 + 2 · · · 1 + n
2 + 1 2 + 2 · · · 2 + n

...
... . . . ...

n + 1 n + 2 · · · n + n



= det


2 3 · · · n + 1
3 4 · · · n + 2
...

... . . . ...
n + 1 n + 2 · · · 2n

 .

You can see that this determinant is 2 if n = 1; is −1 if n = 2; is 0 if n = 3; if 0 if
n = 4; can you spot and prove the general pattern? E.g., for n = 5, this is about

2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
6 7 8 9 10

.
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