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1. Gaussian elimination (continued)

1.1. Invertibility (continued)

Recall:

Definition 1.1.1. Let A be an m× n-matrix.
(a) A left inverse of A means an n×m-matrix L such that LA = In.
(b) A right inverse of A means an n×m-matrix R such that AR = Im.
(c) An inverse (or two-sided inverse) of A means an n×m-matrix B such that

BA = In and AB = Im.

Theorem 1.1.2. Let A be a matrix. Let L be a left inverse of A. Let R be a right
inverse of A. Then, L = R, and furthermore this matrix L = R is an inverse of A.

Corollary 1.1.3. Assume that a matrix A has both a left inverse and a right
inverse. Then:

(a) The matrix A has a unique inverse.
(b) This inverse is the only left inverse of A and the only right inverse of A.

Corollary 1.1.4. If A has an inverse, then this inverse is unique.

Definition 1.1.5. If a matrix A has an inverse, then this inverse is denoted by
A−1. (This notation is harmless, because the previous corollary says that this
inverse is unique.)

A matrix is said to be invertible if it has an inverse.

Proposition 1.1.6. Let A and B be two invertible matrices. Then, their product
AB is also invertible, and its inverse is (AB)−1 = B−1A−1.
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Once again: Left inverses don’t have to exist nor be unique; right inverses don’t
have to exist nor be unique; inverses (in the two-sided sense) don’t have to exist,
but at least they are unique.

Lemma 1.1.7. Let A be a matrix. Then, A has a right inverse if and only if AT

has a left inverse.

Proof. We have to prove the “if” part and the “only if” part.
“if” part: Assume that AT has a left inverse. We must prove that A has a right

inverse.
We have assumed that AT has a left inverse; let B be such a left inverse. Thus,

BAT = I. (Recall that I denotes an identity matrix of any size.) But any two
matrices X and Y satisfy (XY)T = YTXT (provided that XY makes sense). Ap-

plying this to X = B and Y = AT, we find
(

BAT)T
=
(

AT
)T

︸ ︷︷ ︸
=A

BT = ABT. Thus,

ABT =

(
BAT︸︷︷︸
=I

)T

= IT = I. In other words, BT is a right inverse of A. Thus, A has

a right inverse. This proves the “if” part.
“only if” part: Assume that A has a right inverse. We must prove that AT has a

left inverse.
We have assumed that A has a right inverse; let R be such a right inverse. Thus,

AR = I. But any two matrices X and Y satisfy (XY)T = YTXT (provided that XY
makes sense). Applying this to X = A and Y = R, we find (AR)T = RT AT. Thus,

RT AT =

(
AR︸︷︷︸
=I

)T

= IT = I. In other words, RT is a left inverse of AT. Thus, AT

has a left inverse. This proves the “only if” part.

This proof actually shows something more:

Corollary 1.1.8. Let A be a matrix. Then, a right inverse of A is the same as the
transpose of a left inverse of AT.

1.2. The Inverse Matrix Theorem

The “Inverse Matrix Theorem” is not so much a specific theorem, but a cloud of
theorems, each of which has the form “a matrix is invertible if and only if (a bunch
of equivalent conditions hold)”. In other words, the Inverse Matrix Theorem is
a set of (necessary and sufficient) criteria for a matrix to be invertible. The exact
criteria depend on the author.

For us, the Inverse Matrix Theorem is the following theorem (a slightly restated
version of [Strickland, Theorem 11.5]):
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Theorem 1.2.1. (The Inverse Matrix Theorem.)
Let A be an n× n-matrix.
Then, the following statements are equivalent (i.e., if any of them holds, then

so do all the others):

• (a) The matrix A can be row-reduced to In.

• (b) The columns of A are linearly independent.

• (c) The columns of A span Rn.

• (d) The columns of A form a basis of Rn.

• (e) The matrix AT can be row-reduced to In.

• (f) The columns of AT are linearly independent.

• (g) The columns of AT span Rn.

• (h) The columns of AT form a basis of Rn.

• (i) The matrix A has a left inverse.

• (j) The matrix A has a right inverse.

• (k) The matrix A has an inverse (i.e., A is invertible).

Proof. The equivalence (d)⇐⇒ (h) follows from Proposition 1.2.6 from 2019-10-09.
The equivalence (b) ⇐⇒ (c) ⇐⇒ (d) follows from Proposition 1.2.7 from 2019-

10-09. (Here we are using that our matrix A is square, so that its columns are n
vectors in Rn.)

The equivalence (a)⇐⇒ (b) follows from Theorem 1.1.7 from 2019-10-07. Indeed,
this theorem entails that the columns of A are independent if and only if the RREF
of A has a pivot in each column. But the RREF of A is a square matrix, and thus has
a pivot in each column if and only if it is In (by Lemma 1.1.14 (b) from 2019-10-07).

Now, we know the equivalence (a)⇐⇒ (b)⇐⇒ (c)⇐⇒ (d)⇐⇒ (h).
Applying the same reasoning to AT instead of A, we obtain (e) ⇐⇒ (f) ⇐⇒ (g)
⇐⇒ (h)⇐⇒ (d) (since

(
AT)T

= A).
Next we shall prove the equivalence (a) ⇐⇒ (i). To do so, we will prove the

implications (a) =⇒ (i) and (i) =⇒ (a).
Proof of (a) =⇒ (i): Assume that (a) holds. That is, the matrix A can be row-

reduced to In. So In can be obtained from A by a sequence of row operations.
Hence, Corollary 1.3.4 from 2019-10-09 yields that In = UA for some matrix U that
can be written as a product of elementary matrices. Consider this U. Thus, U is a
left inverse of A. Thus, A has a left inverse. In other words, (i) holds.

Proof of (i) =⇒ (a): Assume that (i) holds. That is, the matrix A has a left inverse

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-07.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-07.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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B. We must prove that (a) holds. Since we already know that (a)⇐⇒ (b), it suffices
to prove that (b) holds. In other words, we have to prove that the columns of A are
independent.

Let v1, v2, . . . , vn be the columns of A. Thus, A = [v1 | v2 | · · · | vn]. Hence, for

each vector λ =


λ1
λ2
...

λn

, we have

Aλ = λ1v1 + λ2v2 + · · ·+ λnvn (by Lemma 1.1.6 from 2019-10-07) .

Thus, if
λ1v1 + λ2v2 + · · ·+ λnvn = 0

is some relation between the v1, v2, . . . , vn, then

Aλ = 0, and thus
B Aλ︸︷︷︸

=0

= B · 0 = 0, hence

0 = BA︸︷︷︸
=In

(since B is a left inverse of A)

λ = Inλ = λ =


λ1
λ2
...

λn

 ,

so that λ1 = λ2 = · · · = λn = 0. That is, any relation between v1, v2, . . . , vn is
trivial. This means that v1, v2, . . . , vn are independent. In other words, (b) holds.
Since (a)⇐⇒ (b), this shows that (a) holds.

Thus, we have proven the implications (a) =⇒ (i) and (i) =⇒ (a). Hence, (a)⇐⇒
(i).

Applying the same argument to AT instead of A, we obtain the equivalence (e)
⇐⇒ (j), because we know (from the Lemma above) that A has a right inverse if
and only if AT has a left inverse.

Next, the implication (k) =⇒ (i) is obvious, since an inverse of A is automatically
a left inverse of A.

To prove the implication (i) =⇒ (k), we assume that statement (i) holds. Thus, A
has a left inverse. But since we already know that (i) ⇐⇒ (j) (because (i) ⇐⇒ (a)
⇐⇒ (e)⇐⇒ (j)), we know that statement (j) holds as well. In other words, A has a
right inverse. So we know that A has both a left inverse and a right inverse. Thus,
by Corollary 1.4.4 (a) from 2019-10-09, we conclude that A has an inverse. Thus,
(k) holds.

So we have proven the implications (k) =⇒ (i) and (i) =⇒ (k). Thus, (i)⇐⇒ (k).
Combining the equivalences we have shown, we can now conclude that all our

statements are equivalent.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-07.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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Example 1.2.2. Is the matrix A :=
(

1 2
3 4

)
invertible?

According to the Inverse Matrix Theorem (specifically, the equivalence (a)⇐⇒
(k)), this boils down to checking whether A can be row-reduced to In = I2. Let
us check this:

A =

(
1 2
3 4

)
add −3·row 1 to row 2−→

(
1 2
0 −2

)
scale row 2 by −1/2−→

(
1 2
0 1

)
add −2·row 2 to row 1−→

(
1 0
0 1

)
= I2.

This shows that A is invertible.
What is A−1 ? Well, let us follow our proof of (a) =⇒ (i) above, and actually

compute the left inverse of A (which, as we know, will be an inverse of A). So
we look at our above way of row-reducing A to I2, and rewrite it in terms of
multiplication by elementary matrices (using Proposition 1.3.3 from 2019-10-09):(

1 2
0 −2

)
= U1A for U1 = E2,1 (−3) ;(

1 2
0 1

)
= U2

(
1 2
0 −2

)
for U2 = D2 (−1/2) ;

I2 = U3

(
1 2
0 1

)
for U3 = E1,2 (−2) .

Thus,
I2 = U3U2U1A.

Hence, U3U2U1 is a left inverse of A, and therefore must be the inverse of A
(since A is invertible). Thus,

A−1 = U3U2U1 = E1,2 (−2) D2 (−1/2) E2,1 (−3)

=

(
1 −2
0 1

)(
1 0
0 −1/2

)(
1 0
−3 1

)
=

(
−2 1
3/2 −1/2

)
.

Example 1.2.3. Now, let A =

(
1 2
3 6

)
. Is A invertible?

Again, use statement (a) from the Inverse Matrix Theorem:

A =

(
1 2
3 6

)
add −3·row 1 to row 2−→

(
1 2
0 0

)
.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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This is a RREF, but not In. Thus, statement (a) does not hold here. Hence,
statement (k) does not hold either. That is, A is not invertible.

Proposition 1.2.4. Any elementary matrix is invertible.

Proof. (This is [Strickland, Example 11.8].)
We need to show that Dp (λ), Ep,q (µ) and Fp,q are invertible.

• For Dp (λ), we claim that Dp (λ) · Dp
(
λ−1) = In. Indeed:

– Proposition 1.3.3 (a) from 2019-10-09 shows that Dp
(
λ−1) = Dp

(
λ−1) ·

In is obtained from In by scaling the p-th row by λ−1. (Of course, this is
also obvious from the definition of Dp

(
λ−1).)

– Proposition 1.3.3 (a) from 2019-10-09 shows that Dp (λ) · Dp
(
λ−1) is ob-

tained from Dp
(
λ−1) by scaling the p-th row by λ.

Thus, Dp (λ) ·Dp
(
λ−1) is obtained from In by first scaling the p-th row by λ−1

and then scaling it by λ again. Clearly, these two scaling operations undo each
other, so after doing both of them we just get In back. So Dp (λ) ·Dp

(
λ−1) =

In.

Similarly, Dp
(
λ−1) · Dp (λ) = In. Thus, Dp

(
λ−1) is an inverse of Dp (λ).

• For Ep,q (µ), we claim that Ep,q (µ) · Ep,q (−µ) = In. Indeed:

– Proposition 1.3.3 (b) from 2019-10-09 shows that Ep,q (−µ) = Ep,q (−µ) ·
In is obtained from In by adding −µ times the q-th row to the p-th row.

– Proposition 1.3.3 (b) from 2019-10-09 shows that Ep,q (µ) · Ep,q (−µ) is
obtained from Ep,q (−µ) by adding µ times the q-th row to the p-th row.

Thus, Ep,q (µ) · Ep,q (−µ) is obtained from In by first adding −µ times the q-th
row to the p-th row, and then adding µ times the q-th row to the p-th row.
Clearly, these two adding operations undo each other, so after doing both of
them we just get In back. So Ep,q (µ) · Ep,q (−µ) = In.

Similarly, Ep,q (−µ) · Ep,q (µ) = In. Thus, Ep,q (−µ) is an inverse of Ep,q (µ).

• For Fp,q, we claim that Fp,q · Fp,q = In. The proof is similar. Thus, Fp,q is its
own inverse.

So we know how to find inverses of square matrices. What about rectangular
matrices?

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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Theorem 1.2.5. (The Left Inverse Matrix Theorem)
Let A be an n×m-matrix. Then, the following statements are equivalent:

• (a) The RREF of A has a pivot in each column.

• (b) The columns of A are linearly independent.

• (g) The columns of AT span Rm.

• (i) The matrix A has a left inverse.

Proof. (a)⇐⇒ (b) is proved as in the Inverse Matrix Theorem.
(b)⇐⇒ (g) is Proposition 1.1.3 (a) from 2019-10-09.
(i) =⇒ (a) is proved as in the Inverse Matrix Theorem.
Let us now prove (a) =⇒ (i). So we assume that (a) holds. That is, the RREF of A

has a pivot in each column. Let us denote this RREF by B. Then, B is a RREF matrix
with a pivot in each column. Hence, Lemma 1.1.14 (c) from 2019-10-07 shows that
n ≥ m and

B =

[
Im

0(n−m)×m

]
.

Let C be the m× n-matrix whose leftmost m columns form the identity matrix Im
and its remaining n− m columns are just zero. (Note that C = BT, but we won’t
need this.) It is easy to see that CB = Im.

But B can be obtained from A by a sequence of row operations (since B is the
RREF of A). Hence, Corollary 1.3.4 from 2019-10-09 yields that B = UA for some
matrix U that can be written as a product of elementary matrices. Consider this U.

Now, (CU) A = C UA︸︷︷︸
=B

= CB = Im. Hence, CU is a left inverse of A. Thus, A has

a left inverse. In other words, (i) holds. This proves the implication (a) =⇒ (i).
Combining this with (i) =⇒ (a), we obtain the equivalence (a) ⇐⇒ (i). By com-

bining what we have proved, we get the full set of equivalences (a) ⇐⇒ (b) ⇐⇒
(g)⇐⇒ (i).

Theorem 1.2.6. (The Right Inverse Matrix Theorem)
Let A be an n×m-matrix. Then, the following statements are equivalent:

• (e) The RREF of AT has a pivot in each column.

• (f) The columns of AT are linearly independent.

• (c) The columns of A span Rn.

• (j) The matrix A has a right inverse.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-07.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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Proof. Apply the Left Inverse Matrix Theorem to AT instead of A. Again, the trick
is that A has a right inverse if and only if AT has a left inverse (by the first Lemma
we proved today).

Corollary 1.2.7. Let A be an n×m-matrix.
(a) If A has a left inverse, then n ≥ m (that is, A is square or tall).
(b) If A has a right inverse, then n ≤ m (that is, A is square or wide).
(c) If A has an inverse, then n = m (that is, A is square).

Proof. (a) Assume that A has a left inverse. Then, the Left Inverse Matrix Theorem
says that the columns of A are linearly independent. Thus, they are m linearly
independent vectors in Rn. If m > n, then Corollary 1.2.9 from 2019-10-09 would
say that this is impossible. Thus, we must have m ≤ n, that is, n ≥ m.

(b) This follows from part (a), applied to AT instead of A.
(c) Follows by combining (a) with (b) (since an inverse is both a left inverse and

a right inverse).

1.3. Finding inverses

Is there a better algorithm for inverting a matrix (i.e., finding its inverse) than what
we did in the examples above?

Yes. We will use the following notation:

Definition 1.3.1. Let B be an n×m-matrix, and let C be an n× p-matrix. Then,
[B | C] denotes the n× (m + p)-matrix obtained by gluing C to the right edge of
B.

Example 1.3.2. If B =

(
u v
w x

)
and C =

(
a b c
d e f

)
, then

[B | C] =
(

u v a b c
w x d e f

)
.

More generally, we can define the notation [B1 | B2 | · · · | Bm] for any (finite) se-
quence of matrices B1, B2, . . . , Bm with the same number of rows. This generalizes
the notation [v1 | v2 | · · · | vm] for m column vectors v1, v2, . . . , vm.

Lemma 1.3.3. Let A be a q× n-matrix. Let B be an n×m-matrix, and let C be an
n× p-matrix. Then,

A [B | C] = [AB | AC] .

Proof. The definition of [B | C] yields

[B | C] =
[
col1 B | col2 B | · · · | colm B | col1 C | col2 C | · · · | colp C

]

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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(where we use our old notation colk D for the k-th column of a matrix D).
Recall (from Proposition 2.6.2 (c) from 2019-09-23) that

colj (AB) = A · colj B for each j ∈ {1, 2, . . . , m} ;

thus,
AB = [A · col1 B | A · col2 B | · · · | A · colm B] .

Similarly,
AC =

[
A · col1 C | A · col2 C | · · · | A · colp C

]
and

A [B | C]
=
[
A · col1 [B | C] | A · col2 [B | C] | · · · | A · colm+p [B | C]

]
=
[
A · col1 B | A · col2 B | · · · | A · colm B | A · col1 C | A · col2 C | · · · | A · colp C

](
since [B | C] =

[
col1 B | col2 B | · · · | colm B | col1 C | col2 C | · · · | colp C

])
= [AB | AC] .

Example 1.3.4. If A =
(

1 2
)

and B =

(
u v
w x

)
and C =

(
a b c
d e f

)
, then

AB =
(

u + 2w v + 2x
)

and AC =
(

a + 2d b + 2e c + 2 f
)

,

thus
[AB | AC] =

(
u + 2w v + 2x a + 2d b + 2e c + 2 f

)
.

On the other hand,

[B | C] =
(

u v a b c
w x d e f

)
, so that

A [B | C] =
(

u + 2w v + 2x a + 2d b + 2e c + 2 f
)

.

The following method for inverting a matrix is [Strickland, Method 11.11]:

Theorem 1.3.5. Let A be an n × n-matrix. Form the n × (2n)-matrix [A | In].
Apply row operations to bring the latter matrix into RREF; let this RREF be
[T | B], where T is its “left half” (i.e., the first n columns) and B is its “right half”
(i.e., the last n columns).

(a) If T = In, then A is invertible and its inverse is A−1 = B.
(b) If T 6= In, then A is not invertible.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-09-23.pdf
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Example 1.3.6. Let n = 2 and A =

(
1 2
3 4

)
. Let us bring [A | In] to RREF:

[A | In] =

(
1 2 1 0
3 4 0 1

)
add −3·row 1 to row 2−→

(
1 2 1 0
0 −2 −3 1

)
scale row 2 by −1/2−→

(
1 2 1 0
0 1 3/2 −1/2

)
add −2·row 2 to row 2−→

(
1 0 −2 1
0 1 3/2 −1/2

)

= [T | B] for T =

(
1 0
0 1

)
and B =

(
−2 1
3/2 −1/2

)
.

Since T = I2, we thus conclude that A is invertible, and its inverse is A−1 = B =(
−2 1
3/2 −1/2

)
.

Proof of Theorem. We have obtained [T | B] from [A | In] by row operations. Thus,
Corollary 1.3.4 from 2019-10-09 shows that

[T | B] = U [A | In]

for some matrix U that can be written as a product of elementary matrices. Con-
sider this U. Now,

[T | B] = U [A | In] = [UA | UIn] (by the last Lemma) .

In other words, T = UA and B = UIn. Hence, B = UIn = U.
(a) If T = In, then we thus have In = T = U︸︷︷︸

=B

A = BA, which shows that B

is a left inverse of A, and thus A has an inverse (by the Inverse Matrix Theorem),
which must therefore be B (since In = BA).

(b) Assume that T 6= In. We must show that A is not invertible.
We know that [T | B] can be obtained from [A | In] by row operations.
Thus, T can be obtained from A by the same row operations. Moreover, since

[T | B] is in RREF, T must also be in RREF, because T is the left half of [T | B]. Thus,
T is the RREF of A. Since T 6= In, we conclude that A cannot be row-reduced to In.
Thus, statement (a) of the Inverse Matrix Theorem is false. Hence, statement (k) is
false. In other words, A is not invertible.

Example 1.3.7. Let

A =

 1 a b
0 1 c
0 0 1

 .

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/2019-10-09.pdf
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Then, A is easily seen to be invertible; what is its inverse?

[A | In] =

 1 a b 1 0 0
0 1 c 0 1 0
0 0 1 0 0 1


−→

 1 a b 1 0 0
0 1 0 0 1 −c
0 0 1 0 0 1


−→

 1 a 0 1 0 −b
0 1 0 0 1 −c
0 0 1 0 0 1


−→

 1 0 0 1 −a −b− a (−c)
0 1 0 0 1 −c
0 0 1 0 0 1

 .

Thus, A is invertible, and its inverse is

A−1 =

 1 −a −b− a (−c)
0 1 −c
0 0 1

 =

 1 −a ac− b
0 1 −c
0 0 1

 .

In the same way, you can see that any upper-triangular matrix with nonzero
entries on the diagonal is invertible, and its inverse is again an upper-triangular
matrix with nonzero entries on the diagonal.
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