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1. Gaussian elimination (continued)

1.1. Spanning (continued)

1.1.1. Connecting independence and spanning

Recall our method for checking for linear dependence ([Strickland, Method 8.8]):

Theorem 1.1.1. Let v1, v2, . . . , vm be m vectors in Rn. To see whether they are
dependent, the following algorithm works:

(a) Form the n×m-matrix A whose columns are v1, v2, . . . , vm. This is usually
written as follows:

A = [v1 | v2 | · · · | vm] .

(b) Row-reduce A to get an n×m-matrix B in RREF.
(c) If every column of B has a pivot, then v1, v2, . . . , vm are independent.
(d) If some column of B has no pivot, then v1, v2, . . . , vm are dependent. More-

over, solutions to the system Bλ = 0 (where λ =


λ1
λ2
...

λm

) correspond precisely

to the relations between v1, v2, . . . , vm.

Recall our method for checking whether a list of vectors spans Rn ([Strickland,
Method 9.7]):

Theorem 1.1.2. Let V = (v1, v2, . . . , vm) be a list of vectors in Rn. We can check
whether this list spans Rn as follows:

(a) Form the m× n-matrix

C =


vT

1
vT

2
...

vT
m

 .

1
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This is the matrix whose rows are vT
1 , vT

2 , . . . , vT
m (the transposes of the vectors in

V).
(b) Row-reduce C to get a matrix D in RREF.
(c) If D has a pivot in each column, then V spans Rn.
(d) If D has no pivot in some column, then V does not span Rn.

Note that the matrix C in the latter theorem is the transpose of the matrix A in
the former theorem. This does not mean that the answers to the “are v1, v2, . . . , vm
dependent?” and “do v1, v2, . . . , vm span Rn ?” questions are directly related. How-
ever, it means the following:

Proposition 1.1.3. Let P be any m× n-matrix.
(a) The columns of P are linearly independent (in Rm) if and only if the

columns of PT span Rn.
(b) The columns of P span Rm if and only if the columns of PT are linearly

independent (in Rn).

Proof. (a) Compare the two previous theorems. If v1, v2, . . . , vm are the columns

of P, then P = [v1 | v2 | · · · | vm] and PT =


vT

1
vT

2
...

vT
m

. Therefore, the method for

checking whether v1, v2, . . . , vm are linearly independent does the exact same thing
as the method for checking whether the columns of PT span Rn. This proves (a).

(b) follows from (a) by applying (a) to PT instead of P, since
(

PT)T
= P.

1.2. Bases

Definition 1.2.1. A basis of Rn means a list (v1, v2, . . . , vm) of vectors in Rn that
is both independent and spans Rn.

Example 1.2.2. Let

v1 =

(
1
1

)
and v2 =

(
−1
1

)
.

I claim that (v1, v2) is a basis of R2.
Indeed, to see that it is independent, we row-reduce

A = [v1 | v2] =

(
1 −1
1 1

)
−→

(
1 1
0 2

)
;

this has two pivots, so (v1, v2) is independent.
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To see that it spans R2, we row-reduce

C =

[
vT

1
vT

2

]
=

(
1 1
−1 1

)
−→

(
1 1
0 2

)
;

this has two pivots, so (v1, v2) spans R2.

Theorem 1.2.3. Let v1, v2, . . . , vm be column vectors in Rn.
(a) The list (v1, v2, . . . , vm) spans Rn if and only if each w ∈ Rn can be written

as w = λ1v1 + λ2v2 + · · ·+ λmvm for at least one m-tuple (λ1, λ2, . . . , λm) ∈ Rm.
(b) The list (v1, v2, . . . , vm) is linearly independent if and only if each w ∈

Rn can be written as w = λ1v1 + λ2v2 + · · · + λmvm for at most one m-tuple
(λ1, λ2, . . . , λm) ∈ Rm.

(c) The list (v1, v2, . . . , vm) is a basis of Rn if and only if each w ∈ Rn

can be written as w = λ1v1 + λ2v2 + · · · + λmvm for exactly one m-tuple
(λ1, λ2, . . . , λm) ∈ Rm.

In the latter case, these λ1, λ2, . . . , λm are called the coordinates of w with respect
to the basis (v1, v2, . . . , vm).

Proof of Theorem 1.2.3. (a) We have the following equivalence:

(the list (v1, v2, . . . , vm) spans Rn)

⇐⇒ (Rn = span (v1, v2, . . . , vm))

⇐⇒ (Rn ⊆ span (v1, v2, . . . , vm))

(since span (v1, v2, . . . , vm) ⊆ Rn is true either way)
⇐⇒ (each w ∈ Rn lies in span (v1, v2, . . . , vm))

⇐⇒ (each w ∈ Rn is a combination of v1, v2, . . . , vm)

⇐⇒
(

each w ∈ Rn can be written as λ1v1 + λ2v2 + · · ·+ λmvm
for at least one choice of λ1, λ2, . . . , λm

)
.

(b) =⇒: Assume that (v1, v2, . . . , vm) is linearly independent.
We must prove that each w ∈ Rn can be written as w = λ1v1 + λ2v2 + · · ·+ λmvm

for at most one m-tuple (λ1, λ2, . . . , λm) ∈ Rm.
So let w ∈ Rn. Let (α1, α2, . . . , αm) and (β1, β2, . . . , βm) be two m-tuples of real

numbers such that

w = α1v1 + α2v2 + · · ·+ αmvm and w = β1v1 + β2v2 + · · ·+ βmvm.

We must prove that (α1, α2, . . . , αm) = (β1, β2, . . . , βm); in other words, we must
prove that αi = βi for each i.

Subtracting the two equalities

w = α1v1 + α2v2 + · · ·+ αmvm and w = β1v1 + β2v2 + · · ·+ βmvm,
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we obtain

0 = (α1v1 + α2v2 + · · ·+ αmvm)− (β1v1 + β2v2 + · · ·+ βmvm)

= (α1v1 − β1v1) + (α2v2 − β2v2) + · · ·+ (αmvm − βmvm)

= (α1 − β1) v1 + (α2 − β2) v2 + · · ·+ (αm − βm) vm.

This is a relation between the v1, v2, . . . , vm, and thus must be the trivial relation, be-
cause we assumed that the v1, v2, . . . , vm are independent (so each relation between
them is the trivial relation). This means that

α1 − β1 = 0, α2 − β2 = 0, . . . , αm − βm = 0.

In other words,

α1 = β1, α2 = β2, . . . , αm = βm.

In other words, (α1, α2, . . . , αm) = (β1, β2, . . . , βm). This proves that there is at most
one m-tuple (λ1, λ2, . . . , λm) ∈ Rm such that w = λ1v1 + λ2v2 + · · ·+ λmvm.
⇐=: Assume that each w ∈ Rn can be written as w = λ1v1 + λ2v2 + · · ·+ λmvm

for at most one m-tuple (λ1, λ2, . . . , λm) ∈ Rm. We must prove that (v1, v2, . . . , vm)
is linearly independent.

Indeed, let µ1v1 + µ2v2 + · · · + µmvm = 0 be a relation between v1, v2, . . . , vm.
Then, the zero vector 0 can be written as 0 = λ1v1 + λ2v2 + · · · + λmvm for two
m-tuples (λ1, λ2, . . . , λm) ∈ Rm: namely, for

(λ1, λ2, . . . , λm) = (µ1, µ2, . . . , µm) (since 0 = µ1v1 + µ2v2 + · · ·+ µmvm) ,

and also for

(λ1, λ2, . . . , λm) = (0, 0, . . . , 0) (because 0 = 0v1 + 0v2 + · · ·+ 0vm) .

But by our assumption, there is at most one such m-tuple. Thus, the two m-tuples

(µ1, µ2, . . . , µm) and (0, 0, . . . , 0)

must be identical. In other words, (µ1, µ2, . . . , µm) = (0, 0, . . . , 0). In other words,
µi = 0 for all i. This means that our relation µ1v1 + µ2v2 + · · ·+ µmvm = 0 must be
trivial. Hence, we have shown that any relation between v1, v2, . . . , vm is trivial. In
other words, (v1, v2, . . . , vm) is linearly independent.

(c) The claim of (c) is just obtained by combining (a) with (b), because

“basis” = “span”∧ “linearly independent”

and
“exactly one” = “at least one”∧ “at most one”.
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Example 1.2.4. Let

v1 =

 1
0
0

 , v2 =

 1
1
0

 , v3 =

 1
1
1

 .

Then, (v1, v2, v3) is a basis of R3.
Indeed, to see that it is independent, we have to argue that

λ1v1 + λ2v2 + λ3v3 = 0 =⇒ λ1 = λ2 = λ3 = 0.

But this is easy:

(λ1v1 + λ2v2 + λ3v3 = 0)

=⇒

λ1

 1
0
0

+ λ2

 1
1
0

+ λ3

 1
1
1

 =

 0
0
0


=⇒

 λ1 + λ2 + λ3
λ2 + λ3

λ3

 =

 0
0
0


=⇒ (λ1 + λ2 + λ3 = 0 and λ2 + λ3 = 0 and λ3 = 0)
=⇒ (λ1 = λ2 = λ3 = 0) .

As to why the vectors v1, v2, v3 span R3: We can write each vector w = a1
a2
a3

 ∈ R3 as a combination of v1, v2, v3, namely as

w = (a1 − a2) v1 + (a2 − a3) v2 + a3v3,

since

(a1 − a2) v1 + (a2 − a3) v2 + a3v3

= (a1 − a2)

 1
0
0

+ (a2 − a3)

 1
1
0

+ a3

 1
1
1


=

 (a1 − a2) + (a2 − a3) + a3
(a2 − a3) + a3

a3

 =

 a1
a2
a3

 = w.

Let us restate Theorem 1.2.3 as follows:
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Theorem 1.2.5. Let v1, v2, . . . , vm be column vectors in Rn. Let

A = [v1 | v2 | · · · | vm] (an n×m-matrix) .

(a) The list (v1, v2, . . . , vm) spans Rn if and only if for each w ∈ Rn, the system
Aλ = w has at least one solution λ ∈ Rm.

(b) The list (v1, v2, . . . , vm) is linearly independent if and only if for each w ∈
Rn, the system Aλ = w has at most one solution λ ∈ Rm.

(c) The list (v1, v2, . . . , vm) is a basis of Rn if and only if for each w ∈ Rn, the
system Aλ = w has exactly one solution λ ∈ Rm.

Proof of Theorem 1.2.5. If we write the vector λ ∈ Rm as λ =


λ1
λ2
...

λm

, then the first

lemma from last time says

[v1 | v2 | · · · | vm]︸ ︷︷ ︸
=A


λ1
λ2
...

λm


︸ ︷︷ ︸

=λ

= λ1v1 + λ2v2 + · · ·+ λmvm,

that is,
Aλ = λ1v1 + λ2v2 + · · ·+ λmvm.

Thus, a solution to Aλ = w is the same as a column vector


λ1
λ2
...

λm

 ∈ Rm satisfying

λ1v1 + λ2v2 + · · ·+ λmvm = w.

Thus, Theorem 1.2.5 follows from Theorem 1.2.3.

This theorem shows that spanning and independence of vectors are directly re-
lated to the kind of solutions that a linear system can have.

The next proposition is [Strickland, Proposition 10.11]:

Proposition 1.2.6. Let A be an n× n-matrix. Then, the columns of A form a basis
of Rn if and only if the columns of AT form a basis of Rn.

Proof. This follows from Proposition 1.1.3.

The next proposition is [Strickland, Proposition 10.12]:
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Proposition 1.2.7. Let v1, v2, . . . , vn be n vectors in Rn. (Yes, we need the same n
here.)

(a) If (v1, v2, . . . , vn) is independent, then (v1, v2, . . . , vn) is a basis of Rn (and
thus, in particular, spans Rn).

(b) If (v1, v2, . . . , vn) spans Rn, then (v1, v2, . . . , vn) is a basis of Rn (and thus,
in particular, is independent).

We will prove this in a moment. First, here is an imprecise but memorable way
to formulate this proposition:

• (a) Sufficiently many independent vectors always form a basis.

• (b) Sufficiently few spanning vectors always form a basis.

Here, “sufficiently many” means “n” both times, where the vectors are in Rn.

Example 1.2.8. (a) The three vectors

 1
0
0

 ,

 1
1
0

 ,

 1
1
1

 are independent

and thus (by part (a) of this proposition) span R3.

(b) The three vectors

 1
−1
0

 ,

 1
0
−1

 ,

 1
1
1

 span R3 and thus (by part

(b) of this proposition) are independent.

(c) The two vectors

 1
0
0

 ,

 1
1
0

 in R3 are independent, but don’t form a

basis. This does not contradict the proposition, because they are just 2 vectors,
not 3 vectors.

Proof of Proposition 1.2.7. Let A = [v1 | v2 | · · · | vn].
(a) Suppose that (v1, v2, . . . , vn) is independent. Let B be the RREF of A. By our

method for testing independence, we thus see that B has a pivot in each column.
Hence, B = In (since B is an n× n-matrix). Thus, there is a way to transform the
matrix A into In by row operations.

We must show that (v1, v2, . . . , vn) spans Rn. In other words, we must show that
the system Aλ = w has at least one solution for each w ∈ Rn.

Fix w ∈ Rn. The augmented matrix of the system Aλ = w is

[v1 | v2 | · · · | vn | w] .

Let us now recall the row operations that were used to transform the matrix A into
In. Applying the same row operations to the augmented matrix [v1 | v2 | · · · | vn | w],
we obtain

[In | ∗]
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(where the asterisk “∗” stands for a last column that we don’t know), because the
first n columns of the augmented matrix [v1 | v2 | · · · | vn | w] are precisely the n
columns of A. But this matrix [In | ∗] is in RREF (no matter what its last column
is), and has a pivot in each of its first n columns, and thus has no pivot in its last
column. Thus, we conclude that the system Aλ = w has a solution (according to
the Gaussian elimination method). So we have shown that (v1, v2, . . . , vn) spans
Rn. Hence, the list (v1, v2, . . . , vn) is a basis of Rn (since this list is independent).

(b) Suppose that (v1, v2, . . . , vn) spans Rn. In other words, the columns of the
matrix A span Rn. By part (b) of the first proposition today, this yields that the
columns of AT are linearly independent. Thus, Proposition 1.2.7 (a) (applied to
these columns) shows that the columns of AT form a basis of Rn. Thus, Proposition
1.2.6 shows that the columns of A form a basis of Rn. In other words, v1, v2, . . . , vn
form a basis of Rn.

Corollary 1.2.9. Let v1, v2, . . . , vm be m vectors in Rn.
(a) If m < n, then (v1, v2, . . . , vm) cannot span Rn.
(b) If m > n, then (v1, v2, . . . , vm) cannot be independent.
(c) If m 6= n, then (v1, v2, . . . , vm) cannot be a basis of Rn.
(d) If m = n and (v1, v2, . . . , vm) is either independent or spans Rn, then

(v1, v2, . . . , vm) is a basis of Rn.

Proof. (a) was proven last time.
(b) was proven last time.
(c) follows by combining (a) and (b).
(d) This is Proposition 1.2.7.

Here is an imprecise “fact”: If you pick n vectors in Rn “at random”, it is almost
sure that you get a basis of Rn. To not get a basis, you need a “coincidence”. (This
is imprecise because there is no such thing as a “random” real number, thus no
“random” vectors either. Formalizing this rigorously would take us too far afield.)

1.3. Elementary matrices

We have defined row operations as operations in which rows get added, scaled or
swapped. In a way, this means we have been breaking our matrices apart (into
rows, at least) and assembling them back again. Can we achieve the same result
through matrix addition, multiplication etc., without breaking them apart? In other
words, can we rewrite our row operations in terms of matrices, not in terms of
rows?

Yes, but we need some special matrices for this. We follow [Strickland, Definition
11.1] in the following:

Definition 1.3.1. Let n ∈N. We define the following n× n-matrices:
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(a) If p ∈ {1, 2, . . . , n} and if λ ∈ R is nonzero, then Dp (λ) shall mean the
n× n-matrix diag (1, 1, . . . , 1, λ, 1, 1, . . . , 1); this is the matrix whose diagonal en-
tries are 1, 1, . . . , 1, λ, 1, 1, . . . , 1 with the λ in position p, and whose off-diagonal
entries are 0. Equivalently, Dp (λ) is the n× n-matrix which is In but with the
(p, p)-th entry replaced by λ.

(b) If p, q ∈ {1, 2, . . . , n} are distinct, and if µ ∈ R, then Ep,q (µ) shall mean the
n× n-matrix which is In but with the (p, q)-th entry replaced by µ.

(c) If p, q ∈ {1, 2, . . . , n} are distinct, then Fp,q shall mean the n × n-matrix
which is In but with rows p and q swapped.

Example 1.3.2. Let n = 4.
(a) We have

D2 (λ) =


1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1

 .

(b) We have

E2,4 (µ) =


1 0 0 0
0 1 0 µ
0 0 1 0
0 0 0 1

 .

(c) We have

F2,4 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

The three kinds of matrices we just defined (Dp (λ), Ep,q (µ) and Fp,q) are called
the elementary matrices. They can be used to re-encode row operations as follows
([Strickland, Proposition 11.3]):

Proposition 1.3.3. Let A be an n×m-matrix, and let A′ be obtained from A by
a single row operation. Then, A′ = UA for some elementary matrix U. In more
detail:

(a) If A′ is obtained from A by scaling the p-th row by λ, then A′ = Dp (λ) A.
(b) If A′ is obtained from A by adding µ times the q-th row to the p-th row,

then A′ = Ep,q (µ) A.
(c) If A′ is obtained from A by swapping the p-th and q-th rows, then A′ =

Fp,q A.

Proof. Let A =


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

.
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(a) We have

D2 (λ) A =


1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1




a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 =


a1,1 a1,2 a1,3 a1,4

λa2,1 λa2,2 λa2,3 λa2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 .

(b) We have

E2,4 (µ) A =


1 0 0 0
0 1 0 µ
0 0 1 0
0 0 0 1




a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4



=


a1,1 a1,2 a1,3 a1,4

a2,1 + µa4,1 a2,2 + µa4,2 a2,3 + µa4,3 a2,4 + µa4,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 .

(c) We have

F2,4A =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 =


a1,1 a1,2 a1,3 a1,4
a4,1 a4,2 a4,3 a4,4
a3,1 a3,2 a3,3 a3,4
a2,1 a2,2 a2,3 a2,4

 .

Remark: My notations Dp (λ), Ep,q (µ) and Fp,q are from Strickland’s [Strickland],
except that he does not place commas between the two subscripts (so he calls them
Dp (λ), Epq (µ) and Fpq). They correspond to Sλ

p , Aµ
p,q and Tp,q in [lina].

Remark: So multiplying elementary matrices to a matrix A on the left corre-
sponds to row operations on A. Likewise, multiplying them to A on the right
corresponds to column operations on A. (Beware, however: Ep,q (µ) will now add
µ times the p-th column to the q-th column.)

Corollary 1.3.4. Let A and B be n×m-matrices such that A can be transformed
into B by row operations. Then, B = UA for some matrix U that can be written
as a product of elementary matrices.

Proof. Let
A −→ C1 −→ C2 −→ · · · −→ Cs −→ B

be a way to get from A to B by row operations (where each arrow stands for a
single row operation). Then, by Proposition 1.3.3, we have

C1 = U1A,
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C2 = U2C1,
C3 = U3C2,

...
Cs = UsCs−1,
B = Us+1Cs

for some elementary matrices U1, U2, . . . , Us+1. Combining these equalities, we find

B = Us+1UsUs−1 · · ·U1︸ ︷︷ ︸
a product of elementary matrices

A.

1.4. Invertibility

We follow partly [Strickland, §11], partly [lina, §3.2].

Definition 1.4.1. Let A be an m× n-matrix.
(a) A left inverse of A means an n×m-matrix L such that LA = In.
(b) A right inverse of A means an n×m-matrix R such that AR = Im.
(c) An inverse (or two-sided inverse) of A means an n×m-matrix B such that

BA = In and AB = Im.

Thus, an inverse of A is the same as a matrix that is simultaneously a left inverse
and a right inverse of A.

Example 1.4.2. If A =
(

1 3
)
, then

(
−2
1

)
is a right inverse of A, since

(
1 3

) ( −2
1

)
=
(

1 · (−2) + 3 · 1
)
=
(

1
)
= I1.

But
(

1
0

)
is also a right inverse of A in this case. So right inverses are not

unique.

Nor do they always exist; for example,
(

0 0
0 0

)
has none.

Similarly for left inverses.

Note that if L is a left inverse of A, then LT is a right inverse of AT, and vice versa;
therefore, the properties of right inverses mirror the properties of left inverses.
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Theorem 1.4.3. Let A be a matrix. Let L be a left inverse of A. Let R be a right
inverse of A. Then, L = R, and furthermore this matrix L = R is an inverse of A.

Proof. Comparing

LA︸︷︷︸
=In

R = InR = R and L AR︸︷︷︸
=Im

= LIm = L,

we get L = R. Now, LA = In and A L︸︷︷︸
=R

= AR = Im, so we conclude that L is an

inverse of A.

Corollary 1.4.4. Assume that a matrix A has both a left inverse and a right
inverse. Then:

(a) The matrix A has a unique inverse.
(b) This inverse is the only left inverse of A and the only right inverse of A.

Proof. We have assumed that A has a left inverse and a right inverse. Call them L
and R. Then, Theorem 1.4.3 shows that L = R, and that furthermore this matrix
L = R is an inverse of A. Now, if L′ is any other left inverse of A, then Theorem
1.4.3 (applied to L′ instead of L) also shows that L′ = R, whence L′ = R = L. This
shows that the inverse L = R is the only left inverse of A. Similarly, it is the only
right inverse of A. This proves part (b). From this, the uniqueness part of part (a)
follows (since any other inverse would also be a left inverse).

Corollary 1.4.5. If A has an inverse, then this inverse is unique.

Proof. An inverse is both a left inverse and a right inverse. Thus, this corollary
follows from Corollary 1.4.4 (a).

Definition 1.4.6. If a matrix A has an inverse, then this inverse is denoted by
A−1. (This notation is harmless, because Corollary 1.4.5 says that this inverse is
unique.)

A matrix is said to be invertible if it has an inverse.

Proposition 1.4.7. Let A and B be two invertible matrices. Then, their product
AB is also invertible, and its inverse is (AB)−1 = B−1A−1.

Proof. We have to check that B−1A−1 is an inverse of AB. In other words, we have
to check that

(
B−1A−1) (AB) = I and (AB)

(
B−1A−1) = I (where I stands for the

identity matrix of the appropriate size). But this follows from(
B−1A−1

)
(AB) = B−1 A−1A︸ ︷︷ ︸

=I

B = B−1 IB︸︷︷︸
=B

= B−1B = I and

(AB)
(

B−1A−1
)
= A BB−1︸ ︷︷ ︸

=I

A−1 = AI︸︷︷︸
=A

A−1 = AA−1 = I.
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