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1. Gaussian elimination (continued)

1.1. Linear dependence (continued)

Proposition 1.1.1. Let v1, v2, . . . , vk be k vectors in Rn. Then, v1, v2, . . . , vk are
dependent if and only if one of them is a combination of the others.

(Remember: “dependent” = “linearly dependent”, and “combination” = “linear
combination”.)

Proof. =⇒: Assume that v1, v2, . . . , vk are dependent. We must show that one of
them is a combination of the others.

We have assumed that v1, v2, . . . , vk are dependent. Hence, there exists a nontriv-
ial relation

λ1v1 + λ2v2 + · · ·+ λkvk = 0.

Since this relation is nontrivial, there is some i such that λi 6= 0. Now, we can
rewrite this relation as follows:

λivi = −λ1v1 − λ2v2 − · · · − λi−1vi−1 − λi+1vi+1 − · · · − λkvk.

But since λi 6= 0, we can multiply this equality by
1
λi

. We get

vi =
1
λi

(−λ1v1 − λ2v2 − · · · − λi−1vi−1 − λi+1vi+1 − · · · − λkvk)

=
−λ1

λi
v1 +

−λ2

λi
v2 + · · ·+

−λi−1

λi
vi−1 +

−λi+1

λi
vi+1 + · · ·+

−λk
λi

vk.

Thus, vi is a linear combination of all the remaining v’s (that is, of v1, v2, . . . , vi−1, vi+1, . . . , vk).
⇐=: Assume that one of v1, v2, . . . , vk is a combination of the others. We must

show that v1, v2, . . . , vk are dependent.

1
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We have assumed that one of v1, v2, . . . , vk – say, vi – is a combination of the
others. Thus,

vi = α1v1 + α2v2 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αkvk

for some numbers α1, α2, . . . , αi−1, αi+1, . . . , αk. Subtracting vi from both sides, we
get

0 = (α1v1 + α2v2 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αkvk)− vi

= α1v1 + α2v2 + · · ·+ αi−1vi−1 + (−1) vi + αi+1vi+1 + · · ·+ αkvk.

This is a linear relation between v1, v2, . . . , vk, and it is nontrivial since −1 6= 0. So
v1, v2, . . . , vk are dependent.

Warning: “One of v1, v2, . . . , vk is a combination of others” is not the same as
saying “any of v1, v2, . . . , vk is a combination of others”.

Example 1.1.2. Let k = 3 and v1 =

(
1
0

)
and v2 =

(
2
0

)
and v3 =

(
0
1

)
.

Then, v1, v2, v3 are dependent. Thus, the proposition shows that one of them
is a combination of the others. And indeed,

v1 is a combination of v2 and v3, since v1 =
1
2

v2 + 0v3;

v2 is a combination of v1 and v3, since v2 = 2v1 + 0v3.

But v3 is not a combination of v1 and v2.

Corollary 1.1.3. Let v and w be two vectors in Rn.
(a) The one-element list (v) is linearly dependent if and only if v = 0.
(b) The two-element list (v, w) is linearly dependent if and only if one of v and

w is a scalar multiple of the other (i.e., there is λ ∈ R such that either v = λw or
w = λv).

Proof. (a) Left to the reader.
(b) According to the proposition, the two-element list (v, w) is linearly dependent

if and only if one of v and w is a combination of the other. But a linear combination
of a single vector u is the same as a scalar multiple of u.

Slogan:

• Linear dependence is a sort of redundancy – if a list of vectors is linearly
dependent, then all its combinations can be obtained even if one of the vectors
is removed (but we have to remove the right one, not just any one).

• Linear dependence is a generalization of proportionality between two lists of
numbers.
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Note that in the plane R2, linearly dependent vectors are said to be parallel.

Proposition 1.1.4. If a list of vectors contains the 0 vector, then it is automatically
dependent.

Proof. If vi = 0, then 0 · v1 + 0 · v2 + · · ·+ 0 · vi−1 + 1 · vi + 0 · vi+1 + · · ·+ 0 · vk = 0
is a nontrivial relation.

1.1.1. Linear combinations as matrix-by-vector products

Definition 1.1.5. Let v1, v2, . . . , vm be m column vectors in Rn. Then,

[v1 | v2 | · · · | vm]

shall denote the n×m-matrix whose columns are v1, v2, . . . , vm.

This notation just lets us paste together some column vectors into a matrix. For
example, [(

a
b

)
|
(

c
d

)
|
(

e
f

)]
=

(
a c e
b d f

)
.

In what follows, we will need a lemma:

Lemma 1.1.6. Let v1, v2, . . . , vm be m column vectors in Rn. Let λ1, λ2, . . . , λm be
m real numbers. Then,

[v1 | v2 | · · · | vm]


λ1
λ2
...

λm

 = λ1v1 + λ2v2 + · · ·+ λmvm.

This lemma shows that the linear combination λ1v1 + λ2v2 + · · ·+ λmvm can be
written as a “matrix · column vector” product.

Proof of Lemma 1.1.6. Just multiply things out! Write each vector vi as


vi,1
vi,2

...
vi,n

.

Thus,

[v1 | v2 | · · · | vm] =


v1,1 v2,1 · · · vm,1
v1,2 v2,2 · · · vm,2

...
... . . . ...

v1,n v2,n · · · vm,n

 .
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Hence,

[v1 | v2 | · · · | vm]


λ1
λ2
...

λm



=


v1,1 v2,1 · · · vm,1
v1,2 v2,2 · · · vm,2

...
... . . . ...

v1,n v2,n · · · vm,n




λ1
λ2
...

λm



=


v1,1λ1 + v2,1λ2 + · · ·+ vm,1λm
v1,2λ1 + v2,2λ2 + · · ·+ vm,2λm

...
v1,nλ1 + v2,nλ2 + · · ·+ vm,nλm



=


v1,1λ1
v1,2λ1

...
v1,nλ1

+


v2,1λ2
v2,2λ2

...
v2,nλ2

+ · · ·+


vm,1λm
vm,2λm

...
vm,nλm



= λ1


v1,1
v1,2

...
v1,n


︸ ︷︷ ︸

=v1

+λ2


v2,1
v2,2

...
v2,n


︸ ︷︷ ︸

=v2

+ · · ·+ λm


vm,1
vm,2

...
vm,n


︸ ︷︷ ︸

=vm

= λ1v1 + λ2v2 + · · ·+ λmvm.

1.1.2. Checking linear dependence via RREF

Question: How do we check whether m vectors v1, v2, . . . , vm are dependent?
We already know a way: We want to know whether there is a nontrivial relation

λ1v1 + λ2v2 + · · · + λmvm = 0. We translate this relation into a system in the
unknowns λ1, λ2, . . . , λm. If this system has any nontrivial solution (i.e., if it has
any free variables), then the vectors v1, v2, . . . , vm are dependent. If this system has
only the trivial solution, then the vectors v1, v2, . . . , vm are independent.

But there is a better method ([Strickland, Method 8.8]):

Theorem 1.1.7. Let v1, v2, . . . , vm be m vectors in Rn. To see whether they are
dependent, the following algorithm works:
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(a) Form the n×m-matrix A whose columns are v1, v2, . . . , vm. This is usually
written as follows:

A = [v1 | v2 | · · · | vm] .

(b) Row-reduce A to get an n×m-matrix B in RREF.
(c) If every column of B has a pivot, then v1, v2, . . . , vm are independent.
(d) If some column of B has no pivot, then v1, v2, . . . , vm are dependent. More-

over, solutions to the system Bλ = 0 (where λ =


λ1
λ2
...

λm

) correspond precisely

to the relations between v1, v2, . . . , vm.

Proof. We are trying to see whether the vectors v1, v2, . . . , vm are dependent. In
other words, we are trying to see whether there exist numbers λ1, λ2, . . . , λm ∈ R

that are not all 0 but satisfy λ1v1 + λ2v2 + · · ·+ λmvm = 0. In other words, we are

trying to see whether there exists a column vector λ =


λ1
λ2
...

λm

 satisfying Aλ = 0

(because if λ =


λ1
λ2
...

λm

 is any vector, then

Aλ = [v1 | v2 | · · · | vm]


λ1
λ2
...

λm

 = λ1v1 + λ2v2 + · · ·+ λmvm

(by Lemma 1.1.6), and therefore the equation λ1v1 + λ2v2 + · · · + λmvm = 0 can
be rewritten as Aλ = 0). In other words, we are trying to see whether the system
Aλ = 0 of linear equations has a nonzero solution λ. Since this system always has
the zero solution λ = 0 (because A0 = 0), this is the same as checking whether
this system has a unique solution. (Indeed, if it has a unique solution, then it must
be the zero solution, and thus our vectors v1, v2, . . . , vm are independent; but if its
solution is not unique, then it must have a nonzero solution, and thus our vectors
v1, v2, . . . , vm are dependent.)

How do we tell whether the system Aλ = 0 has a unique solution? We can solve
the system using the (systematic) Gaussian elimination method that we learned
last time. This method starts by constructing the augmented matrix of the system,
which we shall denote by A′ this time because the letter A is already taken. Clearly,

A′ = [v1 | v2 | · · · | vm | 0] .
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That is, the augmented matrix A′ is A with an extra column full of zeroes attached
to it on the right end.

The next step in Gaussian elimination is to bring the augmented matrix A′ into
RREF. But note that the last column of A′ is full of zeroes. This fact does not
change as we perform the row operations of Gaussian elimination; indeed, adding,
scaling or switching zeroes only produces zeroes.1 Thus, the row operations that
we apply to A′ only change the first m columns of A′ while the last column remains
filled with zeroes. This means that these row operations are tantamount to the
row operations that bring the matrix A = [v1 | v2 | · · · | vm] into RREF; the only
difference is that now we have a useless column full of zeroes dangling around at
the right end, which never changes.

Thus, the RREF of A′ will be the matrix B with a column full of zeroes attached
at the right end (since the RREF of A was B). Let me call this matrix B′. So B′ is
obtained from B by adding an extra column full of zeroes at the right end. Here is
a (symbolic) picture of our situation:

A
bring to RREF

//

attach column full of zeroes

��

B

attach column full of zeroes

��

A′
bring to RREF

// B′

But B′ is the RREF of A′; thus the Gaussian elimination method tells us the
following about solutions to Aλ = 0:

• A solution to Aλ = 0 exists if and only if the matrix B′ has no pivot in the
last column.

• If B′ has no pivot in the last column but a pivot in each of the other columns,
then there is only one solution to Aλ = 0 (since there are no free variables).

• If B′ has no pivot in at least one column other than the last one, then there
are multiple solutions to Aλ = 0 (since there are free variables).

We can restate this in terms of B, since B is simply B′ without the last column
(and since the last column of B′ is full of zeroes and thus has no pivot). We thus
obtain the following:

1Example:  a b 0
c d 0
e f 0

 −→
 a b 0

a + c b + d 0
e f 0

 .

Thus, the last column of A′, being initially a zero vector, will remain a zero vector throughout the
row-reduction process, and will not impact the life of the other columns. Hence, row-reducing
the augmented matrix A′ is the same as row-reducing the matrix A, except that the last column
is just “hanging around”.
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• A solution to Aλ = 0 always exists. (Not surprising – it’s just λ = 0.)

• If B has a pivot in each of its columns, then there is only one solution to
Aλ = 0 (since there are no free variables).

• If B has no pivot in at least one column, then there are multiple solutions to
Aλ = 0 (since there are free variables).

Now, recall that “there is only one solution to Aλ = 0” means “v1, v2, . . . , vm are
independent”, whereas “there are multiple solutions to Aλ = 0” means “v1, v2, . . . , vm
are dependent”. Thus, what we just proved is precisely the theorem.

Example 1.1.8. Consider the three vectors

v1 =

 1
2
3

 , v2 =

 2
2
3

 , v3 =

 3
3
3

 .

Are they dependent?
The algorithm described in the previous theorem tells us to construct the ma-

trix

A = [v1 | v2 | v3] =

 1 2 3
2 2 3
3 3 3


and to row-reduce it: 1 2 3

2 2 3
3 3 3

 −→
 1 2 3

0 −2 −3
3 3 3

 −→
 1 2 3

0 −2 −3
0 −3 −6


−→

 1 2 3
0 1 3/2
0 −3 −6

 −→
 1 2 3

0 1 3/2
0 0 −3/2


−→

 1 2 3
0 1 3/2
0 0 1

 .

We are not done row-reducing the matrix yet, but we already see that it will have
a pivot in each column. Thus, the vectors v1, v2, v3 are independent.

Example 1.1.9. Are the vectors

v1 =

(
1
2

)
, v2 =

(
2
3

)
, v3 =

(
3
4

)
dependent?
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We can proceed by the same method:

A = [v1 | v2 | v3] =

(
1 2 3
2 3 4

)
−→

(
1 2 3
0 −1 −2

)
−→

(
1 2 3
0 1 2

)
.

Again, we have not row-reduced the matrix yet, but we already see the pivots,
and in particular we see that there won’t be a pivot in the last column. Thus, the
vectors v1, v2, v3 are dependent.

I claim that this was clear even earlier. We didn’t have to do any row opera-
tions! Why not? Because A was a 2× 3-matrix. It has more columns than rows.
Of course, this will still hold after row-reduction. Hence, if each column had a
pivot, then the matrix would have 3 pivots, which would thus lie in 3 different
rows (since each pivot has to lie in a different row). But A does not have 3 dif-
ferent rows to begin with. So there is at least one column without pivot. Thus,
v1, v2, v3 are dependent.

This generalizes:

Definition 1.1.10. An m× n-matrix is said to be

• wide if n > m;

• square if n = m;

• tall if n < m.

These words refer to how the matrix looks like:

︸ ︷︷ ︸
wide

, ︸ ︷︷ ︸
square

,

︸ ︷︷ ︸
tall

.

Let us now generalize what we have observed in the last example:

Proposition 1.1.11. The RREF of a wide matrix cannot have a pivot in each col-
umn.

Proof. The RREF of a wide matrix is still a wide matrix. If it had a pivot in each
column, then it would have as many pivots as it has columns, and thus it would
have at least as many rows as it has columns (since each pivot must lie in a different
row). But this is not true for a wide matrix.
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Corollary 1.1.12. Any m vectors in Rn are dependent if m > n.

Proof. Apply the method above to check whether these m vectors are dependent.
The matrix B will be wide, so by the previous proposition it cannot have a pivot in
each column. According to the method, this means that the m vectors are depen-
dent.

So we can answer certain dependence questions without even computing the
RREF.

Example 1.1.13. Any 16 vectors in R15 are dependent.

Let us extend the last proposition a little bit ([Strickland, Lemma 8.7]):

Lemma 1.1.14. Let B be a p× q-matrix in RREF.
(a) If B is wide, then B cannot have a pivot in each column.
(b) If B is square, then the only way for B to have a pivot in each column is

when B = Ip.
(c) The only way for B to have a pivot in each column is when p ≥ q and

B =

[
Iq

0(p−q)×q

]
.

(The right hand side of this equality is to be understood as the p × q-matrix
obtained by piling the q × q identity matrix Iq on top of the (p− q) × q zero

matrix 0(p−q)×q. For example, if q = 2 and p = 5, then it means


1 0
0 1
0 0
0 0
0 0

. If

p = q, then it simply means Iq.)

Proof. Assume that B has a pivot in each column. Thus, B has q pivots in total
(since B has q columns, and there can only be 1 pivot per column). Property RREF3
requires each pivot of an RREF matrix to “clear out” its column (in the sense that
all other entries in its column are 0’s). Thus, all non-pivot entries of B are 0’s (since
B has a pivot in each column). Due to property RREF2, we furthermore know that
the pivots move right as we move down the matrix. Thus,

• the topmost pivot has to be in column 1 (since otherwise, column 1 would
have no pivot);

• the second-topmost pivot has to be in column 2 (since otherwise, column 2
would have no pivot);
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• the third-topmost pivot has to be in column 3 (since otherwise, column 3
would have no pivot);

• . . ..

Also, property RREF0 shows that these pivots must be in the first q rows of
B, since all rows with no pivot are zero rows. Thus, the first q rows of B have
pivots: row 1 has a pivot in column 1; row 2 has a pivot in column 2; row 3 has a
pivot in column 3; and so on. The remaining rows are zero rows. This shows that

p ≥ q (because B must have q rows to begin with) and B =

[
Iq

0(p−q)×q

]
(since all

non-pivot entries of B are 0’s). This proves part (c) of the lemma.
Part (b) is just the particular case of part (c) for p = q.
Part (a) follows from the p ≥ q part of part (c) (since “B is wide” means the same

as “p < q”).

1.2. Spans and spanning

Proposition 1.2.1. Let v1, v2, . . . , vk be some vectors in Rn. Then, any combination
of combinations of v1, v2, . . . , vk is a combination of v1, v2, . . . , vk.

Proof. For example, any combination of two combinations of v1, v2, . . . , vk is a com-
bination of v1, v2, . . . , vk, because

α (λ1v1 + λ2v2 + · · ·+ λkvk) + β (µ1v1 + µ2v2 + · · ·+ µkvk)

= (αλ1 + βµ1) v1 + (αλ2 + βµ2) v2 + · · ·+ (αλk + βµk) vk.

A similar argument works for more than two combinations.

Definition 1.2.2. Let v1, v2, . . . , vk be some vectors in Rn.
(a) The span of v1, v2, . . . , vk is the set of all combinations of v1, v2, . . . , vk.
This is a subset of Rn, and is closed under combination, as the previous propo-

sition shows: i.e., any combination of elements in this span must also lie in this
span.

The span of v1, v2, . . . , vk is called span (v1, v2, . . . , vk) (or sometimes
〈v1, v2, . . . , vk〉).

(b) We say that the vectors v1, v2, . . . , vk (or, more precisely, the list
(v1, v2, . . . , vk)) span Rn if and only if span (v1, v2, . . . , vk) = Rn. In other words,
they span Rn if and only if each vector in Rn is a combination of v1, v2, . . . , vk.

(In part (a), the word “span” is a noun; in part (b), it is a verb.)
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Example 1.2.3. Consider the list (v1, v2, v3, v4, v5) where

v1 =

 1
1
1

 , v2 =

 1
2
1

 , v3 =

 1
3
1

 , v4 =

 1
4
1

 , v5 =

 1
5
1

 .

What is span (v1, v2, . . . , v5) ?
An arbitrary combination of v1, v2, . . . , v5 is

λ1v1 + λ2v2 + · · ·+ λ5v5 =

 λ1 + λ2 + · · ·+ λ5
λ1 + 2λ2 + 3λ3 + 4λ4 + 5λ5

λ1 + λ2 + · · ·+ λ5

 .

This is a vector whose first entry equals its third entry. Thus, not every vector in
R3 can be a combination of v1, v2, . . . , v5. Hence, v1, v2, . . . , v5 do not span R3.

What is span (v1, v2, . . . , v5) ? We have just shown that

span (v1, v2, . . . , v5) ⊆
{

w ∈ R3 | the first entry of w equals its third entry
}

.

Do we have

span (v1, v2, . . . , v5) =
{

w ∈ R3 | the first entry of w equals its third entry
}

as well? In other words, can each vector in R3 whose first entry equals its third
entry be written as a combination of v1, v2, . . . , v5 ?

Let’s try: Given such a vector

 a
b
a

, we want to write it as

 a
b
a

 = λ1v1 +

λ2v2 + · · ·+ λ5v5. This means solving the system
λ1 + λ2 + · · ·+ λ5 = a
λ1 + 2λ2 + 3λ3 + 4λ4 + 5λ5 = b
λ1 + λ2 + · · ·+ λ5 = a

.

This system always has a solution – for example λ1 = 2a− b and λ2 = b− a and
λ3 = λ4 = λ5 = 0. So we indeed have

span (v1, v2, . . . , v5) =
{

w ∈ R3 | the first entry of w equals its third entry
}

.

Question: How do we find out whether a given list of vectors spans Rn ?
Simple but slow answer: We can try to write each of the standard basis vectors

e1, e2, . . . , en (see HW2 Exercise 4) as a combination of this list.
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(Remember: The standard basis vectors e1, e2, . . . , en are defined by ei =



0
0
...
0
1
0
...
0


with the 1 being placed in position i.)

If any of e1, e2, . . . , en is not a combination of our list, then our list does not span
Rn.

If all of e1, e2, . . . , en are combinations of our list, then we conclude that each
vector in Rn is a combination of our list as well (because HW2 Exercise 4 shows
that each vector in Rn is a combination of e1, e2, . . . , en), and therefore our list does
span Rn.

However, this method is slow, since it requires solving n systems of equations.
Here is a faster method ([Strickland, Method 9.7]):

Theorem 1.2.4. Let V = (v1, v2, . . . , vm) be a list of vectors in Rn. We can check
whether this list spans Rn as follows:

(a) Form the m× n-matrix

C =


vT

1
vT

2
...

vT
m

 .

This is the matrix whose rows are vT
1 , vT

2 , . . . , vT
m (the transposes of the vectors in

V).
(b) Row-reduce C to get a matrix D in RREF.
(c) If D has a pivot in each column, then V spans Rn.
(d) If D has no pivot in some column, then V does not span Rn.

The proof of this theorem relies on tracking down what happens to the span of
the rows of a matrix2 when we apply row operations to the matrix:

Lemma 1.2.5. Let vT
1 , vT

2 , . . . , vT
m be the rows of a matrix C, and let wT

1 , wT
2 , . . . , wT

m
be the rows of a matrix C′ that is obtained from C by row operations. Then,

span (v1, v2, . . . , vm) = span (w1, w2, . . . , wm) .

In other words, row operations do not change the span of the rows.
2We are being slightly indirect here: We have defined the span for column vectors only, but the

rows of a matrix are row vectors. So, to be precise, we should speak not of the span of the rows,
but of the span of the transposes of the rows. (The transpose of a row vector is a column vector.)
This explains why you see so many “T” signs in the following lemma.
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Proof. Clearly, it suffices to show that any single row operation does not change
the span of the rows.

In other words, we have to show that any column vectors v1, v2, . . . , vm satisfy:

1. span (λv1, v2, v3, . . . , vm) = span (v1, v2, v3, . . . , vm) for any λ 6= 0.

2. span (v1 + λv2, v2, v3, . . . , vm) = span (v1, v2, v3, . . . , vm) for any λ ∈ R.

3. span (v2, v1, v3, . . . , vm) = span (v1, v2, v3, . . . , vm).

(At least, this corresponds to the row operations “scaling the first row by λ”,
“adding λ times the second row to the first row” and “swapping the first two
rows”. To be honest, we would have to show this not just for the first two rows,
but also for any pair of rows; but the arguments are the same.)

Proof of 1: Any linear combination

µ1v1 + µ2v2 + · · ·+ µmvm of v1, v2, . . . , vm

will still be a linear combination of λv1, v2, v3, . . . , vm, since it can be rewritten as(
µ1λ−1

)
(λv1) + µ2v2 + · · ·+ µmvm.

Conversely, any linear combination

µ1 (λv1) + µ2v2 + · · ·+ µmvm of λv1, v2, . . . , vm

will be a linear combination of v1, v2, . . . , vm, since it can be rewritten as

(µ1λ) v1 + µ2v2 + · · ·+ µmvm.

Thus, the linear combinations of v1, v2, . . . , vm are the same as the linear combina-
tions of λv1, v2, . . . , vm. In other words, span (v1, v2, . . . , vm) = span (λv1, v2, . . . , vm).

Proof of 2: Any linear combination

µ1v1 + µ2v2 + · · ·+ µmvm of v1, v2, . . . , vm

will still be a linear combination of v1 + λv2, v2, v3, . . . , vm, since it can be rewritten
as

µ1 (v1 + λv2) + (µ2 − λµ1) v2 + µ3v3 + · · ·+ µmvm.

Similarly, the converse direction can be shown. Thus, span (v1 + λv2, v2, v3, . . . , vm) =
span (v1, v2, v3, . . . , vm).

Proof of 3: Any linear combination

µ1v1 + µ2v2 + · · ·+ µmvm of v1, v2, . . . , vm

will still be a linear combination of v2, v1, v3, . . . , vm, since it can be rewritten as

µ2v2 + µ1v1 + µ3v3 + · · ·+ µmvm.

Similarly, the converse direction can be shown. Thus, span (v2, v1, v3, . . . , vm) =
span (v1, v2, v3, . . . , vm).
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We just showed that when we apply row operations to a matrix, the span of its
rows does not change. This means that the span of its rows is the span of the rows
of its RREF (since the RREF is obtained by row operations).

Next, we claim the following lemma ([Strickland, Lemma 9.17]):

Lemma 1.2.6. Let D be an m× n-matrix in RREF.
(a) If every column of D contains a pivot, then the transposes of the rows of D

span Rn.
(b) If some column of D does not contain a pivot, then the transposes of the

rows of D do not span Rn.

Proof. (a) Assume that every column of D contains a pivot. Then, Lemma 1.1.14 (c)

shows that D =

[
In

0(m−n)×n

]
(and m ≥ n). Hence, the transposes of the rows of D

are e1, e2, . . . , en, 0, 0, . . . , 0︸ ︷︷ ︸
m−n zero vectors

. These m vectors do span Rn, since the e1, e2, . . . , en

span Rn already (by homework set #2 Exercise 4).
(b) Assume that column i of D does not contain a pivot. I claim that the trans-

poses of the rows of D do not span Rn. More specifically, I am claiming that the
standard basis vector ei ∈ Rn is not a combination of the transposes of the rows of
D.

Indeed, assume that ei is a combination of the transposes of the rows of D. That
is,

ei = λ1 (row1 D)T + λ2 (row2 D)T + · · ·+ λm (rowm D)T

for some λ1, λ2, . . . , λm ∈ R. Clearly, not all of λ1, λ2, . . . , λm are 0, since then this
equality would say ei = 0 (which is absurd). Thus, some λj is 6= 0. Pick the smallest
j ∈ {1, 2, . . . , m} such that λj 6= 0. Thus, λ1 = λ2 = · · · = λj−1 = 0. We furthermore
assume that D has no zero rows, since we could otherwise simply remove them and
nothing important would change (since zero vectors do not contribute to a span:
span (v1, v2, . . . , vk, 0, 0, . . . , 0) = span (v1, v2, . . . , vk)). Hence, each row of D has
a pivot somewhere, and each row’s pivot is further right than the previous row’s
pivot (by property RREF2). Now,3

ei = λ1 (row1 D)T + λ2 (row2 D)T + · · ·+ λm (rowm D)T

= λj
(
rowj D

)T
+ λj+1

(
rowj+1 D

)T
+ · · ·+ λm (rowm D)T(

here, we have thrown the first j− 1 addends away,
since they are all 0 (because λ1 = λ2 = · · · = λj−1 = 0)

)

3We put asterisks (“∗”) to signify entries whose values we don’t care about.

http://www.cip.ifi.lmu.de/~grinberg/t/19fla/hw2s.pdf
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= λj



0
...
0
1
∗
∗
∗
...
∗


+ λj+1



0
0
...
0
1
∗
∗
...
∗


+ · · ·+ λm



0
0
0
0
...
0
1
∗
...


 because D is a RREF matrix with no zero rows,

so each row of D has a pivot equal to 1,
and each row’s pivot is further right than the previous row’s pivot



=



0
...
0
λj

∗
∗
...
∗


.

Thus, the first nonzero entry of the vector ei is in the same position as the first
nonzero entry in

(
rowj D

)T (because the λj
(
rowj D

)T addend is a vector whose
first nonzero entry is in this position, whereas all the other addends have their first
nonzero entries further down). But this is of course the position in which the j-th
row of D has its pivot. Thus, it cannot be in position i (since D has no pivot in
the i-th column). But this contradicts the fact that the first nonzero entry in ei is in
position i.

From the last two lemmas, our theorem follows: The second-to-last lemma shows
that row operations don’t change the span of the transposes of the rows; the last
lemma explains how we can tell from the RREF whether this span is Rn or not.

Corollary 1.2.7. A list of m vectors can never span Rn if m < n.

Proof. Consider some m vectors v1, v2, . . . , vm in Rn, where m < n. Apply the
method above to check whether these m vectors span Rn. The matrix D will be
wide, so it cannot have a pivot in each column. According to the method, this
means that the m vectors cannot span Rn.
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