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1. Gaussian elimination (continued)

1.1. Solving linear systems: summary

Reminder: “system” means “system of linear equations”.
We now have a method for solving systems ([Strickland, Method 6.9]):
(a) Write down the augmented matrix corresponding to the system.
(b) Transform this matrix into RREF using row operations (ERO1, ERO2, ERO3).
(c) Transform this back into a system.
(d) Solve this system.
The reason why this works is that row operations do not change the set of solu-

tions.

Example 1.1.1. Let us solve the system
2x + y + z = 1

4x + 2y + 3z = −1
6x + 3y− z = 11

.

Step (a): The augmented matrix is 2 1 1 1
4 2 3 −1
6 3 −1 11

 .

Step (b): Bring this matrix into RREF: 2 1 1 1
4 2 3 −1
6 3 −1 11



1
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scale row 1 by 1/2−→

 1 1/2 1/2 1/2
4 2 3 −1
6 3 −1 11


add −4·row 1 to row 2−→

 1 1/2 1/2 1/2
0 0 1 −3
6 3 −1 11


add −6·row 1 to row 3−→

 1 1/2 1/2 1/2
0 0 1 −3
0 0 −4 8


freeze row 1−→

 1 1/2 1/2 1/2 ← frozen
0 0 1 −3
0 0 −4 8


add 4·row 1 to row 2−→

 1 1/2 1/2 1/2 ← frozen
0 0 1 −3
0 0 0 −4


freeze row 1−→

 1 1/2 1/2 1/2 ← frozen
0 0 1 −3 ← frozen
0 0 0 −4


scale row 1 by −1/4−→

 1 1/2 1/2 1/2 ← frozen
0 0 1 −3 ← frozen
0 0 0 1


freeze row 1−→

 1 1/2 1/2 1/2 ← frozen
0 0 1 −3 ← frozen
0 0 0 1 ← frozen


unfreeze row 1−→

 1 1/2 1/2 1/2 ← frozen
0 0 1 −3 ← frozen
0 0 0 1


unfreeze row 1−→

 1 1/2 1/2 1/2 ← frozen
0 0 1 −3
0 0 0 1

 not an RREF!

add 3·row 2 to row 1−→

 1 1/2 1/2 1/2 ← frozen
0 0 1 0
0 0 0 1

 RREF
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unfreeze row 1−→

 1 1/2 1/2 1/2
0 0 1 0
0 0 0 1

 not an RREF!

add −1/2·row 3 to row 1−→

 1 1/2 1/2 0
0 0 1 0
0 0 0 1


add −1/2·row 2 to row 1−→

 1 1/2 0 0
0 0 1 0
0 0 0 1

 RREF.

(c) This RREF

 1 1/2 0 0
0 0 1 0
0 0 0 1

 corresponds to the system

 x + (1/2) y = 0
z = 0
0 = 1

.

(d) This system has no solutions.

This method is called (systematic) Gaussian elimination. The only choice we
have in the above formulation of this method is at the point where we pick a
leftmost nonzero entry. This is called pivoting, since the entry we pick will be a
pivot. There are several strategies to do this:

• Pick any nonzero entry among the options.

• Pick the topmost nonzero entry among the options.

• Pick a 1 if possible, just so that you don’t have to scale its row.

• Pick an entry that is as large as possible, so that the scaling step does not
introduce too much numerical error. (This is a good thing to do when the en-
tries of your matrix are approximate.) ← Numerical linear algebra / scientific
computing.

So we have some freedom in following the algorithm. Whatever we do, we end
up with an RREF, so we can solve the system. Better yet:

Theorem 1.1.2. Any matrix has exactly one RREF.
In other words: Any choice of row operations that brings A into RREF pro-

duces the exact same RREF.

We might prove this later.
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1.2. SageMath demo

SageMath (short: Sage) is a computer algebra system that is particularly suited for
exact (i.e., non-approximate) computations. The easiest way to access it (if your
computations don’t take too much time) is through https://sagecell.sagemath.
org/ .

Let us define the matrix
(

1 0 4
2 5 7

)
in SageMath:

A = Matrix(QQ, [[1, 0, 4], [2, 5, 7]])
Here, the “QQ” stands for the set Q of rational numbers, and signifies that Sage

should treat the matrix as a matrix with rational entries. (Alternatively, you could
use “RR” to get a matrix with real entries; but this opens a whole new can of worms,
because real numbers can only be stored as approximate values on a computer, and
linear algebra algorithms can be very fragile against even minor errors.)

Note that the placement of the brackets matters! They mark where rows begin
and end. If you typed
A = Matrix(QQ, [[1, 0], [4, 2], [5, 7]])

instead, then you would obtain the matrix

 1 0
4 2
5 7

.

Now that you have defined A, try out:

• A.echelon_form()← This computes the RREF of A.

• A.solve_right(vector(QQ, [3, 7, 1])) ← This computes one solution of

the system A

 x
y
z

 =

 3
7
1

. (Of course, A should be a matrix with 3

columns here, such as
(

1 0 4
2 5 7

)
.)

Also useful:

• A+B← sum of two matrices A and B.

• A*B← product of two matrices A and B.

• MatrixSpace(QQ, 3, 5)(0)← zero matrix 03×5 with 3 rows and 5 columns.

• MatrixSpace(QQ, 3, 3)(1)← identity matrix I3 of size 3.

• Matrix(QQ, [[1/(i+j) for j in range(1, 5)] for i in range(1, 3)])←

the matrix
(

1
i + j

)
1≤i≤4, 1≤j≤2

=

(
1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

)
. (Note that SageMath’s

range(1, 5) stands for the numbers 1, 2, 3, 4 (not 1, 2, 3, 4, 5); more generally,
range(a, b) stands for the numbers a, a + 1, . . . , b− 1. Note also that the col-
umn index (“for j in range(1, 5)”) has to be entered before the row index
(“for i in range(1, 3)”), since the input is meant to specify a list of lists.

https://sagecell.sagemath.org/
https://sagecell.sagemath.org/
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• Matrix(QQ, [[floor(random()*200-100) for j in range(1, 5)] for i in
range(1, 3)]) ← a matrix with random integer entries between −100 and
99; useful for experimentation.

• latex(A)← a LaTeX representation of a matrix A; helpful if you want to write
homework solutions in LaTeX.

1.3. Solving the “generic” 2× 2-system

Consider the system {
ax + by = c

a′x + b′y = c′

in two variables x, y, where a, b, c, a′, b′, c′ are arbitrary constants. Can we solve it
for x and y ?

We can try following the above method, and see what we get.
(a) The augmented matrix is (

a b c
a′ b′ c′

)
.

(b) Transforming it into RREF:(
a b c
a′ b′ c′

)
Assume that a 6= 0.

scale row 1 by 1/a−→
(

1 b/a c/a
a′ b′ c′

)
add −a′·row 1 to row 2−→

(
1 b/a c/a
0 b′ − a′b/a c′ − a′c/a

)
freeze row 1−→

(
1 b/a c/a ← frozen
0 b′ − a′b/a c′ − a′c/a

)
=

(
1 b/a c/a ← frozen
0 (ab′ − a′b) /a (ac′ − a′c) /a

)
scale row 2 by a/(ab′−a′b)−→

 1 b/a c/a ← frozen

0 1
ac′ − a′c
ab′ − a′b


(
here, we are assuming that ab′ − a′b 6= 0

)
freeze and unfreeze row 1−→

(we treat this as one step, since it changes nothing)

 1 b/a c/a ← frozen

0 1
ac′ − a′c
ab′ − a′b


unfreeze row 1−→

 1 b/a c/a

0 1
ac′ − a′c
ab′ − a′b
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add −b/a·row 2 to row 1−→

 1 0
cb′ − bc′

ab′ − ba′

0 1
ac′ − a′c
ab′ − a′b

 RREF.

(c) Transform this into the system
x =

cb′ − bc′

ab′ − ba′

y =
ac′ − a′c
ab′ − a′b

.

(d) Obvious.
Caveat: We have assumed that a 6= 0, and we have assumed that ab′ − ba′ 6= 0.
If ab′ − ba′ = 0, then our above process looks different, and we get a different

RREF and a different answer.
If a = 0, then our above process looks different, although (surprisingly?) the

result will be the same.
Upshot: (if you check these alternative cases):
The system {

ax + by = c
a′x + b′y = c′

has:

• a unique solution (namely,


x =

cb′ − bc′

ab′ − ba′

y =
ac′ − a′c
ab′ − a′b

) if ab′ − ba′ 6= 0.

• no solutions or infinitely many solutions if ab′ − ba′ = 0.

So the value ab′ − ba′ determines the structure of the solutions of the system (at
least to the extent that it tells us whether they are unique).

We will later learn that this is no coincidence. Something similar exists for sys-
tems of 3 3 equations in 3 variables, 4 equations in 4 variables, etc.

The analogues of ab′ − ba′ are called determinants (of n× n-matrices).

2. Linear combinations, linear independence and
spans

2.1. Linear combinations

This section follows [Strickland, §7].
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Definition 2.1.1. Fix n ∈ N. Then, Rn denotes the set of all column vectors of
size n (that is, n× 1-matrices) with real entries.

Definition 2.1.2. Let v1, v2, . . . , vk be some vectors in Rn. A linear combination
of v1, v2, . . . , vk means a vector w ∈ Rn that can be written as

w = λ1v1 + λ2v2 + · · ·+ λkvk for some numbers λ1, λ2, . . . , λk.

Example 2.1.3. Given three vectors a, b, c, all of the following are linear combina-
tions of a, b, c:

a + b + c = 1a + 1b + 1c, a + b− c = 1a + 1b + (−1) c,
a + b = 1a + 1b + 0c, a− b + c = 1a + (−1) b + 1c,

a = 1a + 0b + 0c, 0n×1 = 0a + 0b + 0c,

2849a + 5815b− 384c,
1
3

a +
√

2b− πc, . . .

Question: Given some vectors v1, v2, . . . , vk ∈ Rn and a vector w ∈ Rn, how can
we tell whether w is a linear combination of the v1, v2, . . . , vk ? And if it is, how do
we find the corresponding coefficients λ1, λ2, . . . , λk ?

Example: Let n = 2 and k = 2. Is
(

0
5

)
a linear combination of

(
1
3

)
and(

2
4

)
?

This means: Are there λ1, λ2 ∈ R such that
(

0
5

)
= λ1

(
1
3

)
+ λ2

(
2
4

)
?

Let us rewrite this equation:(
0
5

)
= λ1

(
1
3

)
+ λ2

(
2
4

)
⇐⇒

(
0
5

)
=

(
λ1 · 1
λ1 · 3

)
+

(
λ2 · 2
λ2 · 4

)
⇐⇒

(
0
5

)
=

(
λ1 · 1 + λ2 · 2
λ1 · 3 + λ2 · 4

)
⇐⇒

{
0 = λ1 · 1 + λ2 · 2
5 = λ1 · 3 + λ2 · 4

⇐⇒
{

λ1 + 2λ2 = 0
3λ1 + 4λ2 = 5 .

This is a linear system in λ1 and λ2. It has a unique solution, which is
{

λ1 = 5
λ2 = −5/2 .
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Thus, (
0
5

)
= λ1

(
1
3

)
+ λ2

(
2
4

)
with λ1 = 5 and λ2 = −5/2. Thus,

(
0
5

)
is a linear combination of

(
1
3

)
and(

2
4

)
.

Example: Is

 2
2
2

 a linear combination of

 1
2
3

 and

 3
4
5

 ?

We can solve this with the same method.

But you might just be able to eyeball the answer:

 2
2
2

 =

 3
4
5

−
 1

2
3

.

Example: Is

 0
0
1

 a linear combination of

 1
2
3

 and

 1
1
2

 ?

We can solve this with the same method, but the linear system will now have no
solution.

This means that the answer is “no”.

There is an easier way to see this: Both vectors

 1
2
3

 and

 1
1
2

 have the

property that

(top entry) + (middle entry) = (bottom entry) .

This is a property that is preserved under linear combination (i.e., if some vectors
have this property, then any of their linear combinations has it as well). Therefore,

if

 0
0
1

 was a linear combination of

 1
2
3

 and

 1
1
2

, then it would too have

this property. But it does not.
General method for answering the above question ([Strickland, Method 7.6]):
Consider k vectors v1, v2, . . . , vk ∈ Rn and a vector w ∈ Rn. How can we tell

whether w is a linear combination of v1, v2, . . . , vk ?
We want to find λ1, λ2, . . . , λk such that w = λ1v1 + λ2v2 + · · ·+ λkvk.
This can be rewritten as w = Aλ, where

A = (v1 | v2 | · · · | vk)︸ ︷︷ ︸
This is the n×k-matrix

whose columns are v1,v2,...,vk

and λ =


λ1
λ2
...

λk

 .

This is a system in the unknowns λ1, λ2, . . . , λk, thus can be solved using Gaus-
sian elimination. If there is no solution, then w is not a linear combination of
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v1, v2, . . . , vk. If there is a solution, then w is a linear combination of v1, v2, . . . , vk,
and the solution gives us the required coefficients λi.

Example: Is

 2
2
2

 a linear combination of

 1
2
3

 and

 3
4
5

 ?

We already answered this by eyeballing it, but let us do this systematically now:

A =

 1 3
2 4
3 5

, λ =

(
λ1
λ2

)
and w =

 2
2
2

.

So we are solving

 1 3
2 4
3 5

( λ1
λ2

)
=

 2
2
2

.

Augmented matrix:  1 3 2
2 4 2
3 5 2

 .

Bringing it into RREF: 1 3 2
2 4 2
3 5 2

 −→
 1 3 2

0 −2 −2
3 5 2


−→

 1 3 2
0 −2 −2
0 −4 −4


−→

 1 3 2
0 1 1
0 −4 −4


−→

 1 3 2
0 1 1
0 0 0


−→

 1 0 −1
0 1 1
0 0 0

 RREF.

So the system becomes {
λ1 = −1
λ2 = 1 .

Thus,
w = λ1v1 + λ2v2 = −1v1 + 1v2 = v2 − v1.

2.2. A few words on the geometric meaning of vectors

How can we think about vectors? Why are they called vectors to begin with, if they
are just tuples of numbers?
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In high-school plane geometry, a vector is a “movable arrow” somewhere in the
plane. You can place its tail anywhere, and then its head will be in some specific
position. The only thing that is really determined about the vector are its direction
and its length.

Mathematically, the plane is just R2: the set of pairs of real numbers. Each point

in the plane corresponds to the pair
(

x
y

)
of real numbers x and y, its Cartesian

coordinates. Thus, a point in the plane can be viewed as a column vector of size 2.

We shall now identify this point
(

x
y

)
with the vector that starts at the origin

and whose head is
(

x
y

)
. This way,

points = vectors (in high-school sense) = column vectors of size 2.

Addition of column vectors corresponds to addition of vectors from mechanics
(superposition of forces, aka parallelogram law).

Scaling of column vectors corresponds to stretching them from the origin (aka
homothety).

Now, consider two vectors v1, v2 ∈ R2. If these two vectors v1 and v2 fall on one
line with the origin, then all their linear combinations fall on the same line, and
thus vectors outside of this line are not linear combinations of v1, v2. If v1 and v2
do not fall on one line, then every point in R2 is a linear combination of v1, v2.

Something similar (but more complicated) works for R3.

2.3. Linear dependence

Definition 2.3.1. Let V = (v1, v2, . . . , vk) be a list of k vectors in Rn.
A linear relation between the list V will mean a choice of numbers

λ1, λ2, . . . , λk (formally: a k-tuple (λ1, λ2, . . . , λk) of numbers) such that

λ1v1 + λ2v2 + · · ·+ λkvk = 0n×1.

There is always the trivial relation, which is defined as the k-tuple (0, 0, . . . , 0).
In fact, 0v1 + 0v2 + · · ·+ 0vk = 0n×1.

We say that the list V is

• linearly independent if this trivial relation is its only relation, and

• linearly dependent otherwise.
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Example. Consider the list V consisting of

v1 =


1
1
0
0

 , v2 =


0
0
1
1

 , v3 =


1
0
0
1

 , v4 =


0
1
1
0

 .

What are its relations?
Its relations are the 4-tuples (λ1, λ2, λ3, λ4) satisfying

λ1v1 + λ2v2 + λ3v3 + λ4v4 = 04×1, that is,

λ1


1
1
0
0

+ λ2


0
0
1
1

+ λ3


1
0
0
1

+ λ4


0
1
1
0

 = 04×1, that is,


λ1 + λ3
λ1 + λ4
λ2 + λ4
λ2 + λ3

 =


0
0
0
0

 .

This is a system. What are its solutions? Its general solution is
λ1 = −λ4,
λ2 = −λ4,

λ3 = λ4

(with λ4 a free variable) .

So, in particular, (λ1, λ2, λ3, λ4) = (1, 1,−1,−1) is a solution, i.e., a linear relation
between v1, v2, v3, v4. Thus,

v1 + v2 − v3 − v4 = 04×1.

This shows that V is linearly dependent.
Example: Let V be the list consisting of

v1 =

(
1
2

)
, v2 =

(
12
1

)
, v3 =

(
−1
−1

)
, v4 =

(
3
1

)
.

This is “even more” linearly dependent; there are many linear relations, such as

3v1 + v2 + 3v3 − 4v4 = 02×1.

Example: Let V be the list consisting of

v1 =

(
1
0

)
, v2 =

(
2
0

)
, v3 =

(
0
1

)
.

This list is linearly dependent, because 2v1 − 1v2 + 0v3 = 02×1.
Next time:
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• Two vectors are linearly dependent if and only if one is a multiple of the other.

• More generally: k vectors are linearly dependent if and only if one is a linear
combination of the others.

• Spanning and bases.
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